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Foreword

Welcome to the U book. If you want to discover how precisely a modern operating
system performs its multitasking magic, you’ve probably found the right textbook. On
the next 600 pages you can read about the implementation of U, a Unix-like system,
and while you read the chapters which are organized along similar topics as those of most
operating system textbooks, you will see the full implementation. We le out nothing, the
whole code is there (actually: the book is the code, but more about that later), and you can
read it step by step with each implementation part shown where it makes sense—which
is very different from just providing a collection of source code files.

If you’re already familiar with other operating system texts, you will notice that this
book tends to be more practical. We oen discuss only one solution to a problem (where
other books mention a variety and sometimes give a qualified comparison of several tech-
niques). We do not completely ignore alternative approaches, but since we give helpful
explanations of all the code parts, we tend to write more about our solutions than about
the ones which we did not choose for the U kernel.

Writing this book was a fun experience, because for us, the authors, it meant learning
a lot as we went along with the implementation and documentation task. While previ-
ous exposure to theoretical books on operating system principles was certainly helpful
for deciding what to implement, it did not help a lot with the question of how to do it.
Many technical references and some online tutorials for OS development beginners were
useful (and much needed) in order to overcome the numerous challenges which the U
development encompassed. We hope that you will find reading our book as pleasant and
instructive as we found writing it, and we encourage you to try your own experiments
with kernel development: e book provides several exercises in which you can modify
or add to the U code.

Our overall hope is that you will find this book helpful and that it takes you on a journey
that intensifies your knowledge of OS internals and the necessary hardware-related details.
Aer reading, let us know if we’ve met your expectations (→ feedback@ulixos.org).

Hans-Georg Eßer
Felix C. Freiling

Erlangen, September 2015
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1
Introduction

Operating systems are an important part of computing. ey mediate between the com-
plex intricacies of modern hardware and the abstract needs of users and applications. Also,
operating systems are one of the oldest research areas in computer science. Moreover, the
topic is one of the core subjects in academic computer science curricula. So there are many
books and other teaching resources available.

Because of thewealth ofmaterial and the practical appeal of the topic, operating systems
are a fun subject to teach which can also make it an enjoyable course for students. As
regular instructors of two of these courses we have learned that one of the key aspects
of a good operating systems course is to discuss and analyze real operating systems, i. e.,
operating systems that work in practice and can actually be used by people. To this end,
open source systems like FreeBSD FreeBSD, Linuxand Linux have established themselves as good objects
of study because they have commercial value and their source code can be accessed and
scrutinized by lecturers and students in course.

Unfortunately, it is hard to use the source code of such “real” systems directly and ex-
tensively in class. One main reason is the complexity of the code. Operating systems
naturally have to deal with details of the underlying hardware. If a system is designed to
be portable, the source code must cater for multiple computer architectures, which makes
it even more complex. For example, at the time of writing this book, the current Linux
version 3.14.5¹ had 29 subfolders in the linux-3.14.5/arch/ directory which contained the
specific code files for those architectures.

$ cd ~/Downloads/linux-3.14.5/arch/
$ find . -type d -maxdepth 1 -mindepth 1 | sed -e 's/\.\///' | column -c160
alpha blackfin ia64 mips s390 um

¹ https://www.kernel.org/pub/linux/kernel/v.x/linux-...tar.gz

https://www.kernel.org/pub/linux/kernel/v3.x/linux-3.14.5.tar.gz
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arc c6x m32r mn10300 score unicore32
arm cris m68k openrisc sh x86
arm64 frv metag parisc sparc xtensa
avr32 hexagon microblaze powerpc tile

While not all platforms are supported equally well, in same cases there is a tremendous
amount of platform-specific code as the following examples demonstrate which show the
lines of code of source files in the x86, ia64, alpha and powerpc subdirectories:

$ for arch in x86 ia64 alpha powerpc; do printf "%8s" $arch:; \
> find $arch/ -type f | xargs cat | wc -l; done

x86: 318881
ia64: 115179

alpha: 62383
powerpc: 439961

Furthermore, modern operating systems usually offer an increasing number of features
which must all be expressed by code. Another reason for the complexity of operating
systems code is that practical operating systems must be extremely efficient. Every in-
struction cycle and memory cell used by the operating system cannot be used by the ap-
plications and their users. at is why operating systems code is oen highly optimized.
ere are many other reasons that prevent instructors from showing real source code in
class.

In our view the most important reason for not using real code directly in class is that
operating systems have not been wrien with a human reader in mind, especially non-
expert readers like students of operating systems classes who want to learn the basics
of the area. Even when this is not the case and an operating system was developed for
teaching purposes, such as the MinixMinix operating system, it is oen a tough task to browse
through the complete source code that is split into several separate files and is ordered
according to constraints of the programming language.

at is precisely where our approach differs: You can read this book from front to back
and discover the theory and the implementation of the shown principles in the source
code of the U operating system that serves as an example.

1.1 Literate Programming
When we write soware, do we really think about a human reader? e harder we try, the
more we feel constrained by the programming tools available. When writing a complex
piece of code, wouldn’t you sometimes like to include a figure into the code to explain the
complex interactions of variables? Or when you implement an algorithm from a textbook,
wouldn’t you like to give an automatic reference to this book in the source code? Or when
one part of the code is similar to another part because you used the same idea, wouldn’t
you like to use automatic cross-referencing between these two parts? And aren’t you
bored of writing all these comment signs (like // in C or Java) all the time (or worse,
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aligning the stars when using /* and */)? If you have ever felt such a desire, you are ready
for literate programming.

Literate programming is a programming technique originally developed by Donald E.
Knuth to write the TEX TEXtypeseing system. e source code of TEX appeared 1986 as
a book called “TEX – e Program” [Knu86]. Reading that book is an entirely different
experience from reading “normal” source code. It contains the entire source code, not just
important excerpts, and it is real code that was compiled into the original version of the
typeseing program.

With literate programming there is a conceptual change in the programming approach:
Here, documentation comes first. A literate program is basically a text describing the
program, and the actual code is inserted in the documentation, thus reversing the normal
ordering. So instead of classically documenting code as in the following example:

// This function takes an argument, squares it, and adds the constant 42.
int square_and_add (x) {

const int add = 42; // declare the constant
x = x*x; // square x
return x + add; // calculate sum, return result

}

a literate programming version of the same code might look like this:

We will write a function square_and_add which takes an argument x, squares it and
adds some constant. Squaring a variable is just a multiplication of the value with
itself:
⟨square x⟩ ≡

x = x*x;

With this knowledge we can implement the function:
⟨function implementation⟩ ≡

int square_and_add (x) {
⟨declare constant add⟩
⟨square x⟩
return x + add;

}

Now, what’s le is to decide on the constant add—we pick 42:
⟨declare constant add⟩ ≡

const int add = 42;

is is an implementation of the function f : x 7→ x + .

Note how the function definition uses two code chunks: one that was presented before the
function and another one which came aer the function. Literate programmingmakes the
developer independent of any specific ordering of code fragments which the languagemay



20 1 Introduction

demand, e. g. the declaration of variables before their first use. Also, both top-down and
boom-up styles of programming are possible and can be combined.

Following the idea of literate programming, this book is a book for students. Its source
code can be used to generate executable code (for the UU operating system) and a LATEX
file that can be typeset to an introductory text on operating systems (this book).

When you look at the source file ulix-book.nw from which this book was created, you
will see how code chunks are declared: e chunk name is always put between << and
>>=, then follows the code which is terminated with a @ character on a single line. When
referencing a code chunk the same syntax (without the equals sign) is used. So for example,
in order to declare the ⟨function implementation⟩ chunk from above, the following lines
are needed:

<<function implementation>>=
int square_and_add (x) {
<<declare constant add>>
<<square x>>
return x + add;

}
@

Chunks may also be continued, i. e., some pages (or even chapters) aer the initial defini-
tion of a code chunk it is “defined again.” at does not replace the original definition, but
add to it. In the source file this is done by simply writing

<<function implementation>>=
...
@

again (with additional code lines inside), but in the PDF version the representation of a
continued code chunk looks slightly different: Instead of

⟨function implementation⟩ ≡

it will look like this:

⟨function implementation⟩+≡

with a +≡ sign that indicates the continuation—similarly to C’s += operator that also has
an “add to” meaning (e. g. x+=5; means: add 5 to the value of x).

1.2 The U Operating System
roughout this book we present the whole source code of the U operating system.
at encompasses the kernel but also the user mode library which application developers
must use in order to interface with kernel functions. e book does not show source code
for (all) the applications.
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1.2.1 The Name of the Game
e name U is intentionally similar to the name Unix. is is meant to imply that the
code is influenced a lot by things we have seen in Unix/Linux style operating systems.
e focus on Unix is solely based in the past experiences of the authors, it is in no way
intended to imply that Unix is beer or worse than other operating systems.

e choice of the leer “” in U is supposed to concisely express that the system
is meant for learning and teaching operating systems. Besides, the name U is one of
the few four-leer abbreviations that do not seem to have been chosen for other soware
systems yet. Furthermore, U is probably the first operating system that is wrien as a
literate program, and so U can also stand for “literate Unix”.

1.2.2 Design Principles of U
e following principles have determined the design of U:
• U is for learning and teaching principles of operating systems in a course. U

should never be a practical system in the sense that it can be used to run real applica-
tions.

• Nevertheless, U should be a real operating system, i. e., the code should be exe-
cutable on some well-defined computer architecture. If necessary, it should be possi-
ble to port U to other platforms, but portability is not a core requirement of U.

• e design and implementation of U should be governed by the principle of sim-
plicity, avoiding optimizations, focusing on understandable and correct code.

• It should be possible to use the source code directly in class. e source code should
be wrien with the human reader in mind.

Given the above design principles, one point should be clear—but is important enough
to mention it anyway: While trying to be real, U is not practical, i. e., we disclaim
any fitness for practical use. On the one hand, the code is not guaranteed to be free of
programming errors. On the other hand, the performance of U is such that it will not
achieve any required quality of service in practice. U is purely for learning. e path
chosen is the one of simplicity. So when you have read this book, you will have a fairly
good idea of how U works, but only a faint idea of how operating systems work in
general. erefore, this book is not (and never will be) a replacement for the available
excellent general textbooks on operating systems.

1.2.3 U Features
Some of the words in the following feature list may not make sense to you right now,
but if you already have some knowledge of operating system principles, this gives you an
idea of what kind of content to expect in the book. If you are familiar with some Unix
system as a user or administrator, at least most of the application programs mentioned in
the following paragraph should be well-known.
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U is a classical Unix-like operating system which features processes with separate
address spaces, threads, paging, a virtual filesystem (currently supporting floppies and
hard disks, with Minix as the primary filesystem) and synchronization via kernel mutexes
and semaphores. It has a preemptive scheduler (implementing a simple Round Robin
strategy) and allows for the integration of new interrupt and system call handlers at run-
time. U supports up to ten text mode terminals. It works on 32-bit Intel-compatible
CPUs and provides system calls (via the classical int 0x80) and corresponding user mode li-
brary functions which are compatible to other Unix systems, e. g. fork, execv, exit, waitpid,
signal, and kill for process control, some of the pthread_* and pthread_mutex_* functions
for thread control [IEE95], open, read, write, lseek and close for file access, brk for dy-
namic memory (heap) management etc. ere are also a few user mode programs (cat,
chgrp, chown, chmod, clear, cp, df, diff, free, grep, hexdump, kill, ls, man, mkdir, ps, readelf,
rm, rmdir, stat, sync, touch, vi and wc), and some more commands are implemented as shell
built-ins of the U shell sh, e. g. cd and pwd.

A login mechanism asks for user name and password and checks these against entries in
/etc/passwd (where the passwords are stored in plaintext and world-readable since hash-
ing and encryption are not available in U), and authenticated users can only access
files for which they have the required access permissions. Also, signaling other processes
via the kill function or program requires the user to own the targeted process (or have
administrator privileges).

Redirection of standard input, standard output and standard error are supported via
closing one of the file descriptors 0, 1 or 2 and opening a new file (which will reuse that
descriptor). e shell understands the <, > and 2> syntax for starting programs with redi-
rections, and it can also use the feature to execute shell script files (via sh <script.sh).

U uses a buffer cache for disk read and write operations so that repeated access to
the same data on disk is faster than first access. A swapper process runs in the background
and checks whether physical memory fills up too much: if so, it will pick parts of memory
and write them to disk in order to increase the available memory. If such a “paged-out”
memory area is accessed later, it will be “paged in” again before the program that wants
to use it can continue.

e system can be run inside a virtual machine using qemu and it writes a kernel log to a
(virtual) serial port; you can save this output in a file for later analysis. e simple shell can
launch user mode programs (which need to be compiled outside U). Such programs are
stored using the ELF executable format [TIS95]. U expects to have 64 MByte of RAM
andmaps that physical RAM to a fixed address space region for easy access to the physical
memory. POSIX threads are somewhat limited in that each thread has a fixed-size stack
(whereas the primary or only thread has a stack which automatically increases its size as
needed).

1.3 Tools
e original goal was to write a book like “TEX – e Program” [Knu86] with prey-
printed sourcecode and extensive automatic cross-references and indexes (especially the
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famous mini indexes on right-hand pages). is can be achieved using the Knuth/Levy
CWEB documentation tool [KL03, KL01] that also has hypertext extensions. Mini indexes
can be generated by an extension called CTWILL [Knu93] that is the program used to gen-
erate the source of “TEX – e Program”. However, the CWEB family of tools is restricted
to TEX as typeseing language which we wanted to avoid in favour of LATEX. While there
exists an experimental adaption of CWEB for LATEX by Joachim Schrod [Sch13], CWEB is
also restricted to the C programming language, so more than one language (e. g. C code,
assembler code and configuration files) cannot be handled.

For this book we decided to use Norman Ramsey’s noweb nowebtool [Ram94] which combines
a simple syntax with language independency: it uses LATEX LATEX(or alternatively HTML) as
input and output format for the documentation. ere are also several extensions which
add prey-printing and indexing.

e main source for the book is one huge LATEX file that serves as input to the noweb tool
chain. e program noweave noweaveconverts it into a classical LATEX file that can then be processed
as usual; for this book we chose the XƎLATEX XƎLATEXvariant [XeL14] of LATEX because it handles
UTF-8-encoded input files and provides beer options for font selection. Together with
standard LATEX tools (bibtex and makeindex) it produces the PDF file that you’re currently
reading in the PDF viewer or as a printed copy.

e other part of the noweb tool chain generates the U source code files: notangle notangle
extracts code chunks and saves them in source files which will then be compiled or assem-
bled with the GNU C compiler gcc and the nasm gcc, nasmassembler.

Figure 1.1 shows a simplified view of the build process for both the book as well as the
kernel, the user mode library and a sample application. We will give a detailed description
in Chapter 18.
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Figure 1.1: Using the Noweb tool chain it is possible to generate this book and also the
U kernel binary and other system files.
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1.4 Copying
U is Free SowareFree Soware , following the definition of this term that was coined by the Free
Soware Foundation (FSF). You can copy and browse the code and compile it into any
form you like. If you find bugs in the source code, please drop us a message so that we
can fix the bug in the next iteration of the soware. Similar to TEX, U is meant to even-
tually become a stable platform that does not evolve anymore, i. e., we will eventually stop
issuing new releases. at’s why we retain the entire copyright that must be mentioned
in all files associated with the system. If you think that U should be fundamentally
changed, become more efficient etc., you can take the code but should call the resulting
system something other than “U”.

[24] ⟨copyright notice 24⟩≡ (44a 48)
/*
Copyright (c) 2008-2015 Felix Freiling, University of Erlangen-Nürnberg, Germany
Copyright (c) 2011-2015 Hans-Georg Eßer, University of Erlangen-Nürnberg, Germany

This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program. If not, see <http://www.gnu.org/licenses/>. */

You can find version 3 of the GPL at the end of the book.

1.5 Notation
In this section we describe the various conventions used throughout the book.

1.5.1 Numbers and Units
is book makes heavy use of hexadecimal numbers and (less oen) octal and binary
numbers. We expect readers to be familiar with these positional numeral systems with
bases 16, 8 and 2.

• Hexadecimalhexadecimal numbers such as 0xAB12CD34 will appear with a monospaced font and a
0x prefix (since that is the notation also used in C). Sometimes we will insert a dot in
the middle (0xAB12.CD34) to improve readability.

• Octaloctal numbers such as 56701o also use the monospaced font but have a small o index
at the end to indicate that the octal system is used. C uses a different notation: every
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number which starts with a zero is considered to be an octal number which sometimes
causes problems for readers who are not familiar with this convention.

• We write binary binarynumbers like 100101b in a similar fashion, but with a b index at the
end. Standard C has no way to express binary numbers, but the GNU C compiler
allows the non-standard syntax 0b100101 (with a 0b prefix, similar to the 0x prefix for
hexadecimal numbers).

We oen discuss kilobytes kilobyte
megabyte

, megabytes (or rarely gigabytes) when talking about memory
or disk areas and filesizes. When we do so, we use the historical meanings as displayed in
Table 1.1. Note that most newer books use the reformed interpretation according to which
kilo-, mega- and gigabytes refer to powers of 1000 of bytes, which is more consistent with
other uses of “kilo” and “mega” like, for example, kilometers and megatonnes. e new
terms for the old units are “kibibyte”, “mebibyte”, “gibibyte” etc. [Int00].

However, having a special unit name for 1000 bytes or a million bytes is quite useless
since these sizes have no meaning: 1000 is not a power of 2 (but  =  × ), and
everything in the hardware is organized by powers of 2. at is why we have decided
to stick with the classical meanings even though they are considered wrong by today’s
standards. If you’re already used to the new notation, please replace any occurrence of
“kilobyte” with “kibibyte”, “megabyte” with “mebibyte” etc.

Note also that the oen-used term “1.44 megabyte floppy disk” makes no sense at all,
because such a floppy stores 2880 sectors each of which is 512 bytes large. us, the disk
size is 1440 KByte which are 1.40625 MByte. When using the new terms the size could be
expressed as 1474.56 kB or 1.47456 MB, and none of those numbers should lead to “1.44”—
you can only arrive there by mixing the old and the new terminology and claiming that a
megabyte was ×  bytes.

Unit Abbreviation Size in bytes hexadecimal

Kilobyte (“Kibibyte”) KByte  =  =  0x00000400

Megabyte (“Mebibyte”) MByte  =  =  0x00100000

Gigabyte (“Gibibyte”) GByte  =  =  0x40000000

“New Kilobyte” kB   =  0x000003E8

“New Megabyte” MB   =  0x000F4240

“New Gigabyte” GB   =  0x3B9ACA00

Table 1.1: In this book we use the classical meanings of “kilobyte”, “megabyte” and
“gigabyte”.

For comparison, we have added the new interpretations to the table; especially when
looking at the hexadecimal representations you can see that these units do not occur in
practical seings.
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1.5.2 Identifiers
Names of variables, functions, constants and other code elements that appear in a regu-
lar paragraph also use the monospaced font, and we sometimes add round brackets to a
function name when we want to emphasize that it is the name of a function. So you may
find references to “the read_file function” or simply to “read_file()”. When a variable or
function is declared or defined in a code chunk, there will oen be a suffix which indicates
the page number where the definition can be found, e. g. for the readblock_hdb function.

Some functions appear to exist twice: once inside the kernel, and once in the user mode
library which applications must link to access those kernel functions. An example is the
open function which opens a file. Surely, the kernel needs a way to open files, and appli-
cations also have that need. While both functions will never appear in the same context,
they do appear in this same book which contains cross references to the place where a
function was defined. us, using the same name would cause some confusion, so we use
slightly different names in the kernel by adding a u_ prefixu_ prefix to the name. e kernel uses
the u_openc function, and the user mode library provides an openb function.

Constants (defined via the pre-processor’s #definemacro) use all-upper-case names and
underscores as word separators, for example MEM_SIZEc.

1.5.3 Margin Notes
You will have noticed already that the page margin sometimes contains a few words, for
example, in the above paragraphs, there’s a “u_ prefix” margin note. ese notes are help-
ful in two ways: when you thumb through the pages of the book, you can quickly identify
key words, and when you have looked up a word in the index and gone to the right page,
a margin note leads you to the right line.

e margin also contains code chunk numbers in [] brackets (see the following section).

1.5.4 Code Chunks
e most important bits of information within each code chunk are the chunk name and
the actual code, but there is more, and knowing what the additional elements of a code
chunk mean will help you navigate the code more easily, for example when you find a
function call to a function that you have forgoen (or that may be defined only later in
the text).

Figure 1.2 shows two example code chunks that demonstrate all the elements you will
find in the chunks.

• First of all, each code chunk has a name. When a chunk is defined for the first time
and you’re on page 123 of the book, the chunk will begin with a line like
⟨chunk name 123⟩ ≡
which confirms that this chunk indeed starts on page 123. If more than one chunk
starts on this page, a lower case leer is appended to the page number so that you
can distinguish between them, e. g. 123a, 123b and 123c for three code chunks on
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page 123. If the chunk definition started earlier (and this is a continuation) then the
original chunk number will appear next to the chunk name.

• Regardless of whether the current chunk is an initial definition or a continuation,
it always has an individual chunk number. is number is displayed in the margin
inside [] brackets, e. g. [122c] in the figure.

• e top line of the chunk contains up to three further chunk numbers on the right-
hand side. If you find a chunk number in round brackets (such as (62a) in the figure),
then it is a reference to the first place where this chunk is used. e next two chunk
numbers are prefixed or suffixed with a le or right facing triangle. If a number with
a le triangle exists (in the example: ◁ 122b), this points to the previous continuation,
and a number with a right triangle (in the figure: 124c ▷) leads you to the next contin-
uation. Using these forward and backward pointers you can find all locations where
this chunk is defined (and thus read the whole source code that the chunk is made
o).
When one or more of these three numbers do not exist, that has the obvious meaning:
A missing (…) reference means that the chunk is used nowhere. at should only
happen for “root chunks”: those are the chunks which notangle extracts to create the

First reference to chunk
Previous continuation
Next continuation

Current chunk number
(on lef pages)

Current chunk 
number
(on right pages)

Initial definition
is in chunk .

Identifiers defined here
(and used elsewhere, with 
references)

Identifiers defined elsewhere
(with references) and used here

Figure 1.2: Code chunks come with links to other parts of the source code and let you
navigate through the sources: you can quickly find out where a function or
variable was defined, and below the defining chunk you see all the places where
it is used.
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compiler/assembler source files. A missing forward or backward pointer simply indi-
cates that you have reached the last or first part of the chunk definition, respectively.

• Under some chunks you find a line that starts with “Used:” and lists all (known) iden-
tifiers and the chunk numbers where they were defined. Both examples in Figure 1.2
contain such a line.

• Finally, a code chunk may define one or more identifiers. In that case, you will see a
block starting with “Defines:” and a separate line for each defined identifier, giving its
name and all the locations in the book where it is used. In the example figure only the
second code chunk has such a block. e “Used:” and “Defines:” blocks let you track
the usage of functions, variables and constants throughout the whole code which is
oen more helpful than searching for an identifier in the code files.

• ere is one case that we treat in a special way: e C language demands that func-
tions are declared before their first use. Since we do not want to consider the ordering
of function implementations it is oen necessary to insert a function prototypeprototype vs.

implementation
which

will appear early in the C file, whereas the implementation occurs at a later position.
So there will be prototype code of the form

int function_name (arguments); // prototype

and implementation code that looks like this:

int function_name (arguments) { // implementation
...
return ret_val;

}

Technically (from a literate programming point of view), only one of those code blocks
defines the function, and the other one uses it. In the book we will oen, but not
always, present both parts on the same page though they will appear in different
places in the generated C file. We have decided to make the implementation chunk
the defining chunk (since that is what you will want to look up when you see usage
of a function). We have also removed the “Used:” line for the prototype chunk since
it will refer to the chunk which immediately follows.

Even if you have a printed copy of this book, it is helpful to use the PDF version as well,
since all chunk numbers are links to those chunks, and most identifier names are clickable,
too, leading to the place where a variable, constant or function is defined.

1.5.5 Coding Standard
e code uses two spaces for indentation, and the curly brackets { and } which declare
the beginning and the end of a block are always wrien in this form:

int sum_of_first_ten () {
int j, sum;
for (j = 1; j < 11; j++) {
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sum += j;
}
return sum;

}

We oen use the // // vs. /* */one-line comments which originally were not part of the C standard,
but are supported by modern C compilers. So instead of classical C comments such as

int tmp = array[i].mem; /* the memory address */

you will more oen see this form:

int tmp = array[i].mem; // the memory address

In the book, the comparison operators <= and >= are displayed as ≤ and ≥ ≤, ≥, but this is the
only kind of prey-printing that we have applied to the source code chunks, except for
a lile color highlighting of comments, brackets and the exclamation mark and slanted
printing of the #define and #include pre-processor commands:

[29]⟨example for syntax highlighting 29⟩≡
#include "ulixlib.h" // use the library
#define TRUE 1 // define a symbolic constant
void example_function (int param) {

int vector[10];
for (i = 0; i ≤ 10; /* inline comment */ i++) {

if ( !param ) { vector[i] = vector[i] * 2; }
}

}

In functions which have no return value (typed as void) we omit the return statement
because the function automatically returns when it reaches the end of the function’s body;
the C standard allows this practice, and it saves a line in each such function.

1.5.6 “Going where?”
At the beginning of some sections you will find a short text in two-column layout using a
different font, such as the following:

Going
where?

This is an example for a “Going where?”
paragraph. Right now it has no useful

contents, so let’s just note that you will
soon see the first lines of real code.

Sometimes it is easy to get lost and wonder: why have we been dealing with this or that
function? In such cases, the “Going where” paragraph gives you some orientation. How
do things fit together? Where are we in the larger picture?
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1.6 Creating an Operating System From Scratch
Writing an operating system is very different from developing an application. at is
because, when you start out, there is literally nothing. For example, there are no libraries
that would provide standard functions such as printf. Also there are no rules dictating
how the operating system is going to handle things—it is up to the developers to decide
what those rules should be.

First of all, some elementary questions need to be answered:

• What kind of hardware will the OS work on?
• What programming language(s) should be used for development?
• What kind of applications will the OS be able to host?

If you expect to create an OS using Java that will be compatible with Windows, Linux
and OS X and will also sport a high performance 3D engine so that the latest console
games run on it, then this textbook will be prey disappointing.

1.6.1 Selection of Target Hardware
e computing world is diverse, allowing for all sorts of hardware architectures. CPUs
can have very different features—if you have aended a course on computer architectures,
you will have noted things like RISC and CISC CPUs with very small and simple or huge
and complicated instruction sets. In this bookwewill focus on the 32-bit Intel architecture,
for the simple reason that most people have quick access to an Intel-compatible machine
or can at least run an Intel-based operating system in an emulator. With their 32-bit
architecture, the CPUs can access 4 GByte of physical memory which is enough for most
purposes. During the last years 32-bit CPUs have become a bit outdated, as the latest
processors have a 64 bit wide address bus and provide internal registers with the same size.

Intel hardware has some legacy problems because even the latest (64-bit) Intel chips are
compatible with old systems from last century’s 80s. We will see this when we discuss
the management of memory.

1.6.2 Language of Choice
Operating systems are very close to the actual hardware. In fact you won’t see any
other class of “programs” which get any closer to the hardware (except for a computer’s
firmware), because there’s always the OS as a natural barrier between hard- and soware.
We’re in the area of systems programming, and this is where “old school” languages still
dominate. So with most operating systems you’ll see lots of CC language code. For those who have
never heard of C (without a++ or # postfix): C is a procedural language that was created
in 1969–1973 by Dennis Ritchie² and it’s a predecessor to C++, Java and C#. It does not
know objects.³ U was (mostly) wrien in C.
² Ritchie reviewed the early history of C in an article [Rit93].
³ For those readers who are unfamiliar with C, we have included a short introduction to C which requires
C++ or Java knowledge, see appendix A on page 635.
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e principle of simplicity demands that we use “clear C”, i. e., we discipline ourselves
to non-optimized and clear code that can also be understood by people familiar with Java.
We also restrict inclusion of library header files (we want to be self contained).

Even closer to the hardware is assembler Assembly
language

code, and for that reason all the early op-
erating systems were programmed in assembler. Assembler code is what a C compiler
will generate when you provide it with some C source code. Today it is no longer nec-
essary to write complete operating systems in assembler (some people still do this, e. g.
the BareMetal [Sey13] developers), but you’ll still need some assembler code from time
to time, because some parts of the OS need to access CPU registers or execute special
machine instructions which are not available in the C language.⁴

For the Intel processor platform, two “dialects” exist, the Intel and the AT&T one. e
GNU C compiler supports both but defaults to the AT&T variant. We have decided to
use the Intel syntax, because it is closer to C’s syntax: For example, you can load the EAX
register with the value 0 via the command mov eax, 0 (in Intel syntax). So the target of the
mov command comes first which resembles the C command eax = 0. In AT&T syntax, the
operands are reversed, with the target coming last and extra syntactical elements being
needed (mov $0, %eax).

1.6.3 Applications
An operating system X will run applications which have been developed for X (let’s call
them “X applications”), and it will be either impossible or very hard to run Y applications
for any Y which is not X. Every OS creates its own soware universe, and if you want to
run a program from a parallel universe, you’ll need some sort of emulation—which is not
a topic of this book.

Most applications require libraries which are typically considered part of the operating
system. Even for something as simple as printing “Hello world”, you need a library that
contains the code which is necessary to make the OS print something (in a text console, a
window or perhaps on a printer).

In principle it would be possible to port many of the existing Unix (text-mode) appli-
cations to U, however most programs make excessive use of the available libraries, so
those would have to be ported first. is version of U comes with a limited set of tools,
including a very limited version of the vi editor. So do not expect to replace your current
Linux installation with a U system.

1.7 What’s in the Book?
Reading this book, you will see introductory descriptions of several theoretical concepts,
and at the same time you’ll see the complete source code necessary to implement these
concepts.

What’s in the book is in principle what’s required for a typical operating system—but
note that for all theoretical problems there are lots of possible solutions, and U pro-

⁴ Appendix B on page 647 provides an introduction to the x86 Assembly language.
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vides one solution to most problems. In many chapters we will begin with a theory sec-
tion which gives broader information about the topic. We might present several different
approaches but show only the implementation of one of them: the one we picked for U.
is will typically be the most simple solution, because we did not want to make the code
too bloated.

Let us first look at some of the tasks an operating system needs to perform. For every
modern system, the process (or more precisely: several processes) is a central idea. Many
processes may coexist on a machine, and the CPU shall execute them in parallel. We need
ways to spawn new processes and terminate processes which have completed their tasks.

e OS kernel will need internal fork, exec and exit functions for process creation and
termination, but thosewill not be available to running programs (which are not running in-
side the kernel)—this problem is typically solved via system calls. So we need a system call
interface and system calls fork, exec and exit which allow access to the kernel functions.

Starting a new process oen requires loading the program code from a disk, and once the
program is running, it will perform I/O operations: typically with the disk, the keyboard
and the video display. Keyboard input arrives via keyboard interrupts, so our operating
system must deal with interrupts. ese are also needed for talking to the disk, and since
we do not want to perform raw sector read/write operations to access data, we need a
logical filesystem (which will be the Minix filesystem, version 2). Both the OS itself and
processes will open, read and write files, and in order to let processes perform these actions,
we need more system calls that—again—allow access to these functions.

Since each process has its separate memory, we need kernel routines for memory man-
agement. U uses paging and creates address spaces for all processes (which are basically
page tables with some additional administrative data). For each newly created process the
system must reserve some memory; at least it will have to create a new address space.
Later (at process termination) this memory must be set free. We must define a memory
layout that describes what parts of (virtual) memory belong to the kernel and what parts
belong to processes. A process may also ask for more memory while it is running, this
requires another system call (brk) which can be implemented by allocating a new page for
the process.

Unix systems use a signaling system that allows both processes to send signals to other
processes as well as the kernel itself to signal a process. Processes may register signal
handlers in order to avoid the default actions for receiving a signal (typically: ignore or
abort). Again we need more system calls for registering handlers (signal) and sending
signals (kill). e scheduler must check whether a process has pending signals when it
activates it; in that case it must call the signal handlers (or perform the default action).

If we combine the ideas about processes which we have presented so far and add some
further process properties, we arrive at the mind map shown in Figure 1.3: it is rather
complex, and we have only looked at the system from the process perspective.

us, we will cover the following topics:

• MemoryManagementeory (Chapter 3) gives an introduction to the possible ways
in which the system’s main memory can be shared between several processes. We
start with some simple models and quickly turn to paging, today’s standard method.
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Figure 1.3: Mind map for process functionality.
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• Boot Process and Memory Management in U (Chapter 4): Aer the theoretical
introduction you’re prepared to look at the first steps of the system initialization.
We need to load the kernel, but where should we place it in RAM? e code in this
chapter enables the paging mechanism and builds the foundation for process-related
code which will allow to switch between several address spaces.

• Interrupts and Faults (Chapter 5) trigger the execution of handler functions which
we must provide—they should do something useful about the event that started them,
for example read data from a device that signaled the completion of some activity.

• Processes andreads (Chapters 6 and 7) are all about running programswhichmost
people consider the primary task of an operating system. We present code for classical
Unix processes (handled by the fork, exec, exit functions) and an approximation of
POSIX threads.

• Seduling (Chapter 8) provides U with its multitasking feature. You will learn
about some approaches towards scheduling and then see the implementation of a
round-robin scheduler. is is both about deciding when to switch to a different
process (and which one) and about the switching itself: What do we have to do to
temporarily halt one process so that another one can run?

• Handling Page Faults (Chapter 9) is a continuation of both the chapters on memory
management and fault handling; a page fault is a fault that we can oen recover
from without terminating the causing process. In this chapter we also present our
routines for paging out and back in: When memory becomes scarce, we write parts
of a process’ memory to a disk file in order to free space—when we need it again, we
bring it back.

• Talking to the Hardware (Chapter 10) deals with support for some standard devices,
including the screen, the keyboard and the on-board clock’s timer.

• Synronization (Chapter 11) is necessary because we allow multitasking. We show
the implementation of kernel semaphores and mutexes which are standard primitives
that help protect data against data-corrupting simultaneous access. We also explain
how interrupt handlers and system call handlers (called by processes) which access
shared data can be synchronized.

• Filesystems (Chapter 12): Here we deal with the logical aspects of accessing files on
media. We present the U Virtual Filesystem and our implementation of the Minix
filesystem. Actually talking to the disk drive controllers is le to the next chapter.

• Accessing Hard Disk and Floppy Disk Drives (Chapter 13) requires some understan-
ding of the protocols that these controllers “speak”. is chapter is very technical,
but you do not have to deal with all the details in order to see how disk access works
and data can be transferred between a disk and memory.

• Signals (Chapter 14) are a classical Unix mechanism which allows a simple kind of
messaging: processes can send signals to other processes which makes them either
terminate or call a registered signal handler. One use case is killing a process.
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• Users andGroups (Chapter 15) let several users share one system but keep each user’s
data private. Every file belongs to one specific user (its owner), and each process is
associated with one user (its creator), as well. We show how U implements the
standard user/group mechanisms of Unix systems.

• e Small Standard Library (Chapter 16) provides oen-used but less interesting
functions such as printfa and memcpyc. is is not really what an operating sys-
tem is concernedwith, but without output and stringmanagement functions we could
not do a lot.

• Debugging Help (Chapter 17) contains the code of the kernel shell and its internal
commands. at shell is only available for debugging purposes.

• Build Process (Chapter 18): In this chapter we discuss how you can extract the source
code from this book (assuming you have its Noweb source file ulix-book.nw and then
build the system. Read it if you want to modify the system. If you only want to run
U, there are easier ways to get started.

• Finally, for those new to C and/or Assembler, there are introductions to C (Appendix
A) and to the Intel x86 Assembly Language (Appendix B).

We will give a more detailed description of some of these topics in Chapter 2.
If you copy all the code from the book into appropriate files (or download the version

we provide on the website) you can compile it into an operating system that will actually
boot on the qemu PC emulator.

We’ll set the OS name and version now:
[35a]⟨macro definitions 35a⟩≡ (44a) 46d ▷

#define UNAME "Ulix-i386 0.13"
#define BUILDDATE "Mon Nov 2 17:33:51 CET 2015"

Defines:
BUILDDATE, used in chunks 337c and 605a.
UNAME, used in chunks 337c, 605a, 609, and 610a.

[35b]⟨version information 35b⟩≡ (44a)
/*
v0.01 2011/06 first version: boots, enables interrupts, keyboard handler,

protected mode; most code taken from kernel tutorials
v0.02 2011/07/31 paging for the kernel (not yet for user space)
v0.03 2011/08/12 paging with Higher Half Kernel / GDT trick (preparation for

user space)
v0.04 2011/08/17 dynamic memory allocation: request frame, request new page

(with update of page table; creation of new page table if
last used one is full)

v0.05 2012/10/02 serial hard disk and external storage server (for use with
qemu & co.)

v0.07 2013/04/05 Scheduling and fork / exec / exit / waitpid are working.
v0.08 2013/07/13 Minix Filesystem support (replaces "simplefs"). Can read,

write, create files.
Kernel uses floppy (FDC controller) instead of serial disk
Terminal support (up to ten terminals with shells)
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v0.09 2013/11/02 execv (with ELF loader) works; moved internal shell
commands to ELF binaries in the bin/ directory

v0.10 2014/01/07 Mounting works, VFS functions (u_open, u_read etc.) work
across several mounted volumes
Enter kernel shell: Shift+Esc, return to user mode: exit

v0.11 2014/04/23 Filesystem code is complete, buffer cache also used for
writing. Kernel level threads with pthread_* and pthread_
mutex_* functions.

v0.12 2014/08/19 Code is complete for the first public release.
v0.13 2015/09/02 Modified version (error fixes).
*/

Welcome to U 0.13!

1.8 Helpful Previous Knowledge
is book is targeted towards both undergraduate and post-graduate students and instruc-
tors who consider using a Unix-like system in a course on the design and implementation
of operating systems. At the minimum, readers should be familiar with the following
topics:

• Soware development with a C-like language, e. g. C++, C# or Java
• Data structures and algorithms
• Basic understanding of some assembler language (the U sources contain a few lines

of 32-bit Intel assembler code)

Experience with the following topics is not required but considered helpful:

• Standard Unix library functions such as open, read, write, fork, exec (as they are some-
times taught in a system programming course)

• Unix command line (shell), such as bash or ksh
• LATEX document preparation system (required for most of the exercises in the book)
• Soware development with C
• 32-bit Intel Assembler language
• Build process in a Unix environment, using makefiles and command line tools for

compiling, assembling and linking

1.9 Online Resources
eU website http://www.ulixos.org/ has a download area with files which are needed
for working on the exercises in this book (Figure 1.4).

is is the

First Edition (09/2015)

http://www.ulixos.org/
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Figure 1.4: Download resources and information about the project are available on the
http://www.ulixos.org website.

of the book, so at the time of writing the website contained only the resources for this
edition, but later editions may use different versions of the download files; so you should
make sure that you access the right files.

e two main files you find in the download area are the following:

• Development system: We provide a VirtualBox appliancewhich you can import in the
VirtualBox virtualization soware. It contains a Debian Linux 6.0.1 installation with
a simple desktop (Xfce) and all the development tools that you need for compiling
the current U version (see Figure 1.5). e sources are included as well, and also
a few feature-reduced versions of the U source code which you can extend when
you work on the exercises. is virtual machine is the recommended development
environment.

• e Noweb source file ulix-book.nw from which you can generate this book and the
U kernel. We recommend this download if all you want to do is regenerate the PDF
file of the book. For compiling the U kernel you should use the development sys-
tem described above, because the source code depends on the right compiler version
being installed.

For a detailed description of how to get started, see Section 18.3 which describes how
you can set up a development environment. Note that you need no such installation if
you simply want to read the book. However, if you want to work on the exercises which
you can find in some chapters, you need the tools and sources.

http://www.ulixos.org
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Figure 1.5: ewebsite provides a virtual machine image (a VirtualBox appliance) that can
be used for compiling U and working on the exercises.

1.10 Further Reading
ere are several educational operating systems which have been used in courses or as
the basis for textbooks with a similar purpose as this one. ey are all united by the idea
that students should take a look at real code in order to fully understand what tasks an
operating system has to fulfill and how this can be done in practice. In addition, for some
“real” operating systems documentation of design principles and implementation details
is available that is also helpful in an educational seing. In Appendix C we give several
examples for both categories.

In our view, the twomost positive examples of operating system exposition for students
are the well-known Minix operating system and the less well-known Xinu operating sys-
tem:

• MinixMinix was originally wrien by Andrew Tanenbaum [Tan87] to serve as a minimal
working example for teaching his operating systems course at VU University Amster-
dam (Vrije Universiteit Amsterdam). In its most advanced form (Minix 3), the system is
still well-structured, simple and very well documented [TW06]. However, it has also
evolved into a commercially relevant system with all advantages and disadvantages.
Although the Minix book [TW06] contains the entire source code of the operating
system, it lives a separate life being relegated to an appendix that essentially fills the
second half of the book.
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U uses version 2 of the Minix filesystem as its native filesystem because Linux sup-
ports this filesystem very well. However, no code was borrowed from Minix except
for some structure declarations.

• e Xinu Xinusystem was wrien by Douglas Comer [Com84] for the DEC LSI 11/2 mi-
crocomputer (a successor of the famous PDP 11 minicomputer for which UNIX was
initially wrien). is system was later ported to the IBM PC’s Intel 8088 processor
[CF88], the Apple Macintosh’s Motorola 68000 CPU [CM89] and, quite recently, to
the Linksys E2100L Wireless Router [Com11] which uses a MIPS processor. ere
are even further ports of the Xinu code (e. g. to 32-bit Intel machines), but those have
not led to new editions of the Xinu book. While not wrien in literate programming
style, the documentation and presentation of code portions somewhat resemble liter-
ate programming.

1.11 About the Authors
Felix C. Freiling is a professor of computer science at Friedrich Alexander University
Erlangen-Nürnberg and heads the Chair for IT Security Infrastructures of the Computer
Science department (http://www.cs.fau.de/). Before coming to Erlangen, he was a pro-
fessor at RWTH Aachen and University of Mannheim. He started the U project during
his time in Mannheim where he gave lectures on operating system principles.

Hans-Georg Eßer is a PhD student at the same chair; he studied computer science and
mathematics at RWTH Aachen. He is the editor-in-chief of EasyLinux magazine (http:
//www.easylinux.de/) and has been teaching operating systems at several universities of
applied sciences since 2006. e completion of this book (and the U implementation)
was the major part of his PhD thesis.

http://www1.cs.fau.de/
http://www.easylinux.de/
http://www.easylinux.de/




2
Layout of the Kernel Code

You will soon see the first lines of code of the U operating system. e presentation
of code roughly follows the order in which it was developed and in which you could also
work if you wanted to write your own kernel.

When the system runs through its initialization steps, some tasks need to be handled
before others, for example we need to get the memory access right before everything else,
and we need to establish methods for handling interrupts and faults before we can start
talking to hardware components. Here’s an overview:

Memory. is is the first thing the OS will face: e boot loader will load the kernel into
RAM where the kernel will start executing. But where precisely is that? And how
do we have to compile the kernel so that it will work properly in the RAM areas we
load it to? (ink of function calls and references to data addresses: We must know
at compile time where the kernel’s code and data will be located.)
ere are different modes of memory usage, and we need our OS to use virtual memoryVirtual
Memory so that we can protect the kernel from the processes and the processes
from each other.
We need to check in which mode the CPU runs when the kernel is loaded, and
then we have to create a transition to the mode we want to use: e laer one is
called PagingPaging, and it provides all the protection mechanisms we need while using
the memory in a flexible way.
So, the first implementation chapter deals with loading the kernel and seing up the
memory in such a way that the next initialization steps of the OS can work properly.
en we switch to paging which is a needed preparation for introducing processes.
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Interrupts and Faults. Before we can start using the hardware, we need to deal with
interrupts: several devices use interrupts to tell us that they have completed some
activity, and there are components like the clock chip which regularly generates an
interrupt.
Closely related to interrupts are faults: they occur when the operating system (or a
process) tries to do something that’s impossible, e. g. access a memory address that
does not exist or for which access is forbidden. We need to treat these, too, because
if we don’t, then any fault will just make the whole system halt.
e main difference between interrupts and faults is that faults occur as a direct
consequence of some specific instruction that our code executes. In that sense they
aresynchronous synchronous. Interrupts on the other hand occur without any connection to the
currently executing instruction, since they are not triggered (immediately) by our
code but by some device. at is why they are calledasynchronous asynchronous.
Handling an interrupt and handling a fault are very similar tasks, so we deal with
both in the same chapter. We present a framework which lets us supply handlers
as we need them, so for example the concrete interrupt handler for the IDE disk
controller will be shown later, but it will use the code that’s presented here.

Basic Hardware Support. Once we’ve established the general interrupt handling mech-
anism, we can start seing up the hardware. We begin with the clock chip (which
generates timer interrupts) and the keyboard (which generates an interrupt each
time you press a key). We’ll look at further hardware components in later chap-
ters, for example the code for floppy and hard disks will follow aer the filesystem
chapter.

Processes. Here we introduce one of the most important data structures of the operating
system, theprocess

control block
process control block (PCB). We also have to revisit the virtual memory

code and introduce a mechanism to switch between different page tables—every
process will use its own one, since every process has its own virtual memory.
e following chapter discusses the necessary changes for supporting threadswhich
share an address space if they belong to the same process.
In the chapters that deal with processes, threads and the scheduler you will also
see how the system can make a context switchcontext switch which happens when one process is
interrupted and another one continues executing.

System Calls. e operating system does not only guarantee that the memory areas of
the kernel and all the processes are protected against one another, it also disables
direct access to the hardware. So if a process wants to open and read a file, it
needs a mechanism for calling a kernel function which does just that. e stan-
dard mechanism for calling OS functions is a system call. e system call interface
somewhat resembles the interrupt handling interface which we’ve seen earlier. We
only explain how the general mechanism works—concrete system calls will be im-
plemented where we need them, for example in the filesystem chapter.
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Filesystem. e U filesystem code provides us with a virtual filesystem. With it, we
can use several kinds of drives (we’ll show the code for floppy disks, hard disks and
a virtual device we’ve named the “serial hard disk”), and we can support several
logical filesystem formats: U has a driver for the Minix

filesystem
Minix filesystem which was

introduced for the Minix operating system. Linux can use Minix media as well
which makes it easier to prepare the disk images we use with U. Code for other
logical filesystems (e. g. FAT or NTFS) could easily be added.

We will now present the overall layout of the U kernel code. Basically every kernel
has to do some essential setup (such as initializing RAM and other components of the
machine), then activate interrupts and the process system, create a first (init) process and
transfer control to that process (which will start further processes). U is no different,
but where it differs from other operating systems is that we’re going to store (almost)
everything in one single C source file, ulix.c. If you take a look at other systems you will
find a huge collection of source (*.c) and header (*.h) files and several makefiles which
turn the source files into object files (*.o) independently before linking them all together
into a single binary. We’ll also link the kernel binary because we have some assembler
code in the file start.asm that is translated with nasm, but all the rest goes into ulix.c.
e literate programming approach allows us to combine everything without losing the
overview: the pages you look at right now structure the code well enough.

Since C requires functions to be defined before they are called and user-defined types to
be declared before they are used in function prototype definitions, we need to make sure
that all symbols are known at the right time.

• We start with two code chunks ⟨constants 112a⟩ constants
and macros

and ⟨macro definitions 35a⟩ where we
put all pre-compiler (#define) statements.

• en follow ⟨public elementary type definitions 45e⟩ types(mostly stuff like typedef unsigned
int uint32_t) and ⟨type definitions 91⟩ (for structures). e distinction is necessary
since structure definitions use elementary types.

• Next come the ⟨function prototypes 45a⟩ prototypes
and variables

and the ⟨global variables 92b⟩: the laer ones
oen receive their initial values at the point of declaration.

• Finally, the real code starts: with all kernel functions in the chunk named ⟨function
implementations 100b⟩ implementation, and at the end of the file you will find the ⟨kernel main 44b⟩
function (mainb()).

Most of these code chunks “exist” twice, for example ⟨constants 112a⟩ and public chunks⟨public con-
stants 46a⟩. e code chunks with a public prefix will later be included in the user mode
library’s header file (ulixlib.h) or the implementation file (ulixlib.c), and this trick al-
lows us to automatically keep data structures and constants synchronized between kernel
and user land, and it saves us from having duplicate code chunks for standard functions
like memcpyc which are used both in kernel and user level land.

So this is the basic structure, with most of the kernel code collected in just one C file,
ulix.c:
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[44a] ⟨ulix.c 44a⟩≡
⟨copyright notice 24⟩
⟨version information 35b⟩
⟨constants 112a⟩ ⟨public constants 46a⟩
⟨macro definitions 35a⟩ ⟨public macro definitions 596a⟩
⟨public elementary type definitions 45e⟩
⟨type definitions 91⟩ ⟨public type definitions 142a⟩
⟨function prototypes 45a⟩ ⟨public function prototypes 454b⟩
⟨global variables 92b⟩
⟨function implementations 100b⟩ ⟨public function implementations 455a⟩
⟨kernel main 44b⟩

2.1 The main() Function
e mainb() function of the U kernel brings the system up and starts the first (user
mode) process, an init program which launches several copies of a loginc program that
in turn start simple shells. is happens on a number of virtual terminals (text consoles),
allowing tests with several logged-in users.

[44b] ⟨kernel main 44b⟩≡ (44a)
void main () {
⟨initialize kernel global variables 184d⟩
⟨setup serial port 345a⟩ // for debugging
⟨setup memory 97⟩
⟨setup video 337c⟩
⟨setup keyboard 318e⟩
⟨initialize system 45b⟩
⟨initialize syscalls 173d⟩
⟨initialize filesystem 45c⟩
⟨initialize swap 293b⟩
initialize_module (); // external code
⟨start init process 45d⟩

}
Defines:

main, used in chunks 94, 214, 225, 229b, 235f, 247, 248, 311b, 513e, 535, and 623a.
Uses initialize_module 45a.

Before all other hardware we initialize the serial port since we use it for debugging
purposes; the function debug_printfd sends information to the first serial port, andwhen
we run U in the qemu emulator, we can grab that output and display it elsewhere—even
before it is possible to write to the (virtual) screen. Note that you will not find code lines
with debug_printfd statements in the PDF version of this book, but if you download the
sources, you can see them directly in the Noweb file (and also in the generated source
code). In order to enable this debugging, the DEBUG macro must be defined via #define
DEBUG (see Chapter 16.3.1).

Seing up the memory is a complex task which we describe in detail in Chapter 4.4.
Next we can start accessing the memory buffer of the graphics card to display messages
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on the screen, we will define the ⟨setup video 337c⟩ chunk in Chapter 10.2.
Since U can be (and has been) used for Bachelor’s or Master’s thesis projects, we

provide a mechanism to integrate the OS code with a module that is implemented by the
student; during kernel initialization we will call the

[45a]⟨function prototypes 45a⟩≡ (44a) 109b ▷
extern void initialize_module ();

Defines:
initialize_module, used in chunk 44b.

function which may perform further initialization tasks.
[45b]⟨initialize system 45b⟩≡ (44b) 111b ▷

⟨install the interrupt descriptor table 146d⟩
⟨install the fault handlers 148b⟩
⟨install the interrupt handlers 139b⟩
⟨install the timer 339a⟩
⟨enable interrupts 47b⟩

For initializing the filesystem, we first detect the hardware and then print the (currently
static) mount table:

[45c]⟨initialize filesystem 45c⟩≡ (44b)
⟨setup serial hard disk 345d⟩
fdc_init (); ata_init (); // register floppy and hard disks
print_mount_table ();

Uses ata_init 534b, fdc_init 552c, and print_mount_table 406.

When everything is prepared we can finally enter user mode: We enable the interrupts,
load the init program and start it as the first process.

[45d]⟨start init process 45d⟩≡ (44b)
⟨enable interrupts 47b⟩
printf ("Starting five shells on tty0..tty4. Press [Ctrl-L] for de/en keyboard.\n");
start_program_from_disk ("/init"); // load flat binary of init
// never reach this line!

Uses printf 601a and start_program_from_disk 189.

With the first process being active, initialization of the system is finally complete.

2.2 Type Definitions
Before we introduce the first data structures, we define some elementary data types which
make our code more readable. For example, the C language has no specific “byte” and
“boolean” data types. Instead, an unsigned char is used whenever bytes or booleans are
needed. We also define a “word” type.

[45e]⟨public elementary type definitions 45e⟩≡ (44a 48a) 46b ▷
typedef unsigned char byte;
typedef unsigned char boolean;
typedef unsigned short word;
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Along with the boolean datatype we also provide constants for the two standard values
1 and 0 (note that C regards any non-zero integer value as true). NULLa is a null pointer.

[46a] ⟨public constants 46a⟩≡ (44a 48a) 111c ▷
#define true 1
#define false 0
#define NULL ((void*) 0)

Defines:
NULL, used in chunks 120, 121, 146a, 164a, 258b, 367b, 369c, 463a, 467–70, 475a, 484e, and 607b.

Sometimeswe create data structures with differently-sized components, and in those cases
we want to show clearly how “big” each element is. So we also define uint*_t types which
are standard in many systems, e. g. in the Linux kernel:

[46b] ⟨public elementary type definitions 45e⟩+≡ (44a 48a) ◁ 45e 46c ▷
typedef unsigned char uint8_t;
typedef unsigned short uint16_t;
typedef unsigned int uint32_t;
typedef unsigned long long uint64_t;

typedef int size_t;
typedef unsigned int uint; // short names for "unsigned int",
typedef unsigned long ulong; // "unsigned long" and
typedef unsigned long long ulonglong; // "unsigned long long" (64 bit)

Defines:
size_t, used in chunks 420c, 429b, 594, and 596.
ulong, used in chunks 109, 340e, and 341.
ulonglong, used in chunk 534.

Memory addresses in our code are always 32 bits wide since U is a 32-bit operating
system. We intruduce an address type:

[46c] ⟨public elementary type definitions 45e⟩+≡ (44a 48a) ◁ 46b 158b ▷
typedef unsigned int memaddress;

Defines:
memaddress, used in chunks 100, 103, 105b, 108, 111b, 113b, 115d, 151c, 161, 166a, 169, 170, 172a, 173a, 175,

192b, 197, 211–13, 228b, 231, 232, 234b, 255a, 257–59, 279c, 289–91, 515a, 567c, 568b, and 604a.

2.3 Assembler Code
As we will occasionally have to use assembler statements and the standard command in
the GNU C compiler gcc is __asm__, we define a shorthand:

[46d] ⟨macro definitions 35a⟩+≡ (44a) ◁ 35a 101a ▷
#define asm __asm__

We have created an assembler pre-processor which replaces code that has the form of the
le side with code that looks like the right side:
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asm {
starta: mov eax, 0x1001 // comment
mov ebx, 'A' // more comment
int 0x80

}

asm (".intel_syntax noprefix; \
starta: mov eax, 0x1001; \
mov ebx, 'A'; \
int 0x80; \
.att_syntax; ");

is allows usage of the Intel assembler syntax (without changing the normal compilation
process which uses AT&T syntax), it also enables us to add comments in the code, and the
new syntax is closer to C.

e pre-processor also understands asm volatile. What it cannot cope with is variable
/ register usage; thus, occasionally there will be appearances of the less readable standard
assembler syntax.

Note that it does not change the number or position of code lines. e source code for
the assembler parser is shown on page 624 ff.

2.3.1 Turning Interrupts On and Off
We will oen have to disable and re-enable interrupts. e assembler instructions are
cli (clear interrupt flag; disables the interrupts) and sti (set interrupt flag; enables them).
Instead of writing asm("cli") or asm("sti") (which would force you to remember which
of the commands turns the interrupts on or o) we provide code chunks for them:

[47a]⟨disable interrupts 47a⟩≡ (282c 352 353 357b 383a 390 533b)
asm ("cli"); // clear interrupt flag

[47b]⟨enable interrupts 47b⟩≡ (45 151c 282c 290b 324b 352 353 357 383a 384b 390 533b 610a)
asm ("sti"); // set interrupt flag

2.4 The User Mode Library
Besides the kernel we also need a usermode librarywhich provides some standard features
for user mode applications.

e library code consists of two files: ulixlib.c contains the implementations of the
library functions, whereas ulixlib.h provides declarations which have to be included both
in ulixlib.c and any program that wants to use the library functions. In this section we
introduce the code chunks that the library files are made of.

e header file shares some constants and type declarations as well as some generic
function prototypes with the kernel:
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[48a] ⟨ulixlib.h 48a⟩≡
// ulixlib.h
// To compile a Ulix program, include "ulixlib.h"
⟨copyright notice 24⟩
⟨public constants 46a⟩ ⟨ulixlib constants 207b⟩
⟨public macro definitions 596a⟩ ⟨ulixlib macro definitions 432a⟩
⟨public elementary type definitions 45e⟩
⟨public type definitions 142a⟩ ⟨ulixlib type definitions 584d⟩
⟨public function prototypes 454b⟩ ⟨ulixlib function prototypes 174c⟩

2.4.1 Functions of the Library
Some functions are needed both in the kernel and in the user mode library. We put
their implementations into the ⟨public function implementations 455a⟩ chunk (which is in-
cluded both by the kernel and the library C files) so that we need not present the code for
memcpyc, strncpyb and other standard functions twice.

[48b] ⟨ulixlib.c 48b⟩≡
// ulixlib.c
// To compile a Ulix program, include "ulixlib.h"
⟨copyright notice 24⟩
#include "ulixlib.h"
⟨public function implementations 455a⟩
⟨ulixlib function implementations 174d⟩

So, whenever you see a code chunk that starts with “⟨public”, you know that it contains
declarations or code which will appear both in the kernel and in the user mode library.

2.5 Next Steps
In the following chapter we introduce the theory of memory management—that’s a re-
quirement for doing any further steps, since the next U code chunks show you how
we load the kernel from the boot manager. But in order to do that, we need to first think
about how we want to use the physical memory. us, Chapter 3 gives you all the needed
theory, and then the following Chapter 4 explains the boot process and the U approach
towards memory usage.



3
Managing Memory

Processing power (that is, the computing cycles of the CPU) andmemory are the twomost
important resources resourcesfor any machine. In the next chapter we will describe how to boot
the U operating system, and that procedure will include copying the kernel into the
computer’s main memory. We need to know where to put it and how to continue using
memory.

Doing that properly requires some understanding of the general concepts of memory
management and also of the concrete mechanisms provided by the target CPU which,
in our case, is the Intel i386. In this chapter we start with an overview of the memory
management theory, and the following chapter will present the implementation details of
the management solution which we have chosen.

Memory management is all about the question: “How can we make the best use of
the available physical memory?” When a computer only needs to execute one single
program, there is not much to do. But the invention of multi-tasking led to the task of
providing several processes with sufficient memory to store their code and data. e extra
requirement of memory protection (processes shall not access the memory areas of other
processes or of the operating system) further complicates the task.

ere are also many similarities between memory management and filesystem manage-
ment (which we discuss in detail in Chapter 12): In both cases, a fixed-size resource (the
physical memory or the collection of sectors on a disk) needs to be shared.

Note that from a process’ point of view, memory is a direct resource and is needed for
running the process: If the process’ program code is not available in memory (at least
partially), it cannot be executed, because the CPU can only execute instructions that are
located in RAM. On the other hand, disk space is not something that a process will (di-
rectly) need: while access to certain files may be necessary for running a program, it is
not needed permanently. But if we look at disk space from a file’s point of view, we could
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say that a file (in order to exist and allow access to it) needs disk space in a similar way
as a process needs memory to run. From that point of view, we can compare a process
which has no memory with a disk file that was moved to tertiary storage (e. g., a magnetic
tape that is part of a tape collection).

ese are some of the concepts that appear in both memory management and filesys-
tems:

Partitioning of resources: On a system that will handle several processes in parallel,
memory must somehow be partitioned so that each process can use a fraction of
the RAM. Individual cells of memory are exclusive: ey can hold precisely one
byte of information, and it has to belong to a specific process (or the operating sys-
tem itsel) at any given time. It may not be necessary that a process has memory
throughout his whole lifetime (for we will see that concepts such as swapping and
paging allow data to be stored on the disk for a while), but at least in those moments
when a process is actually excecuted by the CPU, it will have to be given some mem-
ory. It may be useful to limit the maximum RAM that a process can access at any
given time.
Similarly, if a system allows several files (and possibly directories) to be created,
accessed and modified on the disk, disk space has to be partitioned in a way that
the disk can hold all these files and present simple means to look up files on the
disk and access them. e smallest unit of storage would in theory also be a byte,
and such a byte (now meaning the fixed location on disk) can only belong to one
file (or to the filesystem metadata) at any given time. As in the memory situation,
it may be useful to define a maximum filesize so that no file uses too much of this
resource, though most filesystems that implement such limits do this on a per-user
basis and not on per-file basis—limiting disk usage per user (or per user group) is
called a quota system.

Access control: Access to memory locations should always be exclusive to one process
(or the operating system), otherwise a process could read or even modify the pro-
cess memory of a different process which is not advisable, because it would be a
source of instability or security problems.
Access to files is also oen handled in a way that makes it exclusive to a file owner,
typically the file creator (or perhaps some other users, depending of the access con-
cepts a specific filesystem may have). And from the view of processes it may be
necessary to restrict file access to only one process (even in a situation when sev-
eral processes belong to the same user who is also the owner of the file), so that no
errors can result from parallel access to a file.

Free space management: Memory and disk usage must be handled dynamically, be-
cause processes newly appear and are removed from the system all the time, their
needs for memory may change during the process runtime, and also files can be
created and deleted as well as grown while the system is active.
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In manymemory management schemes there will be a list of free memory locations.
We will see that is not useful to grant memory access byte-wise, memory will oen
be partitioned into equal-sized smallest chunks of memory that can be assigned to
a process or removed from it. If we call these smalles chunks (say, of size 1 KByte)
memory frames, then there will be need of a “free frame list” that knows which
frames are currently unused.
In the sameway disks aren’t typically accessed byte-, but block-wise, a block being a
fixed size segment of the disk space. Note also that read and write operations on the
raw disk device always transfer a whole block of data and not a single byte (which
is why they are called block devices as opposed to character devices. We will need a
“free block list” in order to know which blocks are still available for file storage and
which are not.
Methods for administering such free frame lists and free block lists will be simi-
lar.

3.1 Contiguous Allocation
In this section we present the most simple methods to distribute memory among processes
and disk space among files. Contiguity means that a process gets to use a contiguous
(connected) area of memory, there are no “holes” in it which would be memory areas
assigned to a different process or not assigned at all. If memory did have such holes, a
process would have to keep track of which memory regions it can use and which not.

3.1.1 Fixed Equal Size Partitioning
Consider a computer that has 1 GByte of RAM. If we divide this memory into 1-MByte-
sized partitions, then we get 1024 such partitions, some of which will have to be reserved
to the operating system itself (see Figure 3.1). Assuming that 1000 “unused” partitions
will remain, such a system would allow for up to 1000 processes to be started and held
in memory in parallel. Each of the processes will then have its own 1 MByte memory
partition, meaning it can use up to this 1 MByte for storing its own program code, stack
and data.

part.
1

part.
2

part.
3

part.
1024

part.
1023

.

0 M 1 M 2 M 3 M 1023 M1022 M 1024 M

Figure 3.1: Fixed equal size partitioning is the simplest but also the least flexible approach
to partitioning memory or disk space.
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Obviously this method is not very flexible and it limits the possible usage of the system
in two ways:
• No more than about 1000 processes can be run in parallel. If there was need for,

say, running 2000 or more processes at the same time, then the whole system would
have to be reconfigured (with smaller, but more memory partitions) and completely
rebooted.

• Nomore than 1 MByte of RAM can be given to a single process. If a program required
more than that, say 2 MByte or more memory, again the system would have to be
reconfigured.

• It would be completely impossible to change the system parameters in either direction,
i. e., allow for more than 1000 processes and some of them using more than 1 MByte
RAM.

Now, in the same way consider a harddisk of size 1 GByte and a similar partitioning
scheme that would allow 1024 (minus a few) files of up to 1 MByte size to be wrien to
this disk. e same problems as in the memory example would occur: ere would be a
filesize limit as well as a limit on the number of files, and changing the filesystem structure
in order to either allow more or larger files would require the disk to be newly formaed,
and a change would only increase one of these numbers while reducing the other.

is simple approach is called “fixed equal size partitioning” in both the memory and
the harddisk case, and besides the limitations already discussed it leads to a problem called
internal fragmentationinternal

fragmentation
: While the RAM is fully split into partitions, i. e., there remains no

unpartitioned and possibly unusable memory (that would be external fragmentation), a
lot of memory will go unused, e. g. when a process runs that needs only a few kilobytes of
RAM but still gets the whole 1 MByte. ere is no way for other processes to claim some
of this unused memory because the fixed partitioning forbids this (see Section 3.1.6).

It is an example of contiguous allocation methods: Contiguity means that all the parts
of a process’ memory (or of a file on disk) are stored in consecutive frames/blocks, and
also in order. So no jumps to other memory locations or disk blocks are necessary when
reading the whole file (or the process’ whole memory) from the first to the last byte. e
opposite of this in non-contiguous allocation, and we will get to that approach in Sec-
tion 3.2.

Note that we use the term “disk partition” in a non-standard way; we do not mean the
logical partitions into which a disk is separated on today’s standard computers in order to
create several logical volumes (in Windows language: drives) each of which is formaed
with its own filesystem. For simplicity we assume that a harddisk contains exactly one
filesystem and that this filesystem uses all of the disk, as it is the case on floppy disks and
(some) USB sticks. See section 3.1.4 for a few words about the classical understanding of
“disk partition”.
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3.1.2 Fixed Variable Size Partitioning
e partitioning scheme that gives all partitions equal size causes the two limitations in
file size and file number. A lile more flexibility is introduced when we dispense with
the equality condition: at leads us to a new method of creating fixed partitions, but of
varying sizes (see Figure 3.2).
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Figure 3.2: Fixed variable size partitioning gets rid of the file size and file number limita-
tions, but still the partitioning parameters cannot change once the system uses
the partitions.

It is just a small alteration, but it already improves the situation a lot: In the memory
case, if a process is associated with a memory partition and it wants to extend its mem-
ory usage beyond the current partition’s limits, it can be relocated to a different (larger)
partition, and on the other hand many more processes can use the system if there is a
good mix of processes with small and large memory demands. Note that this partitioning
scheme is still fixed: At system boot-time, the memory partitions are created and cannot
be modified until the next booting (and a modification is likely to require a recompilation
of the operating system kernel).

In the same way a filesystem with fixed partitions will profit from this modification by
allowing both more and (some) larger files. e strictness of the partitioning applies here
as well: Once the disk has been formaed, the partition (i. e.: maximum file) sizes can only
be changed by reformaing the whole disk.

3.1.3 Dynamic Partitioning
A lot more freedom in memory or disk space allocation is possible if the partitioning
becomes fully dynamic: is means that no partitioning occurs at system initialization or
while formaing the disk, but instead partitions are created as need for them occurs.

is has the effect that the operating system must carry out a lot more administrative
work. For example, keeping an overview of free areas of memory becomes more compli-
cated, because whatever data structures are used for the memory or disk allocation, they
are now dynamic.

3.1.3.1 Free Frame Lists

e simplest approach is to keep a list of free locations. is list will be called a free
frame list in memory management or a free block list in filesystems. Typically there is a
smallest possible fragment that can be allocated, called a frame or block, and free space
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managements only deals with these frames/blocks. e smaller the frames or blocks are,
the more of them exist and have to be handled by the free frame list.

One approach is to have a linked list that contains descriptions of free areas, e. g. a start
address and a length for each one. In the list each entry points to the next entry when
working with pointers. In order to find a free area of a given size an algorithm will walk
through this list and stop when it finds an area of sufficient size. For this purpose it may
be necessary to scan the whole list if (in the worst case) the only fiing area is at the end
of this list. When a number of previously free frames is allocated to a process (or blocks
to a file), the list has to be modified,

• either by removing the entry if the whole lot of contiguous blocks are allocated,
• or bymodifying the entry if only a few of the blocks are allocated, and they are located

at the beginning or end of the area described by this entry,
• or by spliing the entry in two parts, if (for whatever reason) a section taken from

the middle is allocated, leaving free areas in front of and behind them.

If the used space is later released, it must be added to the list again, possibly creating a
list entry that has to be merged with entries describing directly neighboring areas.

Another possibility is to work with bitmapsbitmap : For each frame/block a bit in this bitmap
defines whether it is free (0) or in use (1). Here no complex list administration (with the
mentioned spliing andmergers of list entries) is required, however allocation and release
of blocks lead to modification of several bits in the bitmap, and looking up free space of a
given size means finding a number of consecutive 0-bits in the bitmap.

Note that it does not maer at all whether we think of memory frames or disk blocks,
the concepts are identical. Differences will however appear when thinking of storage of
these lists or bitmaps: In thememory case it is obvious that the list must also lie inmemory
for quick access. In the filesystem case it might make sense to store the list in memory
(and not on disk as well) in order to speed up the lookup of free areas—but depending on
the size of the free block list, it may be too large to keep all of it in memory.

3.1.3.2 Allocation

When working with dynamic allocation of free areas, there will typically be a choice
among several free areas which are of sufficient size, and the procedure for choosing one
of them will have consequences both on performance and on external fragmentationexternal

fragmentation
(an

increasing number of small unallocated areas): If the decision algorithm is very complex,
allocation will always take a lot of time; if it is simple, there will be many small unpar-
titioned (not allocated) areas which are too small to be useful anymore, so this external
fragmentation will lead to memory or the disk filling up more quickly than necessary.

On the following pages we will present five simple approaches to allocation called first-
fit, next-fit, best-fit, worst-fit and quick-fit; and aer that a more advanced concept called
the Buddy System will be introduced.

First-fit is strategy picks the first free area of sufficient size. It has the advantage of
being fast, because once an acceptable area has been found, the system looks no fur-
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ther. On the negative side, first-fit leads to a lot of fragmentation and continuously
reduces big areas, so that processes which start later and need a big area cannot run.

Next-fit is is a variant of first-fit. e difference is that aer every allocation the sys-
tem keeps in mind the position of this allocated area. e search algorithm then
continues immediately behind this area. at way all of memory is being used,
whereas first-fit might use only areas in the low-address range if demands can be
fulfilled there.

Best-fit e idea behind best-fit is to allocate space in the smallest possible area where
the process fits. Assuming that what is le aer the allocation is likely to become
unusable (because it is too small), this approach tries to minimize the waste of space.

Worst-fit Exactly the opposite of best-fit, worst-fit searches for the biggest free area and
allocates space within it. From the perspective of the remaining space, this maxi-
mizes the size of the new free area that is le aer allocation, hoping that it will still
be large enough to allow for further allocations.

ick-fit is a combination of a first-fit approach with fixed partitioning. A part of the
available memory is partitioned into areas of some varying sizes which are oen
requested. (What is oen requested must be known from experiences with memory
allocations.) So there will be lists of free partitions of some standard sizes, say,
1 KByte, 2 KByte, …, 16 KByte. If a memory request of one of those sizes occurs,
the system will first try to satisfy it with one of the partitions in the corresponding
list. Only if that fails, memory will be allocated from the unpartitioned space using
first-fit.

3.1.3.3 Buddy System

e Buddy System [Kno65] assumes that we start with a free memory area whose size in
bytes is a power of 2. e system reacts tomemory requests of arbitrary sizes by repeatedly
dividing a free chunk of memory in two halves until a chunk becomes available which is
just large enough to satisfy the request. An example illustrates this system beer than the
description: Let’s assume that 1 MByte of memory (1024 KByte) is available at the start.
is memory chunk is not partitioned. If a request for 90 KByte arrives, the Buddy System
takes the following steps:

• Since the 1024 KByte chunk is too large, it is split into two 512 KByte chunks.
• 512 KByte are still too large, so the first of these chunks is split into two 256 KByte

chunks.
• Again, 256 KByte are too large, so another split takes place, turning the first of the

256 KByte chunks into two chunks of size 128 KByte.
• efirst of the 128 KByte chunks is chosen since it can satisfy the request. It is marked

as used.
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1024 KB

512 KB 512 KB
256 KB 256 KB 512 KB

128 KB 128 KB 256 KB 512 KB

Figure 3.3: e Buddy System repeatedly splits available space in halves. e chunks with
bold face descriptors are chosen for spliing; the green and bold chunk satisfies
the request of 90 KByte.

Figure 3.3 shows how the Buddy System partitions the memory step by step when try-
ing to satisfy this request. Aerwards, there are three free chunks le, their sizes are
128 KByte, 256 KByte and 512 KByte. If another request for 90 KByte arrives, the free
128 KByte chunk is chosen; in case of a 40 KByte request, the 128 KByte chunk would be
split again. e way in which memory is partitioned can also be represented by a tree;
Figure 3.4 shows the tree which corresponds to the situation described above.

1024 K

512 K 512 K
(free)

256 K 256 K
(free)

128 K
(used)

128 K
(free)

Figure 3.4: e tree representation of memory that was partitioned by the Buddy System
shows available memory chunks in the tree’s leaves.

When a used chunk of memory is returned and its equal-sized direct neighbor (in the
tree) is a free leaf, these two leaves are joined to form a new leaf of twice the size; this
process continues, possibly all the way up to the root of the tree. e tree view makes it
easier to see which chunks can be joined and which cannot. Figure 3.5 shows an exam-
ple in which joining is impossible: the second and third 128 KByte blocks are not direct
neighbors, they would have to be joined with their le and right neighbors first.
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128 KB 128 KB 128 KB 128 KB 512 KB
128 KB 256 KB 128 KB 512 KB

Figure 3.5: is is an impossible join operation; a tree representation would show that the
two 256 KByte blocks marked bold are not direct neighbors.

3.1.4 A Few Words on Disk Partitions
As mentioned above, we have not been talking about hard disk partitions in the sense of
creating several logical volumes on a disk for use by various operating systems (e. g. a
Windows and a Linux partition) or for structuring the disk so that different data can be
stored on different partitions (e. g. “drives” C: and D: for Windows or partitions /, /home
and /usr for Linux)—now we do, because this kind of partitioning is another example for
contiguous allocation with flexible size. Most disks have a partition table as created by
Windows, Linux, DOS and other operating systems when initializing a hard disk. (e
BSD operating systems use a different method to partition disks, calling the partitions
slices and the partition table disklabel.)

A classical partition table puts no limits on the sizes of individual partitions, but allows
only up to four (primary) partitions for whose administrative data it reserves space in the
first blocks of the disk. ere, you basically find the start address and the length of each
partition. If more than four partitions are needed, one of the four must be set up as an
extended partition that holds an additional partition table and the logical partitions that
reside inside the extended one.

If we ignore logical partitions, we see that this is a simple implementation of dynam-
ical contiguous allocation with flexible size; partitions can be created and deleted, each
partition has to be contiguous, and in principle the partitioning also suffers from external
fragmentation: If you start with a 40 GByte disk that is partitioned into four 10 GByte
partitions and you resize each of them to 9 GByte, you end up with four unused 1 GByte
areas that cannot be used. If there was no “four partitions” limitation, the four free areas
could be made into four separate 1 GByte partitions, but never into one 4 GByte one, since
these four areas are not contiguous.

In order to change the size of a formaed partition (i. e., one with a valid filesystem on
it), always two steps are necessary, with their order depending on whether the partition
is to be extended or shrunk: e logical filesystem must be resized and the partition itself
must be resized.

• When extending a partition, the operation on the partition (and partition table) comes
first. Only when this is completed, can the filesystem size be increased as well so that
it grows into the newly available space.

• When shrinking a partition, the filesystem has to be modified first, because for exam-
ple files residing in the parts of the partition that is to be removed must be relocated
to a different area on the partition first. Only then can the partition itself be resized
(making the removed parts unaccessible to the filesystem).
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Note that modifying a filesystem size requires more than (possibly moving files from
an area that is to be removed and) changing the information about the partition size in
the partition’s metadata, for example on a Unix filesystem the free block bitmap has to be
grown or shrunk as well in order to correspond to the changed number of blocks.

3.1.5 Segmentation
Segmentation is a memory management technique that requires support by the processor.
In general, an address consists of a segment number and an offset (an address that is
relative to the physical start of that segment). Segments may (but need not) have a size—
if they have, the CPU can check whether access to an address exceeds the boundary of
that segment.

e CPU must know the start addresses (oen called base addressesbase address ) and sizes of the
segments. at can be achieved by filling a segment table or by loading special CPU regis-
ters. Table 3.1 shows an example with three segments on a 64 MByte machine. Figure 3.6
shows the CPU-internal implementation of address calculation for a machine which is not
aware of segment limits.

No. start address size absolute range
1 0x00000000 0x100000 (1 MByte) 0x00000000 – 0x000FFFFF
2 0x00800000 0x400000 (4 MByte) 0x00800000 – 0x00BFFFFF
3 0x03F00000 0x100000 (1 MByte) 0x03F00000 – 0x03FFFFFF

Table 3.1: Example of a segment table with three segments.

In the first and the third segment, relative addresses in the 0x00000 – 0xFFFFF range are
valid (since those segments are 1 MByte large), and in the second segment, relative ad-
dresses from the 0x000000 – 0x3FFFFF range can be used (4 MByte).

segment table

base

    s                  d           

base + d

logical address physical address

+

Figure 3.6: Calculating the physical address from a segment number and a logical address
is simple: e CPU just adds the segment base address and the logical address.
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A complete address is a (segment, address) tuple, for example, (2, 0xABCD) would refer
to the relative address 0xABCD in segment 2, and its physical address can be calculated by
adding 0xABCD to the segment’s start address: 0xABCD + 0x800000 = 0x80ABCD.

If limits are not checked, then there is the special case of overflow (when the sum of
relative address and base address exceed the maximum addressable value). Consider for
example the case of a CPU with a 32-bit address bus (which allows addresses ranging
from 0x0 to 0xFFFFFFFF. If the base address is set to 0xE0000000 and the relative address
0x40000000 is used, the processor will calculate the sum 0x120000000—which is not a 32-bit
value. Overflow occurs, and the rd bit is dropped, the resulting absolute 32-bit address
is 0x20000000. You will see an application of this behavior in the next chapter.

Figure 3.7 shows the additional integration of a limit check.

segment table

base

    s                  d           

base + d

logical address physical address

+

limit

< no
segmentation fault

Figure 3.7: An additional limit value guarantees that segment borders are never
overstepped.

We will discuss two concrete segmentation mechanisms in the next chapter: e In-
tel 8086 processor used a segmentation technique that is still available in today’s Intel-
compatible processors for compatibility reasons (starting with the 80286, it has been called
RealMode; see Section 4.3.1), and the Intel 80286 and 80386 processors introduced two (sim-
ilar) improved segmentation models that were and are used in Protected Mode (see Section
4.3.3).
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3.1.6 Fragmentation
Whenmemory is allocated dynamically, that can lead to awaste effect called fragmentation
that we already mentioned. It comes in two varieties:

Internal Fragmentation means that a memory area was allocated that is larger than the
actually needed area. For example, in the Buddy System example, the request for
90 KByte was served with a 128 KByte chunk of memory. If we assume that exactly
90 KByte are needed, then an additional 38 KByte were allocated which will not be
used by the requester, and they also cannot be used for anything else since they are
marked as used (from the allocator’s point of view).

External Fragmentation is the effect that can be best seen in the general dynamic al-
location systems (e. g., Best Fit or ick Fit): Aer a longer sequence of allocating
memory chunks and returning them there will be small memory areas which are
marked as free, but are too small to be useful. In that case it is possible that the total
free memory size is quite large, but even a modest memory request will fail because
there is no sufficiently large contiguous chunk of memory.

To summarize the two types, internal fragmentation refers to unused memory that is
part of allocated chunks, whereas external fragmentation represents free, non-allocated
memory that is too small to satisfy a typical request (see Figure 3.8).

internal fragmentation:      = unused space inside partition,      = allocated

external fragmentation:      = unallocated space outside partition,      = allocated

Figure 3.8: Internal vs. external fragmentation.

External fragmentation can be cured via a process that is called compactioncompaction (also: defrag-
mentation) where the memory management system detects the fragments and reorders
the allocated memory chunks so that those fragments disappear; aer compaction all (or
most) allocated chunks will be located right behind one another, and all free areas will
have moved to the end of the physical memory (Figure 3.9). But this approach is costly
(because it requires intensive memory copy operations) and it is only applicable if the
processes which use the memory can cope with relocation of their memory.
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after compaction

A B C F GD E

before compaction (external fragmentation)

A B C F GD E

Figure 3.9: Compaction cures external fragmentation but is costly and needs to be repeated
whenever the fragmentation level is high again.

3.2 Non-Contiguous Allocation
So far we have seen several examples for contiguously assigning memory or disk space
to processes or files. at allows for a very simple handling of accesses, because only an
absolute start address and the length of a (memory or disk) partition must be known.

However, since this leads to strong limitations in usability, all modern operating systems
use a more flexible approach both for process memory and files, assigning memory frames
and harddisk blocks non-contiguously.

Non-contiguous allocation makes things more complicated, and for process memory it
is worse than for files:

• If a file consists of several, non-contiguous blocks which are spread all over the disk,
there has to be a list of blocks that tells the operating system where to find the data.
When trying to read a specific byte from the file, the address within the file has to be
translated into a disk block and a relative address inside that block. It also means that
reading a file from beginning to end can no longer be achieved by reading several disk
blocks in their natural order, but the operating system has to jump from one location
to another all the time, so several disk head movements are involved which slows the
access.

• With memory things become even more complicated: Here also some kind of table is
needed that will be used for address translation, but memory access is different from
file access. A program performs a lot of memory access operations: every (absolute)
jump to another instruction in the program code, every direct data access (where the
content of some memory address is loaded into a CPU register) and similarly each
indirect memory access (e. g. mov [edx], eax) works with an absolute address.

A process could be told the absolute address ranges of the memory locations it was
given access to, imagine it has a list like this:

1. region 1: 0x10000–0x10FFF (4 KByte)
2. region 2: 0x14000–0x15FFF (8 KByte)
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3. region 3: 0x20000–0x2FFFF (64 KByte)

Assume further that the program code is 6 KByte long and the rest of the memory will
be used for data (we ignore the stack in this simple example). en the program code will
have to be split between the first and second region, and the data between the second and
third one. (For this example we also ignore that it might be a beer approach to store all of
the program code in the second region and use the first and third one for data, especially
since the program might not know the precise number and sizes of partitions before it
actually gets them.)

If there is a jump instruction in the program code that leads from the front part of the
code to the rear part, it will cross region borders. Also when the programs needs to access
its data it has to be aware whether the currently needed data reside in the second or in
the third region.

All these problems can be solved with a method called address relocationaddress
relocation

. When using
this system, at compile time a list of address references will be generated. It lists all refer-
ences to data or instruction addresses that are used within the program code. At load time
the system must know the maximum memory demand of the program, assign memory re-
gions and then use the relocation list to adjust the memory references to the concrete
region locations.

While this means some overhead during compile and load time, it works quite well, but
only for static addresses. If the program dynamically “acquires” memory using some func-
tion such as malloc(), then this function will also have to be informed about the memory
regions and return proper addresses.

Another problemwith this approach occurs when the operating system allows a process
to be swappedswapping out to disk (i. e., all of its memory is wrien to the disk) and swapped
in again later: When swapping it back in, the process may be given different regions
than before, and then all address references have to be relocated again, this time not only
considering the addresses that were stored in the relocation table, but also the dynamically
assigned addresses.

e relocation approach makes it hard to protect one process’ memory against accesses
by another process, because the address calculation in the relocation step only guarantees
that static address references are fixed at program start; the program would however be
free to access any part of the memory unless the operating system somehow checked each
memory access against the region list for this process. e simple start and length registers
from the contiguous case would no longer be sufficient, because there are possibly a lot
of regions if a process uses much memory.

Note that for files a similar scheme can be adopted, and it causes much fewer problems:
typical operations on a file are seek, read and write operations, and they will require
translation of linear file positions (thinking of a file’s bytes as numbered from 0 to n − 
for a file size of n) to absolute disk addresses inside the disk partitions. is translation
occurs with every single access to the file. It could be avoided by also using some kind of
address relocation as in the memory case, but the gained performance would not be worth
the extra effort, because address translation is fast in comparison to disk access.
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3.2.1 Virtual Memory
A virtual memory is an abstraction of physical memory. Roughly speaking, a virtual mem-
ory is an array of memory cells. Usually the size of the virtual memory corresponds to
the maximum addressable space allowed by the hardware. A computer may handle mul-
tiple such address spaces (and therefore virtual memories) at the same time. ey are
used to encapsulate effects of programs on memory. Briefly spoken, every program has
its own virtual memory and no program can (easily) access the virtual memory of another
program.

Physical memory is physical physical
vs. virtual

, i. e., it consists of hardware circuits that must be produced,
bought and installed on the mainboard of the computer. Virtual memory can be created
and destroyed on demand. is is its main distinguishing feature from physical memory.
Virtual memory is virtual, i. e., it is a construct which exists only in soware. A computer
can have much more virtual memory than physical memory. In such cases, a mechanism
“multiplexes” the available physical memory resources to possibly multiple virtual mem-
ories.

In this section we will have a look at how virtual memory can be implemented. We
will look at the idea of address translation in Section 3.2.2 and sketch the requirements for
virtual memory from a user’s point of view in Section 3.2.3. We will go through the three
historic stages of virtual memory development. In essence, these stages reflect the increas-
ing hardware support for virtual memory in computer architecture. You have already seen
the first technique (segmentation, in Section 3.1.5) which provides modified addresses by
adding a (segment-dependent) base address to logical addresses. Early approaches basi-
cally organize physical memory in a slightly more convenient way, but the transparency
of this mechanism is naturally limited. Here, we focus on virtual memory implemented
with the help of an external memory management unit (MMU). is approach is the most
common one and is also the one chosen in the implementation of U which is described
in Section 3.2.5.

3.2.2 Address Translation
e term address space address spacerefers to a space of addressable units in a computer. Every computer
based on the Von-Neumann architecture (named aer John von Neumann) has at least one
(physical) address space. Its size depends on the size of the address bus. If the computer
has 32 bits on the address bus, the hardware can address  distinct units of memory. If
one such unit is a byte, the architecture supports an address space of 4 GByte.

Having 32 bits on the address bus, addresses are 32-bit values between 0x0000.0000 and
0xFFFF.FFFF. In physical memory, not all addresses may be backed by real memory cicuits
on the mainboard. (Access to such an address usually causes a specific type of interrupt
on the CPU or returns an undefined value when it is accessed.) If we view the physical
address space of a computer it therefore may have “holes” (see le side of Figure 3.10).
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Figure 3.10: Logical view of physical address space (le) and address translation via ad-
dress decoder logic (right).

But how does the machine “know” where memory circuits are and where not? e
hardware internally stores a mapping of parts of the address space to memory circuits in
the form of an address decoder logicaddress deco-

der logic
. is logic is a simple boolean circuit that translates an

address on the address bus into one-out-of-n bits. is bit is used to select the particular
memory circuit on the mainboard via its chip select pin. Only a circuit with an enabled
chip select pin will load or store data which travels over the data bus. For example, if the
address 0x0000.0000 is put on the address bus, the logic enables (only) the memory chip
that is responsible for serving that address (see right side of Figure 3.10).

Not only memory chips can be activated through such a logic. Also external devices can
be mapped into the physical address space. rough this mechanism, they can provide
their programming registers just like normal memory cells which can be read and wrien
by the CPU using normal load and store commands. is is the basis for memory-mapped
I/Omemory

mapped I/O
(which we do not discuss in this book, except for the video adapter’s screen buffer).

e effect of such an address decoder logic is that the mapping of memory chips to
physical addresses is literally hardwired into the system. is mapping cannot easily be
changed. erefore, programming physical memory directly makes it necessary to know
the precise whereabouts of the structure of physical memory. is is only advisable where
the physical address space is rather small and well-structured. In the old days with less
memory, operating systems like MS-DOS could afford to work directly on physical mem-
ory: eir programming manuals contained detailed accounts of where RAM and ROM
were placed in the physical address space. With today’s 32 or 64 Bit desktop systems this is
not advisable anymore. It is far beer to use a homogeneous virtual address space which
is independent of the precise placing of memory chips in the physical address space. is
can be achieved through an address translation step performed before the address decoder
logic kicks in.

Address translation needs some form of hardware support. e idea is depicted in Fig-
ure 3.11: e virtual address put on the address bus is taken and translated by the hardware
using some translation table to a physical address which is fed into the decoder logic to se-
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Figure 3.11: Address translation for virtual memory.

lect the right memory chip. is translation requires additional hardware/soware effort.
But from general experience this pays off quickly given the simplicity and homogeneity
of the virtual address space. Program execution can now be performed entirely in the
virtual space. An additional advantage is that the address translation is flexible: It can be
redefined in soware.

3.2.3 Virtual Memory Requirements
A virtual memory is a homogeneous sequence of memory cells together with their content.
It can be regarded as a “well-behaved” address space with its content. e homogeneity is
what makes the address space nice: All memory cells are considered to returnwell-defined
values. So in contrast to physical memory there are no “undefined” regions of storage in
a virtual memory.

3.2.3.1 Types of Data

A virtual memory completely defines the memory context of a running application. is
means that it has to provide all necessary data for executing the program. ree types of
data are commonly distinguished:
1. Program code (also called text) text. is refers to all instructions to be executed by the

CPU.
2. Data. is refers to the contents of all variables used by the program.
3. Stack. stackis refers to data used to manage subroutine calls.

Usually these different types of data are collected and stored in different regions of the
virtual memory.

e data region is further separated into two areas. e first area is for static data static data. Static
data are variables and data structures which are known at compile time of a program and
exist throughout the execution of the program. Examples of static data are global variables.
e second area is for dynamic data which is usually called the heap heap. e heap holds
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Figure 3.12: Organization of the virtual address space.
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Figure 3.13: Organization of the virtual address space with multiple stacks.

variables which are dynamically allocated at runtime by the program (e. g., using malloc
in C or new in C++ or Java). Data on the heap usually depends on program parameters
which are only known at runtime.

For completeness we note that a certain form of dynamic data is also stored on the stack.
Compilers oen generate code that stores local variables of subroutines on the stack. is
is especially noteworthy for recursive functions. Also, parameters are oen passed to
subroutines via the stack.

3.2.3.2 Address Space Organization

From a user’s point of view we would like to organize virtual memory in a clear and
tidy way. In practice, text, stack and data areas are located in virtual memory in a fixed
order (see Figure 3.12). Starting at address 0 we find the text area with all program code
followed by static data. ese areas are both fixed in size throughout the lifetime of the
program. e remaining part of virtual memory is divided up between the more dynamic
parts: heap and stack. e heap is usually placed right behind static data at the “lower”
end of the free space. e stack is located on the opposite side. Note that while the heap
grows in an intuitive way towards rising addresses, the stack grows rather unintuitively
into the direction of falling addresses. In this way, the free space between heap and stack
is utilized in the most effective way since any memory cell can either be used by the stack
or by the heap. Imagine the alternative where the stack would have been placed “half
way” up the virtual memory just to allow it to grow in the direction of rising addresses.
In such a case, the free memory cells could only be used by either stack or heap.

As we see later in Chapter 7, it may be necessary to provide multiple stacks in virtual
memory (for the same program). In such a case we try to utilize the virtual memory as
efficiently as possible by dividing up the remaining space into equal parts for each stack.
is maximizes the distance between each stack.
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Looking at Figure 3.12 and especially Figure 3.13 immediately shows a problem which
arises with this memory layout: Dynamic data areas can grow to such an extent that they
collide with others. In normal circumstances (i. e., one heap and one stack) this is not a
problem because the free space between them is very large. As an example, consider the
classic 4 GByte of virtual memory, a 20 MByte program (text and data) and initially empty
stack and heap. e gap which opens up between them has a size of 4076 MByte. is is
quite some memory to allocate in heap and stack. Of course, the probability that heap and
stack collide multiplies with the number of stacks. If a collision is not avoided it usually
causes strange and hard to track down runtime errors. As we will see later, it is possible
to effectively protect from such collisions with hardware support.

3.2.3.3 Amount of Useable Virtual Memory

Without any additional help, the amount of effectively useable virtual memory cannot be
larger than the amount of physical memory installed in the computer. Fortunately, most
programs do not really use a lot of the available virtual memory so that you don’t always
have to equip your system with a full (e. g., 4 GByte) main memory. However, using
some tricks it is possible to “simulate” more physical memory using secondary storage.
e details of this mechanism will become clear later when we discuss page-based virtual
memory. e main idea however is to add special information to the translation table and
usemainmemory as a cache cachefor secondary storage. If a part of virtual memory is not in the
cache, program execution is interrupted, the missing data is brought into the cache, and
the program resumes operation thereaer. Note that if something is brought into main
memory in this process, other information may have to be wrien out of the cache, i. e.,
frommainmemory to secondary storage. is performance overhead is the price you have
to pay. e advantage of this scheme is that secondary storage hardware is much cheaper
than main memory chips. In well-designed systems it is possible to simulate a substantial
amount of main memory using secondary storage without much performance overhead.

3.2.3.4 Protection of Code, Data and Stack

We oen want to make sure that certain memory areas are only used in the specific way
they were intended to. For example, the program code of a process should not be modified,
but only executed (which requires only read access). On the other hand, data areasmust be
changeable, but we don’t want a process to treat data as code and start executing it. Some
malware works by storing binary code in the stack of a process and then jumping to that
code; if the system does not accept a jump to a stack address, this type of aack is impos-
sible. We would also like to differentiate between what we will call user mode user mode(a process
executing its own code) and kernel mode kernel mode(the process executing a service function inside
the kernel) and grant access to specific addresses only when the system is in kernel mode.

us, it makes sense to have access aributes which allow reading, writing and execut-
ing and which may also depend on the current (user/kernel) mode. When we set up the
memory for a new process we should be able to tell the system which memory areas can
be accessed in which ways.
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3.2.3.5 Summary of Requirements

To summarize, here are the main requirements we have for virtual memory from a user’s
perspective:
• Virtual memory should provide a homogeneous address space.
• e size of virtual memory should be independent of the size of physical memory in

the system.
• Virtual memory should be able to protect different types of data from certain forms

of access (e. g., text from being wrien).
• Collisions of heap and stack should be detected and avoided whenever possible.

If the system provides multiple virtual memories (one for each program), then we have
the additional requirements:
• Virtual memories should be protected from one another, i. e., a program running in

one address space should not be able to access the other address space and vice versa.
• e physical resources of the system should be distributed in a fair manner between

the existing virtual memories.
• Physical memory should be used efficiently. Especially any type of fragmentation

should be avoided.
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Figure 3.14: Schematic view of a refined translation table for virtual memory.
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As a glimpse on to the implementation of the above requirements we return to the
idea of a translation table which was previously discussed in Section 3.2.2, this time with
some more details. Figure 3.14 depicts the idea of a translation table with the additional
information necessary to implement all above requirements. e table not only holds
information about the physical address which belongs to the virtual address. It also con-
tains flags that indicate access restrictions (like read, write, execute) as well as pointers
to secondary storage should this memory location be stored there. Note that the figure
only gives a schematic view which is very simplistic, even impossible to realize. Aer
all, the translation table must somehow fit into (physical) main memory to be useable. If
we need one (physical) memory cell (at least) to store the translation information for ev-
ery (virtual) memory cell, we could never simulate more virtual memory than we have
physical memory available. e main challenge therefore lies in implementing this con-
cept in a way such that the usage of memory as well as the translation time is mini-
mized.

3.2.4 Page-based Virtual Memory
All modern operating systems use a virtual memory management mechanism called pag-
ing paging. e idea behind paging is to give each process a virtual memory space that is ad-
dressed contiguously and linearly (starting with an address 0 and ending with an address
size − ) and that is partitioned into a set of memory pages. All pages have the same size,
say, 1 KByte, and they are mapped to page frames which are equally sized chunks of the
real memory. With the help of a page table each access to a virtual address is translated
to a real address by first calculating to which page the address belongs, then looking up
the corresponding page frame via the page table and finally locating the relative position
within that page frame (see Figure 3.15)—the technical details of this approach are what
we discuss in the rest of this chapter.

is approachmakes compiling an application very easy: All references to addresses, be
they jump instructions or data accesses, can be stored with absolute addresses inside the
program, and no relocation takes place when loading the program. Instead each memory
address will be translated using the page table.

When, for whatever reasons, locations of page frames have to be changed, it only takes
a correction of the page table to make sure that the program continues to be runnable.
is scheme also allows for individual pages to be removed from memory altogether and
stored on the hard disk for later retrieval—this is called paging as well, and it is not to
be confused with swapping a process’ memory (meaning: writing all of it to the disk). A
process that has some of its pages paged to disk can still be run, whereas a process that
was swapped to disk must first be swapped back in before it can resume action. However,
the disk space reserved for paging is oen called swap space for historical reasons. E. g.
the Linux operating system calls paging partitions or files swap partitions and swap files,
but it does not implement swapping; it pages.

Although page frames and pages have the same size, they are totally different concepts.
A page is a logical unit of virtual memory. Any virtual address resides in some page. A
frame is a concrete area of physical memory waiting to hold some page. A large part of
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Figure 3.15: Pages and page frames.

physical memory will consist of frames, i. e., will be devoted to storing pages. But not all
physical memory is part of some frame.

3.2.4.1 Hardware Support

In contrast to segment-based virtual memory, page-based virtual memory needs no hard-
ware support on the CPU, i. e., no special registers. is means that this type of virtual
memory can (at least in principle) be implemented with any CPU on the market. In a
sense, the hardware support is “outsourced” to a dedicated device called the memory man-
agement unit (MMU)MMU . e MMU can be thought of as a hardware address translator that
sits on the address bus and divides it into two parts. One part between the CPU and the
MMU is considered the “virtual address” part of the address bus, the other (between MMU
and main memory) is the “physical address” part. When the CPU issues a virtual address
onto the address bus, the MMU transparently translates it into a physical address on the
other side, i. e., it changes the value of the bits as the address passes through the MMU
from one to the other side.

To tell the truth, the MMU doesn’t change all the address bus bits, but only the higher
order bits. e k lower order bits remain unchanged. e value d represented by the
k lower order bits is called the offsetoffset of the address (see Figure 3.16). e idea of this
separation is the following: e higher order bits of the virtual address implicitly refer to
the pagepage number that the virtual address is located in. e k lower order bits then are interpreted
as the offset of the address within the page, i. e., the distance from the beginning of the
page to the address.

e interpretation of the address in page number and offset has several consequences.
e main one is that the size of a page must be a power of 2. If the k lower order bits
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page number offset

Figure 3.16: Structure of virtual address.

represent the offset within a page, the number of addresses in a page is exactly k. For a
value of k = , a page would contain exactly  =  Bytes. e value of k =  is a
typical value in practice where there are 32 bits on the address bus. is case is depicted in
Figure 3.17. It shows that the k lower order bits (those with index 0 to 9) define the offset
d and the remaining −  =  bits (with indexes 10 to 31) define the page number p.

091031

page number (22 bits), p offset (k =  bits), d

Figure 3.17: An address consists of a page number and an offset. is example uses k = .

3.2.4.2 Page Descriptors and Address Translation

e central data structure to manage pages in virtual memory is the page descriptor page descriptor. ere
is exactly one page descriptor per page in virtual memory. All page descriptors are held
within the operating system in a big internal table called the page table page table. e page de-
scriptor contains all information necessary to locate the contents of the (virtual) page in
physical memory, therefore knowledge of the starting address of the page table is the key
to performing address translation. So to enable address translation, the page table register
PTR of the MMU is pointed to that starting address (see Figure 3.18). Assuming that there
is just one big table, the MMU can now directly locate the page descriptor of page p by
doing a small address calculation.

page table register

MMU

page table

p ∙ x

page descriptor
of page p

x = size of a page
      descriptor

Figure 3.18: Address translation using page descriptors.
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Given the size of a page descriptor to be x bytes, then the page descriptor of page p has
the address:

PTR+ p · x

As mentioned above, a page descriptor is a data structure that holds all necessary in-
formation to manage the associated virtual page. Here is an overview over the types of
information that can be stored in a page descriptor of page p:
• Since the page descriptor is used to perform address translation, it must contain a

pointer to the physical page frame of page p. e MMU adds the offset of the virtual
address to this pointer to yield the actual physical address of the virtual address in
question.

• Since page frames act as a cache for the contents of pages, certain management bits
must be present to handle cache contents. Recall that main memory is regarded as a
cache for pages stored on secondary storage (see Section 3.2.3.3). e first such bit
is the presence bitpresence bit (P bit). e P bit indicates whether or not the page contents are
present in main memory.

• e next management bit is the reference bitreference bit (R bit). Roughly speaking, it indicates
whether or not the page descriptor was referenced within some period of time. e
R bit is set by the MMU with every access to the page descriptor in main memory.
Technically speaking, the reference bit is not actually an essential management bit of
the cache, but rather a bit which is used to optimize the cache performance. is will
be discussed later in Section 9.3.

• A vital cache management bit is the dirty bitdirty bit (D bit), sometimes called wrien bit. It is
set by the MMU whenever the contents of page p are wrien. e D bit is important
since it solves the cache coherence problemcache coherence : Contents of the cache (i. e., main memory)
and secondary storage can diverge if main memory is wrien and secondary storage
not (due to performance reasons). e D bit indicates exactly when this divergence
exists. Pages which have diverged in main memory eventually have to be made co-
herent with secondary storage again.

• e page descriptor also contains protection bitsprotection bits used to manage the type of access
allowed to this page.

• e page descriptor usually also contains several multi-purpose bits which can be
used by the operating system for different means.

Ignoring protection and multi-purpose bits, this is what a page descriptor could look
like in code:

[72] ⟨tentative declaration of page descriptor 72⟩≡
typedef struct page_desc_struct {

void *frame_addr; // address of page frame for this page
unsigned int present : 1; // presence bit
unsigned int referenced : 1; // reference bit
unsigned int written : 1; // dirty bit

} page_desc;
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Figure 3.19: Successful page translation.

To summarize, we now recall how a successful page translation finally happens (see
Figure 3.19):
1. e CPU accesses a virtual address v on the address bus. e virtual address consists

of a page number p and an offset d in the page.
2. e MMU uses the page number p and the base address of the page table (stored in

PTR) to locate the page descriptor of the page.
3. Using the page frame number k stored in the page descriptor, theMMU adds the offset

d to form the final physical address in main memory.
What can potentially go wrong during page translation? e simplest error condition

is that the virtual memory location doesn’t (yet) exist in physical memory. is means
that the page table doesn’t know where it should point to. is information is encoded
in a special null page descriptor null page

descriptor
. If the MMU tries to translate an address and finds such

a null page descriptor in the page table it signals an interrupt to the CPU which must be
handled immediately.

e next error condition concerns the protection bits. e MMU checks whether the
current access context is allowed by the protection bits. For example, if the CPU wants to
write something to a virtual address and the protection bits don’t allow write access, then
again the MMU raises an interrupt with the CPU.

e final error condition which we discuss here refers to the fact that main memory
is just a cache for secondary storage: a cache miss cache missmay happen. What is a cache miss
in this context? It means that the page accessed by the current instruction exists but it
currently isn’t in main memory (the cache). is is indicated by the presence bit (P bit) in
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the page descriptor. If the P bit is not set, an interrupt is raised by the CPU. In effect the
interrupt handler must try and load the page contents back in to main memory so that the
application that wished to access the page contents can continue to operate. More details
on how this works will follow later.

3.2.4.3 Page Descriptor Trees

In contrast to the naive address translation described at the end of Section 3.2.3 where we
had one entry in the translation table per virtual address, the idea of pages reduces the size
of the page table dramatically. e larger the page size, the smaller the page table because
translation information and protection bits etc. are stored per page. However, page tables
still have considerable size. e problem is partly a result of the memory layout sketched
in Section 3.2.3.2 because code, data and heap reside on one end of virtual memory and the
stack on the other end. is means the page table must always cover all pages in virtual
memory. As an example, imagine you need eight bytes for each page descriptor (which
is not much), a 12-bit offset for pages (giving a page size of 4 KByte, rather large) and a

physical memory

00 00
00 01
00 10
00 11
01 00
01 01
01 10
01 11
10 00

virtual memory

10 01
10 10
10 11
11 00
11 01
11 10
11 11

page table, level 1 page tables, level 2

(00 00)

(10 11)

(10 10)

(content)

address            virtual memory cell (address)
page frame (physical memory cell, free)
page frame (physical memory cell, occupied)

Figure 3.20: Example of a multi-level page table that maps individual virtual addresses to
physical addresses (page size: 1 byte).
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32-bit address bus. In total you have  entries in the page table, each uses eight bytes,
yielding a page table size of 8 MByte. Small computer systems with only 16 or 64 MByte
of physical memory could only hold one or two page tables (at most) since additionally
the contents of pages also must be stored in main memory.

Given the fact that most programs have a large void space in virtual memory between
heap and stack, there is much potential to save storage space here. Recall the example we
discussed in Section 3.2.3.2 where a program of 20 MByte had a gap of almost 4 GByte in
virtual memory. If a page had the size of 1 KByte, then this program would need “only”
2000 entries (out of ), meaning that more than 99.5 % of the page table is not used.

e common solution employed in operating systems is to have hierarchic page tables
or page descriptor trees page descrip-

tor trees
. A single page table is regarded as a special case of a hierarchic

page table. Each entry in the page table is either a page descriptor or a pointer to another
page table.

e idea is to start with a small page table (i. e., a page table with a small number of
entries). Each such entry is responsible for covering a relatively large part of the virtual
address space. Each entry can be refined by another page table in a similar way. For
example in Figure 3.20, virtual memory has 16 addresses (numbered 0000b to 1111b). e
first level page table has four entries. Each entry is responsible for handling a quarter
of the entire virtual address space, i. e., four addresses. An entry at the first level then
points to a second level page table with again four entries but which deals with the details
of address translation. In this example you can already see that a full (single level) page
table would have needed 16 page descriptors. In the hierarchic version we need only three
small tables with four entries each, i. e., twelve page descriptors altogether.

A real-world example from the Intel i386 architecture shows the effect even more dra-
matically: e Intel processor uses 4-KByte-sized pages, thus a virtual address is split into
a 20-bit page number and a 12-page offset. Using a hierarchical page table, it is possible
to split the 20 page number bits in two halves.

Following Intel terminology, the first ten bits are used as index into the page directory page directory,
and the second ten bits reference a page table page table.

e first ten bits in this example can be called upper page number, the last ten bits lower
page number (Figure 3.21). e effect on the page table size is a reduction to roughly the
square root, i. e., from  to  entries. (If the size of one entry were one byte, the reduced
table would have exactly square root size.)

01112212231

page directory entry page table entry offset

Figure 3.21: On the Intel i386 architecture, paging uses a (per-process) page directory
whose entries point to page tables. is constitutes a hierarchical page table
with 20 bits for the page number and twelve bits for the offset.

Notice however that while going from a million entries to 1000, this introduces 1000
secondary page tables. If a process actually used this much RAM, all the secondary page
tables would be filled, and no space would be saved. (Actually, in that case you get an
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increased amount of space used for tables, because the primary table counts extra.) But
normal processes will not have such enormous memory demands, and this saves a lot of
space because secondary page tables can be created on demand—as long as a process uses
only a few kilo- or megabytes of RAM, only the first few secondary page tables need exist.

3.2.4.4 Page Descriptors and Page Table Descriptors

In general, a hierarchic page table is a tree of descriptors. Descriptors can be of two forms:
• Page descriptorspage descriptor (PD) are the “leaves” of the tree. ey are page descriptors in their

original sense, including information about the location of the page frame and pro-
tection bits.

• Page table descriptorspage table
descriptor

(PTD) are the “inner nodes” of the tree. ey basically are point-
ers to descriptors (either page descriptors or page table descriptors).

e resulting tree-like structure is visualized in Figure 3.22.
Since we know what is part of a page descriptor already (see Section 3.2.4.2), what is

part of a page table descriptor? Generally we can find these entries:
• A flag indicating the type of the descriptor, i. e., is it a page descriptor or a page table

descriptor. In fact, also every page descriptor needs this field.
• e address of the page table which this page table descriptor points to.
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⊥PTD Page Table Descriptor

PD Page Descriptor
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Figure 3.22: Tree structure of descriptors.
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• In case it is not clear from the hardware architecture, a page table descriptor may
also store the size of the page table. is is analogous to the size of a segment in
segment-based virtual memory.

• A presence bit (P bit) which indicates whether the page table pointed to by the descrip-
tor is in main memory or not. is indicates that also page tables can themselves be
paged out into secondary storage. We will get back to the problems this may cause
later in Section 3.2.5.

• Multi purpose bits, just like in a page descriptor.

3.2.4.5 Structure of a Virtual Address

In a hierarchic page table, the virtual address is used in a special way to traverse the tree
of descriptors. If there are L levels in the page descriptor tree, the bits of the page address
p within a virtual address are subivided into L parts p, p, . . . , pL such that

p = p ⊕ p ⊕ . . .⊕ pL

(where ⊕ denotes the join operation of strings). Mathematically, this corresponds to

p = p × e + p × e + . . .+ pL × eL

for some decreasing sequence of exponents {e, e, . . . , eL} with eL = . e address
translation starts with the lemost (highest order) bits. Briefly spoken, the first bits (in p)
are an index into the first level page table, the next bits (in p) an index into the second
level page table and so on. erefore the number of bits per level determines the size of
the page table at that level.

As an example, consider the division of p into parts in Figure 3.23. e first seven bits
(for p) allow a first level table size of  =  entries. In a 32 bit system, each entry
covers an area of 32 MByte. e second level’s seven bits for p handle again 128 entries,
each of them now covering 256 KByte. Finally, the third level’s seven bits (for p) are an
index into a page table with 128 entries, each entry finally covering a full page of 2 KByte
(eleven bits remain for the offset). As in this example, it is common to have two or three
distinct levels in the page descriptor tree of a virtual address space.

010111718242531

p (7 bits) p (7 bits) p (7 bits) offset d (11 bits)

Figure 3.23: Example structure of a multi-level virtual address; p = p ⊕ p ⊕ p = p ×
 + p ×  + p.

3.2.4.6 Multi-Level Address Translation

We now discuss several examples of how address translation works using hierarchic page
tables. e first example is depicted in Figure 3.24. It shows a two-level descriptor tree.
How does the MMU perform address translation here? It starts with the “root” page table,
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page table register
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page table
(level 1)
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   p1        p2            d 

    k                 d 

virtual address

physical address

d

page table
(level 2)

PTD

PD k

Figure 3.24: Address translation using a two-level page descriptor tree.
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Figure 3.25: Address translation using a three-level page descriptor tree.
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pointed to by the MMU register PTR. is is the first level page table. e MMU takes the
first part p of the virtual address as an index into this table where it finds a page table
descriptor. is points to the relevant second level page table. Within this page table, the
second part p of the virtual address is used as an index. Since we are at the highest level
of the tree, the descriptor at index p in the second level page table is a real page descriptor
allowing to perform the address translation into a physical address.

e example above can easily be extended to three-level page descriptor trees. As an
example consider Figure 3.25. In contrast to the first example, the level two page table
does not point to the page frame but to a level three page table. e virtual address has a
third part p which is used as an index into this table where we find the page descriptor
finally pointing to the page frame.

We can save a lile storage space in the descriptor if its type is clear from the context.
For example, the Intel i386 CPU assumes a two-level descriptor tree. Any descriptor found
at level 1 is automatically a page table descriptor. All other descriptors (i. e., those at level 2)
must be page descriptors.

3.2.4.7 Discussion

e advantage of hierarchic page tables is their potential to save significantly on main
memory. Unused parts of virtual address spaces can be “removed” from the page table
using null page descriptors. A null descriptor is a special descriptor indicating that the
virtual memory at this location is void or unused. Usually it is encoded by a special flag
or value in a field of the descriptor (either page descriptor or page table descriptor). By
placing a null descriptor into the descriptor tree, all pages below this descriptor are effec-
tively removed from virtual memory. e lower the level of the null descriptor, the larger
the part of virtual memory which is mapped out.

To see how effectively null descriptors can be used, we reconsider the example we intro-
duced in Section 3.2.3.2 and revisited in Section 3.2.4.3: the classic organization of virtual
memory with a 20 MByte program, an empty heap and an empty stack. Recall that a
single page table would need roughly 8 MByte of main memory. Using hierarchic page
tables and null descriptors we can reduce the amount of necessary storage to 5 KByte, as
is shown in Figure 3.26. Here the example is simplified to the situation where the program
has no code and data pages to show the effect more clearly. Remember that on each level
of the descriptor tree we had 128 entries per table, each entry requiring eight bytes. is
means each table has a size of 1 KByte. By placing null descriptors in all places which
point to empty virtual memory, we end up with page tables only for those parts of the
system which really exist. Since the assumed hardware of this example places page de-
scriptors only on level 3, we need to extend the descriptor tree up to level 3 for the two
page descriptors necessary to point to heap and stack. When you count the number of
page tables, you end with 5. Hence we need only 5 KByte instead of 8 MByte.

e disadvantage of a multi-level page tables is that address translation takes slightly
longer. is is because the MMU has to traverse the tree (i. e., follow the pointers) when
doing the address translation. A multi-level page table needs one main memory lookup
per level, which takes longer than a single memory lookup if there were only a single
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Figure 3.26: Saving main memory using null descriptors in hierarchic page tables.

page table. e memory savings however usually outweigh the performance drawback.
Furthermore, performance can still be in the range of a single memory lookup (or less) by
using caching, as we explain in the following section.

3.2.4.8 Translation Look-aside Buffers and the Locality Principle

Each memory access requires address translation which needs yet (at least) one other
memory access for reading the page table, so it makes sense to use some kind of caching
mechanism for the page to frame translation because most programs will not randomly
access memory but instead access addresses which are close to one another. ink of loops
reading all the elements of an array: they will be stored consecutively. So aer one access
to a memory frame it is likely that further accesses to the same frame will occur soon aer
the first one. is is called the locality principlelocality

principle
. Lookups of the same frame would mean

translating the page number to a page frame number again and again—in order to speed
up this process many memory management units contain a translation look-aside buffer
(TLB)TLB . at is a special type of memory called associative memory which can store page/
page frame pairs and allows lookup in constant time: In order to find the page frame for a
given page (assuming it is stored in the buffer) there is no need to loop over the entries in
the buffer, but the buffer will return the frame number immediately if it contains the page
number. If it does not, the result is an error, and the normal lookup process will start. But
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finding a frame via the TLB is orders of magnitude faster than going through the regular
tables, and this holds even more if split page tables are used.

e size of the TLB is typically very small, because those kinds of chips are limited in
their size but the locality principle will guarantee that for “well-behaving programs” (i. e.,
those that respect this principle) it will be sufficient to dramatically speed up the address
translation.

Since the TLB is part of the memory management unit, it will be used automatically by
the CPU; no specific programming is necessary to activate or use it.

Note that the (page 7→ page frame) mapping exists for every single process in the sys-
tem: Since each process has its own virtual memory space, it makes no sense to combine
their page tables in some kind of system-wide table. is has consequences for the TLB
as well: If it, as described so far, only stores page and frame numbers, then every con-
text switch to another process will invalidate invalidation

of TLB
all its entries. So if the scheduler switches

processes very oen, this will limit the use of the TLB. Alternatively the TLB could be con-
structed in a way that maps (process ID, page number) pairs to frames: at would keep
all entries valid across context switches, but with different processes always accessing dif-
ferent page frames it would only work well in a setup with either very few processes or
with a sufficiently increased TLB size.

3.2.4.9 Digression: Indirection in Filesystems

Somewhat similar to the way in which a page table holds information about the page
frames currently used by a process, filesystems keep records of disk areas used by a file. A
thing that is shared by both methods is the use of equal-sized partitions of the medium—in
the case of hard disks they are called blocks or clusters and typically have the size of a few
kilobytes, e. g., 1, 2, 4 or 8 KByte.

For each file the operating system has to keep a list of blocks that the file’s data occupy.
With very large files this list also becomes very large, because a file of size 1 MByte uses
1024 blocks, if the block size is 1 KByte.

Storing the block list in the overall data structure that the operating systems keeps for
administering the filesystem is not very efficient, because in order to allow for huge files,
each such entry would have to reserve space for a possibly very long list—even for those
files that only use a few blocks. us many filesystems store the block list in special data
blocks. is approach is called single indirection indirection: From wherever the information about
a certain file is stored, entries do not point directly to a data block, but to an indirection
block that contains further pointers to several other data blocks. ese entries can be
block numbers, since by multiplying the block number with the block size the absolute
disk address can be calculated. If it takes two bytes to store a block number and a data
block has a size of 4 KByte, then 2048 block addresses can be stored in one indirection
block. When the first indirection block is fully used, a second one can be introduced in
order to allow for even bigger files.

Typically the administration data will not only contain pointers to indirection blocks
but also a few direct pointers (to data blocks) so that in the case of small files it is possible
to find all data blocks without going through indirection blocks. Only when the number
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struct minix2_inode {
  uint16_t i_mode;
  uint16_t i_nlinks;
  uint16_t i_uid;
  uint16_t i_gid;
  uint32_t i_size;
  uint32_t i_atime;
  uint32_t i_mtime;
  uint32_t i_ctime;
  uint32_t i_zone[10];
}

Legend:

points to data block

points to (single/double/triple) indirection block

triple
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Figure 3.27: Multiple indirection in Unix filesystems: A Minix inode stores seven direct
block numbers and three block numbers for single, double and triple indirec-
tion blocks. Triple indirection is not implemented in U.
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of data blocks exceeds the number of directly stored block addresses, a first indirection
block will be used.

With single indirection the maximum size of files grows a lot; however it is still limited:
If there are 20 pointers to indirection blocks and such a block stores 2048 block numbers
(as above), then this allows for 40 K data blocks or file sizes of up to 40 K × 4 KByte = 160
MByte. By adding more and more indirect pointers in order to allow for yet bigger files,
the administrative data for a single file grows equally; so a second level of indirection is
introduced to keep the file entries small. With double indirection there are pointers that
point to indirection blocks which link to further indirection blocks. ose then finally
point to address blocks. What we said about the number of block addresses remains valid
in the case of double indirection, but now one double indirection pointer allows to address
2048 × 2048 = 2048 (or roughly four million) data blocks.

If this is still not good enough, triple indirection or even higher levels of indirection can
be introduced: With each additional indirection step the maximum file size grows by the
same factor (2048 in the example). But notice that it makes no point to use, say, ten or
eleven layers of indirection just to be prepared for any possible future demands on file
sizes: Indirection leads to extra accesses; in order to read a specific block from the disk
whose block number is only available through a long indirection, several blocks have to
be read from the disk. If the block is on a triple indirection path, it actually takes at least
five read operations to retrieve the data: e first one is for looking up the address of the
first level indirection block in the file’s administrative data. e second to fourth are for
reading the indirection blocks, and the fih one is the data block itself.

Whatever level of indirection is used, there are typically also indirection entries of all
lower levels: In the sameway that it makes sense to keep a few direct block number entries
to speed up access to very small files, it is useful to have one (or a few) single indirections
for those medium size files that do not require double indirection, and so on.

Figure 3.27 shows an example for multiple indirection in a Unix type filesystem. What
is called inode inodein the image is a special administrative entry for a file that holds most of
this file’s aributes including direct and indirect block numbers as well as things such as
owner, owning group, access permissions, but not a filename. We will come to this later
when we discuss examples of real filesystems in Chapter 12.

3.2.4.10 Further Reading

A comparison of three paging architectures (x86, PowerPC and MIPS) by Bruce Jacob and
Trevor Mudge is available online [JM98].

3.2.5 Page-based Virtual Memory in U
Virtual memory in U is designed along the following principles:
• Every process will have its own virtual address space, i. e., an own page table (tree).

Address spaces of processes are protected from one another, i. e., it is not possible to
access address space a from a process that uses address space b and vice versa.
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• Pages are stored in a set of page frames. Pages can be locked in physical memory.
Locked pages cannot be paged out.

• Page replacement is done on a global basis, i. e., page replacement algorithms treat
all frames in the same way irrespective of what pages reside in the frames (unless, of
course, they are locked).

• e kernel has its own virtual address space. e virtual address space of every pro-
cess is accessible from the virtual address space of the kernel.

In the following chapter you will see the data structures that U uses to implement
paging on the Intel i386 architecture, but we will only set up an initial page table that we
need for completing the boot process. It will get more interesting in Chapter 6.1 when we
introduce address spaces for processes.



4
Boot Process and Memory

Management in U

Our goal is to have an operating system which will be able to boot from some media.
Obviously we cannot just compile a standard binary executable file for some platform (e. g.
the one we use for development), but instead will need a file format that a boot loader can
load and execute on a real machine (or inside some PC emulator or virtualization soware).

Writing a boot loader is not a hard task as long as we create the boot disk in such
a way that the kernel binary is stored contiguously on the disk and we know its first
sector number on the disk: the BIOS provides functions for reading sectors from disk.
e older Linux boot loader LILO [AC00] worked this way: aer rebuilding the Linux
kernel and writing it to the boot disk, the boot loader had to be reinstalled because the
sectors containing the kernel were hard-coded into the boot loader. LILO’s successor GRUB

boot loaderGRUB [Fre05] uses a more complex approach: it contains drivers for several filesystems
and can find its configuration data and the kernel without knowing the sector numbers;
it just looks up the relevant data in the disk’s directories.

We have decided against implementing our own boot loader because this tool is not part
of the kernel. As capable tools such as GRUB already exist, it makes no sense to reinvent
the wheel.

4.1 GRUB Loads the U Kernel
We will use a FAT-formaed GRUB boot floppy disk (ulix-fd0.img) onto which we copy
the U kernel binary ulix.bin, and we configure the boot loader by placing the following
file MENU.LST in the BOOT/GRUB subdirectory of the same disk:



86 4 Boot Process and Memory Management in U

[86] ⟨MENU.LST 86⟩≡
timeout 5

title ULIX-i386 (c) 2008-2014 Felix Freiling & Hans-Georg Esser
root (fd0)
kernel /ulix.bin

When we power on the emulated (or real) PC, the BIOS will search for bootable media,
and it will find an acceptable boot sector on the floppy disk. It loads the GRUB boot loader
into memory and executes it. GRUB understands several filesystems, including Minix and
FAT, and it will recognize the FAT disk and locate the above configuration file. Its only
entry tells it to load the kernel binary.

But to what memory location does GRUB copy the kernel, and where will it start execut-
ing it? e kernel binary will be anELF ELF file (Executable and Linking Format, see Section
6.8) that contains a description of what data to copy from the ELF file to which memory
locations.

GRUB supports kernel images which have a Multiboot headerMultiboot
header

. e Multiboot specifica-
tion [OFBI09] states:

“An OS image must contain an additional header called Multiboot header, be-
sides the headers of the format used by the OS image. e Multiboot header
must be contained completely within the first 8192 bytes of the OS image and
must be longword (32-bit) aligned. In general, it should come as early as pos-
sible and may be embedded in the beginning of the text segment aer the real
executable header.”

In order to put a proper Multiboot header into our kernel binary, we will need to write
some assembler code. e nasm assembler offers commands such as db (data byte), dw (data
word) and dd (data double word) for writing eight bits, 16 bits or 32 bits of data into the file
(see Appendix B.3), and the equ statement lets us define symbolic constants, similar to C’s
#define pre-processor statement. e full header is only twelve bytes long, its contents
are shown in Table 4.1.

Bytes Content Fixed Values
00–03 magic string 0x1badb002
04–07 flags
08–11 checksum

Table 4.1: Contents of the Multiboot header.

What are the proper values for the flags and checksum fields? According to the Multi-
boot specification, we need to set the bits 0 and 1 of the flags entry:

0: this is the “page alignment” flag, it guarantees that the kernel will be loaded to a phys-
ical address which is a multiple of 4 096, the default page size on the Intel architec-
ture.
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1: the “memory information” flag provides the loaded operating system with data about
the available memory. is data will be accessible via the “Multiboot information
structure”, and the boot manager must place the address of this structure in the EBX
register. U does not currently use these data.

e following code shows a slightly modified version of the Multiboot header definition
which we took from Bran’s Kernel Development Tutorial [Fri05].

[87]⟨start.asm 87⟩≡ 93 ▷
[section .setup]
[bits 32]
align 4
mboot:

MB_HEADER_MAGIC equ 0x1BADB002
; Header flags: page align (bit 0), memory info (bit 1)
MB_HEADER_FLAGS equ 11b ; Bits: 1, 0
MB_CHECKSUM equ -(MB_HEADER_MAGIC + MB_HEADER_FLAGS)

; GRUB Multiboot header, boot signature
dd MB_HEADER_MAGIC ; 00..03: magic string
dd MB_HEADER_FLAGS ; 04..07: flags
dd MB_CHECKSUM ; 08..11: checksum

Defines:
mboot, used in chunk 94.

(For an explanation of the assembler commands equ (which is similar to C’s #define) and
dd (which writes data right into the assembled object file) see Section B.3 of the appendix
on x86 assembly language.)

When we look at the compiled kernel, we will find the Multiboot header. Note that
32-bit numbers are stored in lile-endian lile-endian: for example, the magic string 0x1badb002 shows
up as 02 b0 ad 1b.

$ hexdump -C ulix.bin
[...]
00001000 02 b0 ad 1b 03 00 00 00 fb 4f 52 e4 17 00 12 00 |.........OR.....|
[...]

4.2 The U Memory Layout
While it’s too early to discuss the memorymanagement implementation in detail, we need
to decide now what the general memory layout is going to be: when we load the kernel
it will end up somewhere in memory, so we must say where that is going to be.

Uwill implement virtual memory (with paging), and every process on the systemwill
have its own address space which is basically a mapping of virtual addresses to physical
memory.

We User / Kernel
Space

split the available 4 GByte of virtual memorywhich are available on a 32-bit machine
into 3 GByte for user space (addresses 0x00000000 – 0xBFFFFFFF) and 1 GByte for kernel
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space (addresses 0xC0000000 – 0xFFFFFFFF). Every process will see the same upper 1 GByte
of kernel space (see Figure 4.1).

0xFFFFFFFF
... Kernel space

0xC0000000
0xBFFFFFFF

... User space
0x00000000

Figure 4.1: is is a simplified view of the U memory layout.

is memory layout is similar to the one used by 32-bit-Linux which also puts the kernel
in the upper quarter of the virtual memory.

With this in mind we will compile the U kernel such that it uses addresses above
0xc0000000.

4.3 From Real Mode to Protected Mode
When the computer powers up, it runs in Real ModeReal Mode , a legacy mode of operation which is
compatible to earlier Intel CPU generations—all the way back to the Intel 8086 processor
from 1978.

When using a simple boot loader the operating system has to do the switch from Real
Mode to Protected ModeProtected Mode manually, however GRUB activates Protected Mode for us, so all
we have to do in the early initialization is to set up segmentation properly.

4.3.1 Segmentation in Real Mode
In Real Mode, the CPU uses 16 bit wide registers to address the memory, and via a built-in
method called segmentation a 20 bit wide address space can be used. at is achieved via
an odd technique: several segment registers can be used to point to a different memory
range. Segments are always  bytes = 64 KByte large.

Let’s see an example for this: Assume we have a machine with 512 KByte of RAM, it
hasPhysical Address physical addresses 0x00000 to 0x7FFFF. In principle, the 16-bit registers of the 8086 CPU
could only access the first 64 KByte (with addresses 0x0000 to 0xFFFF) of that memory—the
first segment. In order to access the second segment (addresses 0x10000 to 0x1FFFF), we
use aSegment

Register
segment register, e. g. DS (data segment). e segment registers are also 16 bits wide,

but we intend to store a 20-bit wide address inside them. Since 20 bits cannot fit inside a
16-bit register, we discard the four lowest bits, assuming they are always 0.

Here are the binary representations of 0x10000 and 0x1FFFF:

0x10000 = 10000000000000000b
0x1FFFF = 11111111111111111b
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e 20-bit wide represention of 0x10000 is 00010000000000000000b, and when we remove
the lowest four zero bits, we get 0001000000000000b = 0x10000 >> 4 = 0x1000.

We can now access addresses 0x10000 to 0x1FFFF by seing DS to 0x1000 and actually
addressing 0x0 to 0xFFFF, because the CPU will automatically le-shi DS by four bits and
add the resulting value to the addresses we supply.

Segmented addresses are always wrien in the form seg:addr and called Logical Addresslogical ad-
dresses, for the example above, 0x10000 = 1000:0000 and 0x1FFFF = 1000:FFFF.

We could partition the 512 KByte = × KByte RAMof our examplemachine into eight
segments with addresses 0000:x, 1000:x, …, 7000:x. e maximum amount of memory that
the 8086 CPU can use is 1 MByte, and for a machine with that much RAM we would add
the segments with addresses 8000:x, 9000:x, …, F000:x.

However, it is not required that a segment starts at a multiple of 64 KByte; instead a
segment register may hold any 16-bit value (which will be le-shied into a 20-bit address
with four trailing zeroes), thus the start address of a segment is some multiple of  = .

Now, for our operating system we do not want to use Real Mode, since it offers no
memory protection and 1 MByte of memory is not much. e alternative is Protected
Mode, and it also uses segmentation, but in a more complex way. e 80386 processor’s
segmentation mode is similar to segmentation on the 80286 CPU with the difference that
the 80386 supports a 32-bit address space instead of a 24-bit address space, as well as
paging.

4.3.2 Privilege Levels in Protected Mode
When we run the PC in Protected Mode there are four different “privilege levels” 0–3
in which the CPU can operate. Protected Mode segments allow us to declare the rights
needed to access a segment, for example, if we are currently running in privilege level 3
and try to read a memory address in a segment which only allows access from level 0, our
aempt will fail.

Later, when we talk about paging, we will give a more detailed description of the privi-
lege levels; for now it is sufficient to note that U will use two of these levels: level 0 for
the kernel and level 3 for user mode applications (processes). We will use the following
phrases as synonyms:
• “e system runs in privilege Level 0 (Kernel)level 0”,
• “the system is in kernel mode”, and
• “the system runs in ring 0”.

Similarly for level 3, we treat
• “the system runs in privilege Level 3 (User)level 3”,
• “the system is in user mode”, and
• “the system runs in ring 3”

as equivalent statements.
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4.3.3 Segmentation in Protected Mode
e more modern implementation of segmentation does not store addresses in the seg-
ment registers, instead it works with a segment tableSegment Table and lets the segment registers point
to entries in that table. A table entry does not only specify where a segment starts but also
what length it has. If the length is not set to the maximal value (0xFFFFFFFF), it is possible
to generate a forbidden access (to an address outside the segment) which the CPU will
block, generating a fault.

When we start the OS initialization we must provide such a segment table, since it is
not possible to use Protected Mode without one: Volume 3 of the Intel (R) 64 and IA-32
Architectures Soware Developer’s Manual [Int11, p. 3-1] states:

“When operating in protectedmode, some form of segmentationmust be used.
ere is no mode bit to disable segmentation.”

Sample assembler code for seing up segmentation can be found in the same document
on p. 419 (p. 9-23).

Aer GRUB turns over control to our kernel, a segment table is in use (aer all, we’re
already running in Protected Mode), however we will discard that table and provide our
own one.

e data structure we have to create is called theGDT “global descriptor table” (GDT) and
consists of several segment descriptors.

EachSegment
Descriptor

segment descriptor is eight bytes long, and besides other values it contains a 32-bit
base address and a 20-bit limit which is le-shied by 12 bits to form a 32-bit limit. During
the shi, 1-bits are inserted on the right, thus for example 0xFFFFF (20 1-bits) becomes
0xFFFFFFFF (32 1-bits) during the shi.

Both values are spread in a weird paern across the descriptor:

• base (bits 0..23): in bytes 2, 3, 4 of the descriptor
• base (bits 24..31): in byte 7 of the descriptor
• limit (bits 0..15): in bytes 0, 1 of the descriptor
• limit (bits 16..19): lower four bits of byte 6 of the descriptor

0123456789101112131415

Base: 31–24 Gr Sz 0 0 Limit: 19–16
7..6

P DPL 1 Type A Base: 23–16
5..4

Base: 15–0
3..2

Limit: 15–0
1..0

Figure 4.2: In a segment descriptor the base and limit values are spread across the eight
bytes in a weird paern.

A descriptor contains more than just the address range (see Figure 4.2): e upper four
bits of byte 6 contain two flags (granularity and size) and two 0 bits;
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• we must set the granularity bit to 1: this causes the le-shi for the limit value; if the
bit was 0, we could declare the limit in bytes instead of multiples of 4 KByte.

• the size bit must also be set to 1, declaring this descriptor to be a 32-bit protected
mode descriptor; otherwise it would be a 16-bit descriptor which is something we
don’t need (it exists for backwards compatibility with the 80286).

us, the upper four bits of byte 6 are always 1100b.
We have now described everything except byte 5 of the descriptor which defines its

type. Its bits have the following functions:

7: present bit, must be set to 1

6/5: descriptor privilege level (DPL) DPL, must be set to 00 for ring 0 (kernel mode) or 11 (=3)
for ring 3 (user mode)

4: reserved, must contain 1

3: executable bit, we will set this to 1 in our code segment descriptor and to 0 in our data
segment descriptor

2: direction bit / conforming bit:

• for the data segment, 0 means that the segment grows upwards;
• for the code segment, 0 means that the code in this segment can only be exe-

cuted if the CPU operates in the ring that is declared in bits 6/5 (privilege level).

1: readable bit / writable bit: we always set these to 1; for a code segment it means that
we can also read from this segment, and for a data segment it means we can also
write to it.

0: accessed bit: we set this to 0; the CPU flips it to 1 when this segment is accessed.

e corresponding C datatype for a GDT entry is the following:
[91]⟨type definitions 91⟩≡ (44a) 92a ▷

struct gdt_entry {
unsigned int limit_low : 16;
unsigned int base_low : 16;
unsigned int base_middle : 8;
unsigned int access : 8;
unsigned int limit_high : 4;
unsigned int flags : 4;
unsigned int base_high : 8;

};
Defines:

gdt_entry, used in chunk 110a.
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When we tell the processor to use our table we cannot directly point it to the beginning
of the GDT (e. g. via gdtb[0]), instead we need an extra data structure which just contains
the size and the start address of the table:

[92a] ⟨type definitions 91⟩+≡ (44a) ◁ 91 100a ▷
struct gdt_ptr {

unsigned int limit : 16;
unsigned int base : 32;

} __attribute__((packed));
Defines:

gdt_ptr, used in chunk 92b.

With __attribute__((packed))we force the compiler to store the data precisely in this way,
otherwise optimizations could change the order.

[92b] ⟨global variables 92b⟩≡ (44a) 105a ▷
struct gdt_entry gdt[6];
struct gdt_ptr gp;

Defines:
gdt, used in chunks 109c, 110a, and 196a.
gp, used in chunks 110 and 608.

Note that gdtb allows us to store six segment descriptors; this is the number of descrip-
tors we will use in U—in general, many more descriptors (up to 8192) can be used.

Since we want to create segment descriptors for kernel mode (ring 0) and we need one
code and one data selector, the type bytes will be

• 10011010b for the code segment
(present; ring 0; fixed-1; executable; exact privilege level; allow reading; not accessed)

• 10010010b for the data segment
(present; ring 0; fixed-1; not executable; grow upwards; allow writing; not accessed).

0123456789101112131415

Base: 31–24 1 1 0 0 Limit: 19–16 7..6
1 0 0 1 1 0 1 0 Base: 23–16 5..4

Base: 15–0 3..2
Limit: 15–0 1..0

0123456789101112131415

Base: 31–24 1 1 0 0 Limit: 19–16 7..6
1 0 0 1 0 0 1 0 Base: 23–16 5..4

Base: 15–0 3..2
Limit: 15–0 1..0

Figure 4.3: Our descriptors for the code segment (top) and the data segment (boom) only
differ in the Type fields.
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4.3.4 Preparations for Paging
Without delving into the details of paging, we need to prepare our kernel for its us-
age right now: Later, when we turn on virtual memory, we want the kernel to use vir-
tual addresses 0xc0000000 – 0xffffffff and user mode programs to use virtual addresses
0x00000000 – 0xbfffffff. is means that we have to compile and link the kernel in such
a way that all absolute addresses (of functions and data) lie in the range above 0xc0000000.
But that’s a large number, and we do not expect to have physical memory with such high
addresses. By seing the base address in our descriptors to 0x40000000, we can load the
kernel to low addresses.

Imagine for example that the kernel calls a function which has the entry address 0xc000
1234. With the way we will set up the segments the base address 0x40000000 will be added,
resulting in

0xc0001234
+ 0x40000000
= 0x100001234

which is no longer a 32 bit address; the leading 1 will be lost in this addition, resulting in
the address 0x00001234—where we’ll physically put the code of this function.

is is called the Higher Half
Trick

“higher half trick” [Son07, Rob01] (even though we’re reserving the
upper quarter and not the upper half of the virtual memory for the kernel).

[93]⟨start.asm 87⟩+≡ ◁ 87 94 ▷
[section .setup]

trickgdt: dw gdt_end - gdt_data - 1 ; GDT size
dd gdt_data ; linear address of GDT

gdt_data: dd 0, 0 ; selector 0x00: empty entry

; code selector 0x08:
; base 0x40000000, limit 0xFFFFF, type 10011010, flags 1100
db 0x0F, 0xFF, 0, 0, 0, 10011010b, 11001111b, 0x40

; data selector 0x10:
; base 0x40000000, limit 0xFFFFF, type 10010010, flags 1100
db 0x0F, 0xFF, 0, 0, 0, 10010010b, 11001111b, 0x40

gdt_end:
Defines:

trickgdt, used in chunk 94.

Now, in order to actually do the memory initialization, we need to load the global de-
scriptor table and activate it. Again, we use code fromBran’s Kernel Development Tutorial
[Fri05]:
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[94] ⟨start.asm 87⟩+≡ ◁ 93 95a ▷
global start
[section .setup]
start: ; BEGIN higher half trick

lgdt [trickgdt]
mov ax, 0x10
mov ds, ax
mov es, ax
mov fs, ax
mov gs, ax
mov ss, ax
jmp 0x08:higherhalf ; far jump to the higher half kernel

[section .text]
higherhalf: ; END higher half trick

mov esp, _sys_stack ; set new stack
push esp ; save ESP
push ebx ; address of mboot structure (from GRUB)

extern main ; C function main() in ulix.c
call main
jmp $ ; infinite loop

Defines:
start, used in chunks 95b and 620b.

Uses _sys_stack 95a, main 44b, mboot 87, and trickgdt 93.

is code does the following things:

• It loads our descriptor table via thelgdt lgdt instruction,
• it sets the segmentation registers DS, ES, FS, GS and SS to 0x10 (thus making them point

to our data segment descriptor which has index 0x10),
• since it cannot directly write a value to the CS register, it makes a far jump. e

instruction jmp 0x08:higherhalf jumps to the address higherhalf in the segment
specified by the segment descriptor with index 0x08—and this automatically sets CS
properly.

• en it defines the stack we will use during system initialization (by loading ESP) and
finally calls the mainb() function from our C file ulix.c.

Note that most parts of the code “live” in the .setup section of the code, whereas the
last lines (starting with the higherhalf label) live in the .text section.

We will also need an additional stack, and we reserve its place in the same assembler
file. e resb instruction does just that: it reserves a certain number of bytes, in our
case  ×  for 32 KByte of stack memory. Since a stack grows from higher to lower
addresses (downwards), the label _sys_stacka follows aer the reserved bytes:
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[95a]⟨start.asm 87⟩+≡ ◁ 94 110b ▷
global stack_first_address
global stack_last_address

[section .bss]
stack_first_address:

resb 32*1024 ; reserve 32 KByte for the stack
stack_last_address:
_sys_stack:

Defines:
_sys_stack, used in chunk 94.
stack_first_address, used in chunk 604.
stack_last_address, used in chunk 604.

We use separate sections because we will tell the linker ld to use different addresses for
those sections. is can be achieved with the following linker configuration file ulix.ld.
(is linker file is a modified version of the one provided in Bran’s Kernel Development
Tutorial [Fri05]; we changed the output format to elf32-i386 and the start address to 0
and introduced an offset of 0xc0000000 for the main parts of the kernel.)

[95b]⟨ulix.ld 95b⟩≡
OUTPUT_FORMAT("elf32-i386")
ENTRY(start)
phys = 0x00100000;
virt = 0xC0000000;
SECTIONS {

. = phys;

.setup : AT(phys) { *(.setup) }

. += virt;

.text : AT(code - virt) { code = .;
*(.text)
*(.rodata*)
. = ALIGN(4096); }

.data : AT(data - virt) { data = .;
*(.data)
. = ALIGN(4096); }

.bss : AT(bss - virt) { bss = .;
*(COMMON*)
*(.bss*)
. = ALIGN(4096); }

end = .; }
Uses start 94.

e file mainly accomplishes two things:
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• it tells the linker ld to use addresses in the address range starting with 0x100000 (= 1
MByte mark) for everything that we have declared as part of the .setup section, and
it will also cause the boot manager to load the whole kernel to 0x100000.
e .setup region contains the code that runs before paging is enabled. It prepares
the segment table and switches it on.

• the line . += virt; lets the linker use modified addresses for all the other sections:
wherever an absolute address occurs in a CPU instruction, it will get 0xC0000000 added
to its original value. (Technically, it adds 0xC0000000 to the current output location
counter “.”: if the last linked instruction ended on position 0x105555, linking would
continue with address 0xc0105556.)
If this line was not followed by

.text : AT(code - virt) { code = .;

it would have the effect to generate code and data which would be loaded at addresses
beyond 0xC0000000, but the AT statement says that it shall be placed in a different
location: code is set to . which is the current location, and AT calculates code - virt
which is just the next address behind the .setup section. e consequence is that the
text section will be loaded within the second MByte of physical RAM, and—without
enabling paging—it will not be executable in that place because all addresses in the
code will have an additional offset of 0xC0000000. is must later be corrected before
jumping into that section. Our segment table does just that.

• .text is the code section, it will contain everything that gets executed (except for the
parts in .setup).

• .data and .bss contain program data structures which can be read and wrien, but
not executed. e difference between the two is that variables in data have an explicit
non-zero initialization in the code, whereas the ones in bss do not—the linker initially
sets them up with zeroes.

is means: for code in the .setup section, physical addresses are identical with the ad-
dresses used in that part of the binary. at does not hold for the rest of the kernel, where
all addresses are increased by 0xC0000000—which would normally render that part of the
code useless, but our segmentation trick with a base address of 0x40000000 makes it just
right.

e .ALIGN statements force the linker to align each section to the start of a page (or
page frame) of size 4096. You can find more information about the linker in the ld manual
[CT04].

When we inspect the linked kernel binary ulix.bin with the objdump tool, we see what
happens:

$ objdump -h ulix.bin
ulix.bin: file format elf32-i386
Sections:
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Idx Name Size VMA LMA File off Algn
0 .setup 00000049 00100000 00100000 00001000 2**0

CONTENTS, ALLOC, LOAD, READONLY, DATA
1 .text 00012fa0 c0100060 00100060 00001060 2**5

CONTENTS, ALLOC, LOAD, READONLY, CODE
2 .data 00002000 c0113000 00113000 00014000 2**5

CONTENTS, ALLOC, LOAD, DATA
3 .bss 00189000 c0115000 00115000 00016000 2**12

ALLOC
[...]

e columns VMA and LMA display the first virtual memory address and the load memory
address of each section. e first one shows what memory location the code was prepared
for, and the second one shows the absolute load address, i. e., where the boot loader will
store the section in RAM.

As we’ve already described, our code starts executing in the .setup section, where it
sets up the GDT and enables it; then it continues execution in the .text section.

4.4 Virtual Memory for the Kernel
Seing up the memory consists of creating an initial page table for the kernel: is is a
two-step procedure, we start with an identity mapping identity

mapping
: that is a page table which maps

virtual addresses 1:1 to physical addresses. e identity mapping lets us smoothly enable
paging; when the CPU fetches the instruction which follows immediately aer the en-
abling instruction, that memory access uses the memory management unit (MMU) and
the translation information in the page table, whereas all earlier instructions accessed the
memory (almost) directly.

[97]⟨setup memory 97⟩≡ (44b)
⟨setup identity mapping for kernel 108⟩
⟨enable paging for the kernel 109a⟩
⟨install flat gdt 110a⟩

We will discuss the details in this section.
Since we implement U-i386 for Intel chips, we need to have a look at the Intel archi-

tecture which uses a two-layer design (see Figure 4.4).
When paging is active, the CPU register CR3 (control

register 3)
CR3 (control register 3) points to a page di-

rectory which is a collection of 1024 page directory entries. Each of those entries is four
bytes large, so the whole page directory has a size of 4 KByte (one page).

Each page directory entry points to a page table (its address is given via bits 31..12).
Page tables have the same size as page directories (4 KByte), and they also hold 1024

entries, the page table entries. Such an entry points to a frame (again using bits 31..12).
We will look at these data structures in detail in the following sections. While—as an

OS designer—you are free to implement many things in any way you can conceive, the
Intel processor expects page directories and page tables to have a well-defined form that
cannot be changed.
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CR3 (PDBR)

CPU

page directory

physical 
memory

   p1        p2            d 

    k                 d 

linear address

physical address

d

page table

PD Entry

PT Entry k

31      22  21      12  11         0

Figure 4.4: e Intel x86 Architecture uses a two-layered page table; the first layer is called
“page directory”, the second one “page table”.

4.4.1 Page Descriptors and Page Table Descriptors in U
We now define the structures page_desca and page_table_desc for page (table) descrip-
tors. ey use the layout that is required by the Intel CPU. Recall that it expects that the
page table tree has exactly two levels. Descriptors at level 2 are either null descriptors or
page descriptors. Descriptors at level 1 are either null descriptors or page table descriptors.

Intel uses a different vocabulary: In the Intel terminology,

• a page descriptor is a page table entrypage table entry (PTE; within a page table), and
• a page table descriptor is a page directory entrypage directory

entry
(PDE; in a page directory).

Each entry (for both page tables and page directories) is four bytes long; a page table or
page directory contains 1024 such entries, filling exactly one page (of size 4 KByte).

A virtual address is always split in three parts: the page table number (bits 31–22), the
page number (21–12) and the offset (11–0), see Figure 4.5.

012345678910111213141516171819202122232425262728293031

page table page offset

Figure 4.5: Virtual addresses consist of three parts: a 10 bit index into the page directory,
10 further bits as entry into a page table and 12 bits as offset.

Page table number and page number are Intel’s specific terms for the general concept
of split page table numbers where each portion corresponds to some level of page tables.
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e system must associate a page directory with each process, the start address of the
page directory must be stored in the process descriptor base register PDBR (in CR3)(PDBR), the upper 20
bits of control register 3 (CR3).

20 bits are sufficient to store an address because pages are page-size-aligned, i. e., they
all start at addresses with zeroes in the lower 12 bits. (A page has size 4 KByte =  bytes,
which is why the offset length is 12.)

4.4.1.1 Page Table Entries

e upper 20 bits of a page descriptor contain the upper bits of a frame address (in RAM);
the remaining bits of that address are zeroes for the same alignment reason as already
described above: In RAM, no frame starts at an “odd” address which is not a multiple of
the page size. us the frame address can easily be extracted from the page descriptor by
seing the lower 12 bits to zero, if we treat the whole page descriptor as a 32-bit integer
(which can be achieved with a cast operation in C, see also Exercise 13 on page 126):

[99]⟨get frame address from page descriptor’s integer representation 99⟩≡
frame_address = page_descriptor & 0xFFFFF000;
// F (hex) = 1111 (bin); 0 (hex) = 0000 (bin)

e remaining bits in the page descriptor are either unused and can be used by the
operating system for its own purposes (bits 9–11) or store aributes of this page descriptor
(see Figure 4.6):

• Bits 8 and 7 must always be 0.
• Bit 6 holds the Dirty (D) flag.
• Bit 5 holds the Accessed (A) flag. It is automatically set by the MMU when this page

is accessed.
• Bit 4 is called Page Cache Disabled (PCD) – if set, data from this page must not be

cached.
• Bit 3 is called Page Write Transparent (PWT), we will ignore this one and always set

it to 0.
• Bit 2 holds the User Accessible (U) flag.
• Bit 1 holds the Writeable (W) flag.
• Bit 0 holds the Present (P) flag.

0123456789111231

page base address unused 0 D A
P
C
D

P
W
T

U W P

Figure 4.6: A page descriptor stores the upper 20 bits of the frame address and administra-
tive data.
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We can now describe the page descriptor in C:
[100a] ⟨type definitions 91⟩+≡ (44a) ◁ 92a 101b ▷

typedef struct {
unsigned int present : 1; // 0
unsigned int writeable : 1; // 1
unsigned int user_accessible : 1; // 2
unsigned int pwt : 1; // 3
unsigned int pcd : 1; // 4
unsigned int accessed : 1; // 5
unsigned int dirty : 1; // 6
unsigned int zeroes : 2; // 8.. 7
unsigned int unused_bits : 3; // 11.. 9
unsigned int frame_addr : 20; // 31..12

} page_desc;
Defines:

page_desc, used in chunks 72, 100, 101b, and 295b.

We repeat the code for calculating the physical address from this page descriptor, but
now in a proper function that we can use later:

[100b] ⟨function implementations 100b⟩≡ (44a) 100c ▷
memaddress page_desc_2_frame_address (page_desc pd) {

// pointer magic/cast: a page descriptor is not really an unsigned
// int, but we want to treat it as one
memaddress address = *(memaddress*)(&pd);
return address & 0xFFFFF000; // set lowest 12 bits to zero

}
Uses memaddress 46c and page_desc 100a.

(is uses the casting trick we mentioned above: First we take the address of the page de-
scriptor pd with the & operator, then we cast this pointer to a page descriptor to a pointer
to a 32-bit integer with (memaddressc*), and last we access the value with the * opera-
tor. Note that it is not possible to directly cast the page descriptor to an integer with a
command like address = (memaddress)pd;—that is forbidden in the C language.)

e following function fills a page descriptor with values; its address must be provided
(the space must be reserved by the caller). We provide the descriptor’s address as the first
argument via a pointer; the other arguments are the present, writeable, user accessible
and dirty bits and—most important—the physical frame address:

[100c] ⟨function implementations 100b⟩+≡ (44a) ◁ 100b 103a ▷
page_desc *fill_page_desc (page_desc *pd, unsigned int present,

unsigned int writeable, unsigned int user_accessible,
unsigned int dirty, memaddress frame_addr) {

memset (pd, 0, sizeof (page_desc)); // first fill the four bytes with zeros

pd->present = present; // then enter the argument values in
pd->writeable = writeable; // the proper struct members
pd->user_accessible = user_accessible;
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pd->dirty = dirty;
pd->frame_addr = frame_addr >> 12; // right shift, discard lower 12 bits
return pd;

};
Defines:

fill_page_desc, used in chunks 101a, 111b, and 123b.
Uses memaddress 46c, memset 596c, and page_desc 100a.

We have used the right shi operator >> in this function which takes the 32 bits from
the memaddress variable frame_addr, right shis them and fills the hole on the le side with
zeroes. e function assumes that we always call it with a proper, page-size-aligned frame
address frame_addr since its lower twelve bits will be discarded (they should have been zero
to start with).

We provide twomacros for quickly calling fill_page_descc with standard values, both
for kernel memory and user mode memory:

[101a]⟨macro definitions 35a⟩+≡ (44a) ◁ 46d 103c ▷
#define KMAP(pd,frame) fill_page_desc (pd, true, true, false, false, frame)
#define UMAP(pd,frame) fill_page_desc (pd, true, true, true, false, frame)

Defines:
KMAP, used in chunks 106a, 111b, 115c, 121b, and 165b.
UMAP, used in chunk 165b.

Uses fill_page_desc 100c.

Both macros set the present and writeable bits to 1, they set the dirty bit to 0, and they
supply the frame address; the difference is that KMAPa sets the user accessible bit to 0
(making the page inaccessible to user mode code), whereas UMAPa sets it to 1.

A page table contains 1024 page descriptors:
[101b]⟨type definitions 91⟩+≡ (44a) ◁ 100a 102 ▷

typedef struct {
page_desc pds[1024];

} page_table;
Defines:

page_table, used in chunks 105a, 111a, 115a, 116e, 121–23, 165b, 166a, 169a, 171c, 211, 296, 297, 307a,
and 308c.

Uses page_desc 100a.

We make this a struct so that we can easily create a pointer to such a page table.

4.4.1.2 Page Directory Entries

A page table descriptor or page directory entry looks similar to a page table entry: it has
the same size and shares many common fields with the other one.

e upper 20 bits contain—again—the upper bits of a frame address (in RAM), the same
alignment argument allows us to leave out the lowest 12 bits of the address.

e remaining bits in the page descriptor are either unused and can be used by the
operating system for its own purposes (bits 9–11) or store aributes of this page descriptor:

• Bits 8 and 7 must always be 0. (Actually if bit 7 is set, this declares that the page
described by this entry is a 4 MByte, not 4 KByte, page. We will not discuss 4 MByte
pages.)
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• Bit 6 is undocumented, we will always set it to 0.

e remaining fields are identical to those of a page table entry:

• Bit 5 holds the Accessed (A) flag.
• Bit 4 is called Page Cache Disabled (PCD) – if set, data from all pages belonging to this

page table must not be cached.
• Bit 3 is called Page Write Transparent (PWT), we will ignore this one and always set

it to 0.
• Bits 2, 1 and 0 hold the User Accessible (U), Writeable (W) and Present (P) flags.

e PCD, U, W and P flags enforce these properties for all pages that belong to this page
table. Figure 4.7 shows the layout of the descriptor which is almost identical to that of the
page descriptor, except for the missing Dirty flag.

0123456789111231

page table base address unused 0 A
P
C
D

P
W
T

U W P

Figure 4.7: A page table descriptor stores the upper 20 bits of the physical address of the
page table it points to and administrative data.

e C structure which describes page table descriptors only differs from the page de-
scriptor structure page_desca by replacing the dirty field with an undocumented field:

[102] ⟨type definitions 91⟩+≡ (44a) ◁ 101b 103d ▷
typedef struct {

unsigned int present : 1; // 0
unsigned int writeable : 1; // 1
unsigned int user_accessible : 1; // 2
unsigned int pwt : 1; // 3
unsigned int pcd : 1; // 4
unsigned int accessed : 1; // 5
unsigned int undocumented : 1; // 6
unsigned int zeroes : 2; // 8.. 7
unsigned int unused_bits : 3; // 11.. 9
unsigned int frame_addr : 20; // 31..12

} page_table_desc;
Defines:

page_table_desc, used in chunk 103.

For extracting the frame address from a page table descriptor we rewrite the function
page_desc_2_frame_addressb by simply using the new page_table_desc structure in-
stead of page_desca:
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[103a]⟨function implementations 100b⟩+≡ (44a) ◁ 100c 103b ▷
memaddress page_table_desc_2_frame_address (page_table_desc ptd) {

memaddress address = *(memaddress*)(&ptd);
return address & 0xFFFFF000;

}
Uses memaddress 46c and page_table_desc 102.

and we also duplicate fill_page_descc() as fill_page_table_descb(). Note that the
function has one argument less since the dirty aribute does not exist in page table de-
scriptors:

[103b]⟨function implementations 100b⟩+≡ (44a) ◁ 103a 109c ▷
page_table_desc *fill_page_table_desc (page_table_desc *ptd, unsigned int present,

unsigned int writeable, unsigned int user_accessible,
memaddress frame_addr) {

memset (ptd, 0, sizeof (page_table_desc)); // fill the four bytes with zeros

ptd->present = present; // then enter the argument values
ptd->writeable = writeable;
ptd->user_accessible = user_accessible;
ptd->frame_addr = frame_addr >> 12; // right shift, 12 bits
return ptd;

};
Defines:

fill_page_table_desc, used in chunks 103c, 105b, 108, and 116b.
Uses memaddress 46c, memset 596c, and page_table_desc 102.

Just as we did for the page tables, we provide macros KMAPDc and UMAPDc which let
us call fill_page_table_descb with standard values:

[103c]⟨macro definitions 35a⟩+≡ (44a) ◁ 101a 113a ▷
#define UMAPD(ptd, frame) fill_page_table_desc (ptd, true, true, true, frame)
#define KMAPD(ptd, frame) fill_page_table_desc (ptd, true, true, false, frame)

Defines:
KMAPD, used in chunks 105b, 108, 111b, 115d, 122, and 211a.
UMAPD, used in chunk 166a.

Uses fill_page_table_desc 103b.

Inmost cases wewill use the UMAPa, KMAPa, UMAPDc and KMAPDc macros for modifying
descriptors.

A page directory contains 1024 page table descriptors:
[103d]⟨type definitions 91⟩+≡ (44a) ◁ 102 137a ▷

typedef struct {
page_table_desc ptds[1024];

} page_directory;
Defines:

page_directory, used in chunks 105a, 122c, 164a, 165b, 167c, 169a, 171c, 211, 296, 297, 307a, and 308c.
Uses page_table_desc 102.
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4.4.2 Identity Mapping the Kernel Memory
We will now use a trick that allows a smooth transition from non-paging mode to paging
mode: identity mapping creates a page directory for the kernel that maps the first vir-
tual addresses to identical hardware addresses. When we later switch on paging, nothing
changes for the kernel, because the MMU will be set up to use a page table that translates
virtual addresses to the same addresses we’ve used before. is will also demonstrate why
we’ve set up the segment tables with 0x40000000 offsets earlier.

4.4.2.1 First Aempt at a Kernel Layout

We now present a first and intuitive approach to placing the kernel in memory—both real
memory and virtual memory; we will soon see that this approach is not the best possible
choice and use a different layout.

Here are some general considerations that will lead us in the following steps:

• When the machine starts it must load the kernel into RAM. At that time paging is
not yet enabled, so when the computer begins executing our kernel it uses physical
memory addresses.

• Since we cannot know how much physical memory will be installed in a machine, it
makes sense to place the kernel in some area with low memory addresses, such as the
first megabyte of RAM.

• At some point in time during initialization of the operating system we will enable
paging. However, code execution must logically continue at the next instruction and
must not become confused by the fact that addresses are now translated by the MMU.

e easiest thing to do is compiling and linking the kernel with addresses starting at 0x0.
If we assume that the kernel (and its stack) fit in 1 MByte of memory, we can reserve this
physical memory area (0x0000.0000–0x000F.FFFF). e instruction that is going to enable
paging will be siing somewhere in this area, so we have to make sure that aer paging is
turned on, the instruction pointer will point to the instruction that follows immediately.

We need to identify the virtual addresses 0x0000.0000 to 0x000F.FFFF with the same
physical addresses. is amounts to 256 page table entries; they all fit in one page ta-
ble (kernel_pta), and the page directory (kernel_pda) will have exactly one non-null
entry pointing to that one page table.

is way, when the kernel has enabled paging, the first megabyte of virtual addresses
will be in use (and reserved for the kernel), whereas the rest will have null pointers in the
page directory and the page tables. So when we later talk about processes and threads,
we can create processes which use virtual memory addresses starting at (virtual) address
0x00100000 (just aer the first MByte), and those processes will have the first  addresses
unmapped. at way, when the process makes a syscall, we can modify the page tables
so that the kernel’s address space is added—then all addresses (0x00000000 – 0x000FFFFF:
kernel; 0x00100000 and above: process) will be available so that data can be copied between
process and kernel memory (see Figure 4.8).
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Virtual addresses Physical memory

identity mapping

kernel kernel0

4 GB

0

pro-
cess

1 MB 1 MB

Figure 4.8: Identity mapping, first aempt: We identify the first MByte of virtual memory
with the first MByte of physical RAM.

Let’s start by declaring the necessary global variables:
[105a]⟨global variables 92b⟩+≡ (44a) ◁ 92b 106b ▷

page_directory kernel_pd __attribute__ ((aligned (4096)));
page_table kernel_pt __attribute__ ((aligned (4096)));

// prefer to work with pointers
page_directory *current_pd = &kernel_pd;
page_table *current_pt = &kernel_pt;

Defines:
current_pd, used in chunks 105b, 108, 109a, 111b, 115, 116, 121–23, 170c, 279c, 603, and 611b.
current_pt, used in chunks 106a, 108, and 603.
kernel_pd, used in chunks 105b, 106c, 108, 162e, 164b, and 604b.
kernel_pt, used in chunks 105b, 108, and 604b.

Uses page_directory 103d and page_table 101b.

We need to declare these with __attribute__ ((aligned (4096))) so that the C compiler
aligns them properly in pages.

[105b]⟨setup identity mapping for kernel 1st aempt 105b⟩≡
for (int i = 0; i < 1024; i++) {

fill_page_table_desc (&current_pd->ptds[i], false, false, false, 0);
};

// make page table kernel_pt first entry of page directory kernel_pd
KMAPD ( &(kernel_pd.ptds[0]), (memaddress)(&kernel_pt) );
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for (int i = 0; i < 1024; i++) { // map 1024 pages (4 MB)
⟨identity map page i in kernel_pt 106a⟩

};
Uses current_pd 105a, fill_page_table_desc 103b, kernel_pd 105a, kernel_pt 105a, KMAPD 103c,

and memaddress 46c.

In order to identity-map page i in kernel_pta we need to fill the i th entry. Page frame
i starts at physical address i× PAGE_SIZE:

[106a] ⟨identity map page i in kernel_pt 106a⟩≡ (105b 108)
KMAP ( &(current_pt->pds[i]), i*4096 );

Uses current_pt 105a and KMAP 101a.

Finally, we have to enable paging in the CPU. at can be achieved by making some
changes to the control registers CR0 and CR3 as follows:

• Control register 3 (CR3) must contain the address of the page directory (kernel_pda),
• in control register 0CR0 (Control

Register 0)
(CR0) we must set the PG (paging) bit which is bit 31. Seing this

single bit is done by calculating cr0 = cr0 | (1<<31).

[106b] ⟨global variables 92b⟩+≡ (44a) ◁ 105a 111a ▷
char *kernel_pd_address; // address of kernel page directory

Defines:
kernel_pd_address, used in chunks 106c and 109a.

[106c] ⟨enable paging for the kernel 1st aempt 106c⟩≡
kernel_pd_address = (char*)(&kernel_pd);
asm volatile ("mov %0, %%cr3" : : "r"(kernel_pd_address)); // write CR3
uint cr0; asm volatile ("mov %%cr0, %0" : "=r"(cr0) : ); // read CR0
cr0 |= (1<<31); // Enable paging by setting PG bit 31 of CR0
asm volatile ("mov %0, %%cr0" : : "r"(cr0) ); // write CR0

Uses kernel_pd 105a and kernel_pd_address 106b.

We call this code block ⟨enable paging for the kernel 1st aempt 106c⟩ because we’re not
done yet; with the higher half trick, &kernel_pda will not be a physical address and won’t
fit the base values in our segment descriptors.

4.4.2.2 Second Aempt at a Kernel Layout

For several reasons (which we will not dig into), legacy properties of Intel machines sug-
gest to keep the first megabyte of RAM unused. So we will physically store the kernel
in the second MByte. However, once paging is turned on, the kernel’s addresses shall
be found in the last of the four gigabytes (starting at 0xc0000000), as we’ve shown at this
chapter’s beginning (see Figure 4.1 on page 88). We want processes to use the first three
gigabytes and the kernel to reside in the last of the four available gigabytes of virtual mem-
ory. Figure 4.9 shows the necessary mapping of virtual addresses to physical addresses.

is is not an identity mapping, so when we start the system we run into a problem:
We could link the kernel twice und also physically load it twice, into the physical ranges
[ 1 MB, 2 MB [ and [ 3 GB + 1 MB, 3 GB + 2 MB [—but that would require our physical
memory to be big enough.
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Figure 4.9: Second mapping aempt: Kernel starts at 3 GB + 1 MB (virtual) or 1 MB
(physical).
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e solution is to work with a double mapping, as can be seen in Figure 4.10 (during
initialization).

So we do the following:

1. Load the kernel to physical addresses [ 1 MB, 2 MB [ (0x100000 – 0x1FFFFF).
2. Do the Higher Half Trick (see page 93): Enable the trick GDT with base address

0x40000000 and jump to the higher half.
3. Setup an identity mapping from [ 1 MB, 2 MB [ (virtual) to [ 1 MB, 2 MB [ (physi-

cal). Actually, we’ll map the whole first 4 megabytes, since one page table describes
4 MByte of virtual memory.

4. Additionally set up a mapping from [ 3 GB + 1 MB, 3 GB + 2 MB [ (0xC0100000 – 0xC01F
FFFF; virtual) to [ 1 MB, 2 MB [ (physical) – the corresponding page table has the same
contents as the first one, it just gets pointed to from a different page directory entry.
Again, we’ll map a whole 4 MByte block, [ 3 GB, 3 GB + 4 MB [ to [ 0, 4 MB [.

5. Activate paging.
6. Install a new “flat” GDT with base address 0x0.
7. Get rid of the initial mapping for [ 0, 4 MB [ (virtual).

Aer that the kernel sees virtual addresses starting at 3 GByte (0xC0000000) only, and
things work perfectly with the linker configuration we’ve discussed on page 95.

Now we have to modify the setup of the identity mapping:
[108] ⟨setup identity mapping for kernel 108⟩≡ (97)

// file page directory with null entries
for (int i = 0; i < 1024; i++) {

fill_page_table_desc (&(current_pd->ptds[i]), false, false, false, 0);
};

// make page table kernel_pt the first entry of page directory kernel_pd
// maps: 0x00000000..0x003FFFFF -> 0x00000000..0x003FFFFF (4 MB)
KMAPD ( &(current_pd->ptds[ 0]), (memaddress)(current_pt)-0xC0000000 );

// make page table kernel_pt also the 768th entry of page directory kernel_pd
// maps: 0xC0000000..0xC03FFFFF -> 0x00000000..0x003FFFFF (4 MB)
KMAPD ( &(current_pd->ptds[768]), (memaddress)(current_pt)-0xC0000000 );

// map 1023 pages (4 MB minus 1 page)
for (int i = 0; i < 1023; i++) {
⟨identity map page i in kernel_pt 106a⟩

};

kputs ("Kernel page directory set up.\n");
Uses current_pd 105a, current_pt 105a, fill_page_table_desc 103b, kernel_pd 105a, kernel_pt 105a, KMAPD 103c,

kputs 335b, and memaddress 46c.

Note that we’re leaving one entry free (mapping only 1023 pages)—we’ll later need this
one to create the next page table.
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en we can load the process descriptor base register (PDBR, part of CR3) and modify CR0
so that the CPU switches to paging mode—the following code is almost the same as the
one in ⟨enable paging for the kernel 1st aempt 106c⟩, but it calculates the physical address
of the page directory by subtracting 0xC0000000:

[109a]⟨enable paging for the kernel 109a⟩≡ (97) 162e ▷
kernel_pd_address = (char*)(current_pd) - 0xC0000000;
asm volatile ("mov %0, %%cr3" : : "r"(kernel_pd_address) ); // write CR3
uint cr0; asm volatile ("mov %%cr0, %0" : "=r"(cr0) : ); // read CR0
cr0 |= (1<<31); // Enable paging by setting PG bit 31 of CR0
asm volatile ("mov %0, %%cr0" : : "r"(cr0) ); // write CR0

Uses current_pd 105a and kernel_pd_address 106b.

Aer paging is enabled we first update the GDT (and make it flat), then we can get rid
of the identity mapping which works with low addresses.

4.4.3 Installing the “Flat” GDT
One of the last steps is installing the “flat” GDT: it looks like our trick GDT, but uses a base
address of 0x0 instead of 0x40000000. We’re already executing C code, so we’ll provide a C
function for loading the GDT¹:

[109b]⟨function prototypes 45a⟩+≡ (44a) ◁ 45a 116d ▷
void fill_gdt_entry (int num, ulong base, ulong limit, byte access, byte gran);
extern void gdt_flush ();

[109c]⟨function implementations 100b⟩+≡ (44a) ◁ 103b 113b ▷
void fill_gdt_entry (int num, ulong base, ulong limit, byte access, byte gran) {

// base address; split in three parts
gdt[num].base_low = (base & 0xFFFF); // 16 bits
gdt[num].base_middle = (base >> 16) & 0xFF; // 8 bits
gdt[num].base_high = (base >> 24) & 0xFF; // 8 bits

// limit address; split in two parts
gdt[num].limit_low = (limit & 0xFFFF); // 16 bits
gdt[num].limit_high = (limit >> 16) & 0x0F; // 4 bits

// granularity and access flags
gdt[num].flags = gran & 0xF;
gdt[num].access = access;

}
Defines:

fill_gdt_entry, used in chunks 110a, 194a, and 197a.
Uses gdt 92b and ulong 46b.

e following code shows how the first three GDT entries are created, however, we
will later introduce three further entries which we need for user mode processes—you
can ignore that for now, but that is the reason why we reserve space for six GDT entries

¹ e functions in this section are—again—based on code from Bran’s Kernel Development Tutorial [Fri05].
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(instead of three) and we include the code chunk ⟨install GDTs for User Mode 194a⟩ and
function calls to gdt_flushb and tss_flushc, the laer of which will be explained when
we discuss processes.

[110a] ⟨install flat gdt 110a⟩≡ (97)
// We'll have six GDT entries; only three are defined now
gp.limit = (sizeof (struct gdt_entry) * 6) - 1; // must be -1
gp.base = (int) &gdt;

fill_gdt_entry (0, 0, 0, 0, 0); // null descriptor

// code segment: base = 0, limit = 0xFFFFF
fill_gdt_entry (1, 0, 0xFFFFF, 0b10011010, 0b1100);

// data segment: base = 0, limit = 0xFFFFF
fill_gdt_entry (2, 0, 0xFFFFF, 0b10010010, 0b1100);

⟨install GDTs for User Mode 194a⟩ // explained later
gdt_flush (); // Notify the CPU of changes
tss_flush (); // explained later

Uses fill_gdt_entry 109c, gdt 92b, gdt_entry 91, gdt_flush 110b, gp 92b, and tss_flush 197c.

(We’ve declared gpb and gdtb on page 92 aer defining the C data structures for the
GDT.) e function gdt_flushb resides in the assembler file; it uses the lgdtlgdt instruction
to load the new segment descriptors, sets all segment registers except CS to 0x10 and then
makes a far jump for seing CS as well (to 0x08).

[110b] ⟨start.asm 87⟩+≡ ◁ 95a 144 ▷
[section .text]

extern gp ; defined in the C file
global gdt_flush

gdt_flush: lgdt [gp]
mov ax, 0x10
mov ds, ax
mov es, ax
mov fs, ax
mov gs, ax
mov ss, ax
jmp 0x08:flush2

flush2: ret
Defines:

gdt_flush, used in chunks 110a, 111b, and 116b.
Uses gp 92b.

If you compare this code with the code for the higher half trick (see page 93), you will see
that it basically does the same and just uses a different address in the lgdt instruction.

Effectively, the flat GDT sort of disables segmentation: the segmentation unit maps
logical addresses to identical linear addresses (which are then translated into physical
addresses by the paging unit).
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4.4.4 Accessing the Video RAM
We need to access the video adapter’s text mode framebuffer which is mapped into the
physical address space starting at 0xB8000 (and takes up 4 KByte ofmemory). Sowe provide
a mapping for this memory as well:

[111a]⟨global variables 92b⟩+≡ (44a) ◁ 106b 112b ▷
page_table video_pt __attribute__ ((aligned (4096))); // must be aligned!

Defines:
video_pt, used in chunk 111b.

Uses page_table 101b.

We create a new page table (initialized with null entries) and from there we only create
a mapping of 4 KByte (starting at 0xB8000).

[111b]⟨initialize system 45b⟩+≡ (44b) ◁ 45b 112d ▷
for (int i = 0; i < 1024; i++) {

// null entries:
fill_page_desc ( &(video_pt.pds[i]), false,false,false,false,0 );

};

KMAP ( &(video_pt.pds[0xB8]), 0xB8*4096 ); // one page of video RAM

// enter new table in page directory
KMAPD ( &(current_pd->ptds[0]), (memaddress) (&video_pt) - 0xC0000000 );

gdt_flush ();
Uses current_pd 105a, fill_page_desc 100c, gdt_flush 110b, KMAP 101a, KMAPD 103c, memaddress 46c,

and video_pt 111a.

4.5 Physical Memory: Page Frames in U
e physical memory consists of page frames, some of which are already in use. When
we dynamically assign frames to pages (i. e., change some page table), we need to know
which frames are free and which are in use. For that purpose we use a bitmap (that we
will call the frame table frame table) which holds the current usage state of every frame. Since we
have just set up the initial memory usage, we know exactly what our memory looks like
at this point in time, so now is a good time to create and initialize that bitmap.

We assume that our system has 64MByte of physical RAM.e size of the frame table de-
pends on the size of the available physical memory which we define to contain MEM_SIZEc
many addresses. Dividing this by the PAGE_SIZEa gives us the number of page frames.
is of course assumes that MEM_SIZEc is larger than PAGE_SIZEa and both values are
powers of two.

[111c]⟨public constants 46a⟩+≡ (44a 48a) ◁ 46a 180a ▷
#define MEM_SIZE 1024*1024*64 // 64 MByte

Defines:
MEM_SIZE, used in chunks 112a and 499a.



112 4 Boot Process and Memory Management in U

[112a] ⟨constants 112a⟩≡ (44a) 132 ▷
#define MAX_ADDRESS MEM_SIZE-1 // last valid physical address
#define PAGE_SIZE 4096 // Intel: 4K pages
#define NUMBER_OF_FRAMES (MEM_SIZE/PAGE_SIZE)

Defines:
NUMBER_OF_FRAMES, used in chunks 112, 115b, 118c, and 613c.
PAGE_SIZE, used in chunks 113b, 115c, 121b, 122a, 163–65, 167, 169b, 172a, 173a, 209b, 211b, 257, 261, 289c,

291, 293d, 294, and 298a.
Uses MEM_SIZE 111c.

e usage of main memory is directly reflected in the amount of frames which are not
free. We will try to keep track of the number of free frames throughout the lifetime of the
system in a global variable free_framesb.

[112b] ⟨global variables 92b⟩+≡ (44a) ◁ 111a 112c ▷
unsigned int free_frames = NUMBER_OF_FRAMES;

Defines:
free_frames, used in chunks 112e, 119, 123c, 310a, 311b, 342b, 513e, 604b, and 613c.

Uses NUMBER_OF_FRAMES 112a.

So NUMBER_OF_FRAMESa is the number of bits we need to store in the frame table. Since
a byte holds eight bits, we need a structure that is NUMBER_OF_FRAMESa/8 bytes large:

[112c] ⟨global variables 92b⟩+≡ (44a) ◁ 112b 115a ▷
char place_for_ftable[NUMBER_OF_FRAMES/8];
unsigned int *ftable = (unsigned int*)(&place_for_ftable);

Defines:
ftable, used in chunks 112–14 and 603.
place_for_ftable, used in chunk 603.

Uses NUMBER_OF_FRAMES 112a.

[112d] ⟨initialize system 45b⟩+≡ (44b) ◁ 111b 112e ▷
memset (ftable, 0, NUMBER_OF_FRAMES/8); // all frames are free

Uses ftable 112c, memset 596c, and NUMBER_OF_FRAMES 112a.

Nowwe need to tell the frame table that some of our frames are already in use: We have
two mappings for the first 4 MByte of physical RAM (even though we don’t use the first
MByte at all). So we declare the first 4 MByte as used. 4 MByte contain 1024 pages, thus
the first 1024 frames must be marked used. 1024/8 = 128; we set the first 128 bytes to 0xff
= 11111111b. We also subtract the frames in these 4 MByte from free_framesb:

[112e] ⟨initialize system 45b⟩+≡ (44b) ◁ 112d 115b ▷
memset (ftable, 0xff, 128);
free_frames -= 1024;

Uses free_frames 112b, ftable 112c, and memset 596c.

4.5.1 Bitwise Manipulation
We want to be able to set and clear single entries in our frame table, so we have to access
single bits: read them, write them and test them.

We can think of a frame number as consisting of
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• an upper part that is an index into the frame table (which is built from 32-bit unsigned
ints). Every such unsigned int stores 32 bits.

• and a lower part that is an offset whose value can lie between 0 and 31, giving a
precise position within one such indexed unsigned int.

So we get frameno = 32 × index + offset, like this:

frameno = . . . i i i i i o o o o o

When we divide a frame number by 32, we find the unsigned int which stores the bit
we’re searching for. e modulo function gives us the offset:²

[113a]⟨macro definitions 35a⟩+≡ (44a) ◁ 103c 116a ▷
#define INDEX_FROM_BIT(b) (b/32) // 32 bits in an unsigned int
#define OFFSET_FROM_BIT(b) (b%32)

Defines:
INDEX_FROM_BIT, used in chunks 113b and 114a.
OFFSET_FROM_BIT, used in chunks 113b and 114a.

e following two functions allow us to set or clear individual bits in the frame table:
[113b]⟨function implementations 100b⟩+≡ (44a) ◁ 109c 114a ▷

static void set_frame (memaddress frame_addr) {
unsigned int frame = frame_addr / PAGE_SIZE;
unsigned int index = INDEX_FROM_BIT (frame);
unsigned int offset = OFFSET_FROM_BIT (frame);
ftable[index] |= (1 << offset);

}

static void clear_frame (memaddress frame_addr) {
unsigned int frame = frame_addr / PAGE_SIZE;
unsigned int index = INDEX_FROM_BIT (frame);
unsigned int offset = OFFSET_FROM_BIT (frame);
ftable[index] &= ~(1 << offset);

}
Defines:

clear_frame, used in chunk 119b.
set_frame, used in chunk 119a.

Uses ftable 112c, INDEX_FROM_BIT 113a, memaddress 46c, OFFSET_FROM_BIT 113a, and PAGE_SIZE 112a.

Note how individual bits are set or cleared:

• |= and &= work in a similar way as += for addition, however they perform “bitwise or”
and “bitwise and”, respectively. So x|=y is short for x=x|y and x&=y is short for x=x&y.

• In the set_frameb function, 1 << offset uses le shi to create a value whose offset’s
bit is set (and all others are not), e. g. 1 << 3 is 00000000000000000000000000001000 (in
binary notation).

² emacros INDEX_FROM_BITa and OFFSET_FROM_BITa and the functions set_frameb, clear_frameb, and
test_framea have been taken from http://www.jamesmolloy.co.uk/tutorial_html/.-Paging.html, they
were slightly modified and adapted to U.

http://www.jamesmolloy.co.uk/tutorial_html/6.-Paging.html
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• Next the corresponding unsigned int is “bitwise-or”ed with this value. at means:
all bits which were already 1, remain 1; and the offset’s bit is being set (whatever its
value was before).

• In a similar way the clear_frameb function can clear a bit. It also starts with a shi
operation, but the result goes through bitwise negation (~) which flips all bits. For
example, ~(1 << 3) is 11111111111111111111111111110111b. So there is exactly one 0 bit
in there with all other bits being 1.

• en the corresponding unsigned int is ‘bitwise-and”ed with this value. at means:
all bits which were already 0, remain 0; and the offset’s bit is being cleared (whatever
its value was before).

What remains is a function that can test a bit. It returns true (1) or false (0):
[114a] ⟨function implementations 100b⟩+≡ (44a) ◁ 113b 116e ▷

static boolean test_frame (unsigned int frame) {
// returns true if frame is in use (false if frame is free)
unsigned int index = INDEX_FROM_BIT (frame);
unsigned int offset = OFFSET_FROM_BIT (frame);
return ((ftable[index] & (1 << offset)) >> offset);

}
Defines:

test_frame, used in chunks 114b, 118c, 119b, and 613c.
Uses ftable 112c, INDEX_FROM_BIT 113a, and OFFSET_FROM_BIT 113a.

A result of 0 means that a frame is available, whereas 1 means that the frame is already
in use—which corresponds to the way we have already initialized a part of the frame table.

e function uses le and right shis in order to always return either 0 or 1. If you
never do any comparisons with 1, but only call the function in if statements such as

[114b] ⟨example call of test_frame 114b⟩≡
if ( test_frame (frameno) ) {

// result non-0 (true); frame is not available
} else {

// result 0 (false); frame is available
}

then you can skip the right shi at the end of the line and make the calculation a bit faster.

4.5.2 Direct Access to the Physical RAM
So far we haven’t encountered any conceptual problems, but consider this: e informa-
tion stored in the page directories, page tables and in the frame table refers to physical
memory. But the kernel has activated paging, and even though it runs with the most
privileges any code on the machine can get, it cannot directly access physical memory.
Yet it has to modify or create new page tables and it has to update the frame table. So
the kernel needs to have an understanding of what is going on in the physical memory,
without accessing it.
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If physical memory is very small in comparison to the virtual address space, it is pos-
sible to permanently map all of the RAM into some area of the kernel’s virtual address
space. For our code we assume that the machine has only 64 MByte of RAM—compared
to the 4 GByte address space that is not much. We can spare 64 MByte of the virtual ker-
nel memory and sponsor a mapping to this physical RAM. We will put this in the area
0xD0000000 …0xD3FFFFFF, so that any physical address x can be accessed via the virtual ad-
dress x + 0xD0000000. However, there’s a cost: the corresponding page table entries will
require some room: 64 MByte = 16384 pages, so we will need 16384 page table entries
each of which uses 4 bytes. us, it requires 16 pages (64 KByte) to store the extra page
tables. Where can we put these tables? To simplify things we’ll declare yet more static
variables which hold our 16 tables:

[115a]⟨global variables 92b⟩+≡ (44a) ◁ 112c 138a ▷
page_table kernel_pt_ram[16] __attribute__ ((aligned (4096)));

Defines:
kernel_pt_ram, used in chunk 115.

Uses page_table 101b.

and we initialize them with references to all of our RAM.
[115b]⟨initialize system 45b⟩+≡ (44b) ◁ 112e 115d ▷

for (uint fid = 0; fid < NUMBER_OF_FRAMES; fid++) {
⟨map page starting at 0xD0000000 + PAGE_SIZE*fid to frame fid 115c⟩

}
Uses NUMBER_OF_FRAMES 112a.

e code for this mapping is not too complicated, either:
[115c]⟨map page starting at 0xD0000000 + PAGE_SIZE*fid to frame fid 115c⟩≡ (115b)

KMAP ( &(kernel_pt_ram[fid/1024].pds[fid%1024]), fid*PAGE_SIZE );
Uses kernel_pt_ram 115a, KMAP 101a, and PAGE_SIZE 112a.

(Note that instead of &(kernel_pt_ram[fid/1024].pds[fid%1024]) we could have used
&(kernel_pt_ram[0].pds[fid]) which would access out of bound indices of kernel_pt_ram
[0].pds, but since these arrays are arranged one aer the other without other data in be-
tween, it would work as well.)

To finalize this, we have to enter the 16 new page tables in 16 page directory entries.
Note that we need the physical addresses of the page tables, not the virtual ones. While
&(kernel_pt_rama[i]) delivers the virtual address just fine, it does not help to write it
into the page directory. Subtracting 0xC0000000 does the job: we know that we loaded the
kernel at 0x100000 with addresses starting at 0xC0100000, so we just need to subtract that
artificial offset, and we’re good.

[115d]⟨initialize system 45b⟩+≡ (44b) ◁ 115b 116b ▷
for (int i = 0; i < 16; i++) {

// get physical address of kernel_pt_ram[i]
memaddress physaddr = (memaddress)(&(kernel_pt_ram[i])) - 0xc0000000;
KMAPD ( &(current_pd->ptds[832+i]), physaddr );

};
kputs ("RAM: 64 MByte, mapped to 0xD0000000-0xD3FFFFFF\n");

Uses current_pd 105a, kernel_pt_ram 115a, KMAPD 103c, kputs 335b, and memaddress 46c.
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Since we will oen have to access a physical address, we’ll define a macro PHYSICALa
that will translate an address from the first 64 MByte to the 0xD000.0000 …0xD3FF.FFFF
range:

[116a] ⟨macro definitions 35a⟩+≡ (44a) ◁ 113a 116c ▷
#define PHYSICAL(x) ((x)+0xd0000000)

Defines:
PHYSICAL, used in chunks 116e, 117, 121–23, 165b, 166a, 171c, 209b, 211c, 293d, 294, 296, 297, 307a, 308c,

496d, 497, 549c, and 550b.

Now that we can access all of the physical addresses (including video memory) we can
get rid of the video mapping for 0xb8000…0xb9000, we’ll actually remove the first entry of
the page directory which so far mapped part of the first (virtual) 4 MByte.

[116b] ⟨initialize system 45b⟩+≡ (44b) ◁ 115d 218c ▷
VIDEORAM = 0xD00B8000;
// remove first page table (including the old video mapping)
fill_page_table_desc (&current_pd->ptds[0], 0, 0, 0, 0);
gdt_flush ();

Uses current_pd 105a, fill_page_table_desc 103b, gdt_flush 110b, and VIDEORAM 327b.

Wedefine amacrowhich casts VIDEORAMb into a word pointerwhichwill later be helpful
for accessing individual characters on the screen (they are encoded as words, not bytes):

[116c] ⟨macro definitions 35a⟩+≡ (44a) ◁ 116a 117 ▷
#define textmemptr ((word*)VIDEORAM)

Defines:
textmemptr, used in chunks 329b, 335b, and 609.

Uses VIDEORAM 327b.

4.5.2.1 MMU Emulation

Sometimes we want to find out what frame is used by a page. We present a function
[116d] ⟨function prototypes 45a⟩+≡ (44a) ◁ 109b 119c ▷

unsigned int pageno_to_frameno (unsigned int pageno);

for this purpose which basically works like the MMU when it translates addresses: It
uses the fact that for a page number pageno we first look at entry pageno/1024 of the page
directory, locate the referenced page table and then look at entry pageno%1024 of that page
table. When the page is not mapped to a frame, the function returns −:

[116e] ⟨function implementations 100b⟩+≡ (44a) ◁ 114a 118b ▷
unsigned int pageno_to_frameno (unsigned int pageno) {

unsigned int pdindex = pageno/1024;
unsigned int ptindex = pageno%1024;
if ( ! current_pd->ptds[pdindex].present ) {

return -1; // we don't have that page table
} else {

// get the page table
page_table *pt = (page_table*)

( PHYSICAL(current_pd->ptds[pdindex].frame_addr << 12) );
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if ( pt->pds[ptindex].present ) {
return pt->pds[ptindex].frame_addr;

} else {
return -1; // we don't have that page

};
};

};
Defines:

pageno_to_frameno, used in chunks 116d and 123a.
Uses current_pd 105a, page_table 101b, and PHYSICAL 116a.

Note that frame_addr holds (the upper 20 bits o) a physical address. Luckily we have a
mapping of the physical address space to 0xd000.0000 and above that we can access via the
PHYSICALa macro—otherwise we would have no way of accessing the page table.

4.5.3 PEEK and POKE Functions
If you remember home computers like the Commodore C64 or the Schneider/Amstrad
CPC, their built-in Basic interpreters oen had a way to directly access memory contents.
e classical command names were PEEK (for reading) and POKE (for writing). Here
they are again: ey convert an address into a pointer to a byte and then read or write.
(Credits to Dan Henry who supplied the first two lines of this code on http://www.keil.
com/forum//.)

[117]⟨macro definitions 35a⟩+≡ (44a) ◁ 116c 163b ▷
// Peek and Poke for virtual addresses
#define PEEK(addr) (*(byte *)(addr))
#define POKE(addr, b) (*(byte *)(addr) = (b))
// Peek and Poke for physical addresses 0..64 MB
#define PEEKPH(addr) (*(byte *)(PHYSICAL(addr)))
#define POKEPH(addr, b) (*(byte *)(PHYSICAL(addr)) = (b))

// Macros for accessing unsigned ints (instead of bytes)
#define PEEK_UINT(addr) (*(uint *)(addr))
#define POKE_UINT(addr, b) (*(uint *)(addr) = (b))
#define PEEKPH_UINT(addr) (*(uint *)(PHYSICAL(addr)))
#define POKEPH_UINT(addr, b) (*(uint *)(PHYSICAL(addr)) = (b))

Defines:
PEEK, used in chunk 612c.
POKE, used in chunks 337b and 342d.
POKE_UINT, used in chunk 567c.

Uses PHYSICAL 116a.

PEEK and POKE read and write bytes using virtual addresses, PEEKPH and POKEPH do
the same with physical addresses (using our 0xD0000000 trick with the PHYSICALa macro),
and finally PEEK_UINT, POKE_UINT, PEEKPH_UINT and POKEPH_UINT do the same as the
first four functions but work with unsigned 32-bit integers instead of bytes.

With the lile-endian ordering of larger integers, the following code

http://www.keil.com/forum/8275/
http://www.keil.com/forum/8275/
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[118a] ⟨peek and poke example 118a⟩≡
unsigned int testvar;
unsigned int address = (unsigned int)&testvar;
POKE (address, 0x12);
POKE (address+1, 0x34);
POKE (address+2, 0x56);
POKE (address+3, 0x78);
printf ("32-bit value: 0x%x\n", PEEK_UINT (address));

prints

32-bit value: 0x78563412

(and not 0x12345678).

4.5.4 Allocating and Releasing Frames
So far we have not used any dynamically generated data structures in the kernel, so there
was no need for some kind of allocation function for the kernel.

When we start creating processes, we will need to reserve (virtual) memory for those
processes, and there may also be areas in the kernel which need memory.

So we will start simple: with a function that requests a new frame of physical memory.
It has the following definition:

[118b] ⟨function implementations 100b⟩+≡ (44a) ◁ 116e 119b ▷
int request_new_frame () {
⟨find a free frame und reserve it 118c⟩

};
Defines:

request_new_frame, used in chunks 121a, 164–66, 173a, 192a, 211a, 257c, 291, 297, and 608b.

is alonewill not be all too useful—only in combinationwith entering it in some paging
table that memory will be accessible (unless code uses the mapping of the physical RAM
to 0xD000.0000 and above).

Finding a free frame is simple: We look at the frame table and return the first available
frame:

[118c] ⟨find a free frame und reserve it 118c⟩≡ (118b) 119a ▷
unsigned int frameid;
boolean found;
start_find_frame:
found = false;
for (frameid = 0; frameid < NUMBER_OF_FRAMES; frameid++) {

if ( !test_frame (frameid) ) {
found=true;
break; // frame found

};
}

Uses frameid, NUMBER_OF_FRAMES 112a, and test_frame 114a.
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en we use set_frameb to mark the frame used and return the frame ID:
[119a]⟨find a free frame und reserve it 118c⟩+≡ (118b) ◁ 118c

if (found) {
set_frame (frameid*4096);
free_frames--;
return frameid;

} else {
⟨page replacement: free one frame 308c⟩ // will be explained later
goto start_find_frame;
// return -1; // never fail

}
Uses frameid, free_frames 112b, and set_frame 113b.

Note that the function clears a frame if no free one is available—we will explain the code
chunk ⟨page replacement: free one frame 308c⟩ in Chapter 9.4.

We’ll add code for releasing a frame: basically we just call clear_frameb, but we also
need to modify free_framesb:

[119b]⟨function implementations 100b⟩+≡ (44a) ◁ 118b 120a ▷
void release_frame (int frame) {

if ( test_frame (frame) ) {
// only do work if frame is marked as used
clear_frame (frame << 12);
free_frames++;

};
};

Defines:
release_frame, used in chunks 123c, 167c, 169a, 261, and 296.

Uses clear_frame 113b, free_frames 112b, and test_frame 114a.

We may call release_frameb for unused frames which will have no effect.

4.6 Managing Pages in U
Since we have now established a mechanism for reserving frames, we can proceed with
page requests. You have already seen all the required data structures when we initialized
paging in Chapter 4.4 (pp. 97 ff.).

4.6.1 Allocating Pages
Nowwe need to implement functions for dynamically requesting new pages and releasing
them aer they are no longer needed. Both are only possible via requesting and releas-
ing frames, and we need to update existing page directories and page tables as well as
occasionally create new page tables.

[119c]⟨function prototypes 45a⟩+≡ (44a) ◁ 116d 133a ▷
void *request_new_page ();
void *request_new_pages (int number_of_pages);
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Geing one page is just a special case of geing several ones:
[120a] ⟨function implementations 100b⟩+≡ (44a) ◁ 119b 120b ▷

void *request_new_page () { return request_new_pages (1); }
Defines:

request_new_page, used in chunks 164a, 211a, and 608b.
Uses request_new_pages 120b.

e real work must be done here:
[120b] ⟨function implementations 100b⟩+≡ (44a) ◁ 120a 122d ▷

void *request_new_pages (int number_of_pages) {
⟨find contiguous virtual memory range 120c⟩
⟨enter frames in page table 121a⟩

};
Defines:

request_new_pages, used in chunks 119c, 120a, and 608b.

at function is more useful, but there’s a lot to do in the two code chunks:

• In ⟨find contiguous virtual memory range 120c⟩ we need to find a contiguous block of
virtual memorycontiguous

virtual memory
addresses which are unused so far. at’s important if, say, we want

to reserve memory for a large array of data which will be spread across several pages:
We need the virtual address range to have no “holes” so that accessing array entries by
index and pointer arithmetic work properly. With 1 GByte of virtual (kernel) memory
available we expect that this will always be possible. In order to find unmapped pages
we use the function mmu_pc(), an improved version of pageno_to_framenoe.

• For the next step ⟨enter frames in page table 121a⟩ we must reserve a frame for each
page we want to map and enter its address in the page table.

[120c] ⟨find contiguous virtual memory range 120c⟩≡ (120b)
unsigned int first_page = 0xc0000; // first page
unsigned int count = 0; // number of contiguous pages
while (count < number_of_pages && first_page+count ≤ 0xfffff) {

if ( mmu_p (current_as, first_page + count) == -1 ) {
count++;

} else {
// the block we just looked at is too small
first_page += (count+1); // restart search
count = 0;

}
}
if (count != number_of_pages)

return NULL; // could not find a sufficiently large area
Uses current_as 170b, first_page, mmu_p 171c, and NULL 46a.

(e function mmu_pc does the same as pageno_to_framenoe, see page 116, but it works
with address spaces which we have not yet defined—we’ll introduce them when we im-
plement the process system. current_asb refers to the current address space, which you
can ignore right now.)

ere is one condition under which simply entering the data in the page table will fail:
if we fill the last entry of the page table, it will aerwards be full, and the next aempt
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to create a new page will find no place to store it. en it will be too late to create a new
page table (because that new page table must also have a virtual address).

So we check now whether we’re aempting to fill the last entry.
[121a]⟨enter frames in page table 121a⟩≡ (120b) 121b ▷

for (int pageno = first_page; pageno < first_page+count; pageno++) {
int newframeid = request_new_frame (); // get a fresh frame for this page
if (newframeid == -1) { // exit if no frame was found

// this can only happen if the swap file is full
return NULL;

}
unsigned int pdindex = pageno/1024;
unsigned int ptindex = pageno%1024;
page_table *pt;
if (ptindex == 0 && !current_pd->ptds[pdindex].present) {

// new page table!
⟨create new page table 122a⟩
newframeid = request_new_frame (); // get yet another frame
if (newframeid == -1) {

return NULL; // exit if no frame was found
// again, this can only happen if the swap file is full

}
};

Uses current_pd 105a, first_page, NULL 46a, page_table 101b, and request_new_frame 118b.

Now we need to access the page directory and the right page table again:
[121b]⟨enter frames in page table 121a⟩+≡ (120b) ◁ 121a 121c ▷

if ( !current_pd->ptds[pdindex].present ) {
// we don't have that page table -- this should not happen!
kputs ("FAIL! No page table entry\n");
return NULL;

} else {
// get the page table
pt = (page_table*)( PHYSICAL(current_pd->ptds[pdindex].frame_addr << 12) );
// enter the frame address
KMAP ( &(pt->pds[ptindex]), newframeid * PAGE_SIZE );
// invalidate cache entry
asm volatile ("invlpg %0" : : "m"(*(char*)(pageno<<12)) );

};
Uses current_pd 105a, KMAP 101a, kputs 335b, NULL 46a, PAGE_SIZE 112a, page_table 101b, and PHYSICAL 116a.

(e last line executes the invlpginvlpg instruction which invalidates the cache entry for the
modified page if one exists.)

Finally, we clear the new page and return a pointer to the new page:
[121c]⟨enter frames in page table 121a⟩+≡ (120b) ◁ 121b

memset ((void*) (pageno*4096), 0, 4096);
}
return ((void*) (first_page*4096));

Uses first_page and memset 596c.
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If a page table does not yet exist, it has to be created and referenced from the page
directory. On-the-fly creation of a new page table works like this: We have a frame at
newframeid which we can use, its physical address is newframeid << 12. It is not mapped
(so it has no virtual address); we’ll deal with this fact later. We can use our PHYSICALa
function to “talk” to it directly: e address is PHYSICALa(newframeid<<12). So we create
the page table and fill it with zeroes:

[122a] ⟨create new page table 122a⟩≡ (121a) 122b ▷
pt = (page_table*) PHYSICAL(newframeid<<12);
memset (pt, 0, PAGE_SIZE);

Uses memset 596c, PAGE_SIZE 112a, page_table 101b, and PHYSICAL 116a.

We need to tell the page directory that this page table is responsible for the next chunk
of memory. When we calculated pdindex and ptindex above, we found that ptindex is 0,
and pdindex points to the page directory entry that is currently empty. So it is just pdindex
which we have to use:

[122b] ⟨create new page table 122a⟩+≡ (121a) ◁ 122a 122c ▷
// KMAPD ( &(current_pd->ptds[pdindex]), newframeid << 12 );

Uses current_pd 105a and KMAPD 103c.

e line above is commented out; it used to work before we introduced processes (and
address spaces). e following code is a variation of the above line which updates all page
directories (each process has its own one). is will become clear when you reach the
process chapter.

[122c] ⟨create new page table 122a⟩+≡ (121a) ◁ 122b
for (addr_space_id asid=0; asid<1024; asid++) {

if (address_spaces[asid].status == AS_USED) { // is this address space in use?
page_directory *tmp_pd = address_spaces[asid].pd;
KMAPD ( &(tmp_pd->ptds[pdindex]), newframeid << 12 );

}
}

Uses addr_space_id 158b, address_spaces 162b, AS_USED 162a, KMAPD 103c, and page_directory 103d.

Note: these new page tables only exist physically. eir frames are marked as used, but
no virtual addresses point to them. Is that a problem? We can always get their physical
addresses through the page directory. So we should be fine.

4.6.2 Releasing Pages
Now we are able to request new pages, but occasionally we will also want to release them.
at is much simpler: In order to release a page, we simply have to

[122d] ⟨function implementations 100b⟩+≡ (44a) ◁ 120b 123d ▷
void release_page (unsigned int pageno) {
⟨remove page to frame mapping from page table 123a⟩
⟨release corresponding frame 123c⟩

};
Defines:

release_page, used in chunks 123d, 166, 167, and 169a.
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First we have to get rid of the page mapping, i. e., we need to find the entry in the
correct page table and replace it with a null entry. e lookup code is similar to the code
for creating the new entry (in ⟨enter frames in page table 121a⟩). However, we first test
whether a page mapping exists, because if not, we can return immediately:

[123a]⟨remove page to frame mapping from page table 123a⟩≡ (122d) 123b ▷
// int frameno = pageno_to_frameno (pageno);
int frameno = mmu_p (current_as, pageno); // we will need this later
if ( frameno == -1 ) { return; } // exit if no such page

Uses current_as 170b, mmu_p 171c, and pageno_to_frameno 116e.

(As you can see, this code originally used pageno_to_framenoe. However, with the intro-
duction of address spaces, this does not work any longer since pageno_to_framenoe is only
aware of the first address space (that belongs to the kernel). As already mentioned, we
will provide an mmu_pc function which is very similar to pageno_to_framenoe, but takes
an extra argument which lets us specify the address space. e variable current_asb
always stores the ID of the currently active address space.)

Next we look up the right entry and set it to zero:
[123b]⟨remove page to frame mapping from page table 123a⟩+≡ (122d) ◁ 123a

unsigned int pdindex = pageno/1024;
unsigned int ptindex = pageno%1024;
page_table *pt;
pt = (page_table*)( PHYSICAL(current_pd->ptds[pdindex].frame_addr << 12) );

// write null page descriptor
fill_page_desc ( &(pt->pds[ptindex]), false, false, false, false, 0 );

// invalidate cache entry
asm volatile ("invlpg %0" : : "m"(*(char*)(pageno<<12)) );

Uses current_pd 105a, fill_page_desc 100c, page_table 101b, PHYSICAL 116a, and write 429b.

We need to invalidate the cache entry for this page so that any further access to addresses
inside the page lead to page faults.

Lastly, we free the frame—we have the release_frameb function for that:
[123c]⟨release corresponding frame 123c⟩≡ (122d)

release_frame (frameno); // note: this increases free_frames
Uses free_frames 112b and release_frame 119b.

at’s all there is to it.
Sometimes we will want to release a whole consecutive range of pages, so we’ll add an

extra function for this purpose:
[123d]⟨function implementations 100b⟩+≡ (44a) ◁ 122d 133b ▷

void release_page_range (unsigned int start_pageno, unsigned int end_pageno) {
for (int i = start_pageno; i < end_pageno+1; i++) release_page (i);

};
Defines:

release_page_range, used in chunk 608b.
Uses release_page 122d.
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4.7 Next Steps
e system is now initialized and uses paging to manage the physical memory. However,
whenever something goes wrong, the system will halt or reboot, and it cannot access any
hardware, except the video card: Since the video memory can be accessed like normal
RAM, we can display status or error messages, but that is all. Especially the code allows
no interaction, because we cannot read the keyboard’s status.

In the upcoming chapter we describe the mechanism that is required to handle faults
(something went wrong) and interrupts (some device wants to inform the system about
an event). With interrupts we can also have timers, and that brings us one step closer to
working with processes which need working timers so that we can switch back and forth
between several programs that run simultaneously.

4.8 Exercises
is is the first set of exercises. You will need the development environment that you can
download from the U website (http://www.ulixos.org/). Install the virtual machine in
VirtualBox and login as ulix (with password ulix).

1. On the U development system, locate the directoryTutorial 1 /home/ulix/tutorial//. is
directory contains parts of the code that we’ve presented so far; we’ve added the
printf function which lets the C program write to the screen.
Read the source code files ulix.c and start.asm. Compile the sources with make and
run the kernel with make run. You should see the following output:

2. Obviously, the kernel executes the C function main. How does the system jump from
the early assembler code (beginning with the start label) into the C function?

3. e file ulix.dump contains a listing of the generated assembler code. Here you can
find all labels from the assembler file start.asm and also the function names from
ulix.c. Search the file for the labels start, higherhalf and main and check for which
memory addresses the corresponding code has been generated. (You find the memory
addresses on the very le in hexadecimal format without leading “0x”.)

http://www.ulixos.org/
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Do you recognize the GDT trick in the assembler code? It is initiated via a “long jump”
(jmp) with a logical address segment:address as jump target.
Do also search for the labels stack_first_address and stack_last_address and compare
the shown addresses with those from the VM’s output (in the last line)—they should
match.

4. e kernel uses the printf() function (you can find its code in the separate printf.c
file) for text output, but its main task to is to format the output as requested by the
format strings (such as %s for strings or %d for integers) and send it to the terminal
character-wise via the kputch function whose implementation resides in ulix.c.
How does kputch write characters to the screen? is will also be explained later
when we discuss the corresponding code section of the full U sources. It may help
to search the web or this book for “0xb8000” and “video”. Consider how pointers can
be used for accessing memory: e commands

char *mem; mem = (char*) 0x1234; *mem = 'a';

can write the byte ‘a’ (ASCII value: 0x61) to the memory address 0x1234.
5. Why does the following line from kputch()

screen = (char*) 0xc0000000 + 0xb8000 + posy*160 + posx*2;

use multiplicators 160 and 2, and why does it add 0xc0000000?
6. Use the command objdump -h ulix.bin to check which memory areas are used by the

three sections .setup, .text and .bss. (You can ignore the additional sections .comment,
.stab and .stabstr.) Compare the values with the information that the boot loader
GRUB outputs in the “Multiboot-elf, …” line when it loads the kernel.

7. e Tutorial 2folder tutorial// in the ulix/ directory contains an improved version of the
U kernel which implements paging.
Read the source code files ulix.c and start.asm and localize the code chunks which
you have seen in this chapter. (ere is also additional code thatwe have not discussed
yet.)

8. Compile/assemble and link the code with make and start the system with make run.
9. In ulix.c the kputch() function has seen some slight changes, there is now the follow-

ing code block:

if (paging_ready)
screen = (char*) 0xb8000 + posy*160 + posx*2;

else
screen = (char*) 0xc0000000 + 0xb8000 + posy*160 + posx*2;

It evaluates the paging_ready variable which is initially set to false and changed to
true aer paging has been initialized. In that case, adding 0xc0000000 is no longer
necessary for calculating the address (cf. exercise 5). Why does that work?
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10. (Literate Programming) Convert the files ulix.c and start.asm (from tutorial/02/)
into a literate program tutorial.nw. You can restrict the documentation that you
add to some keywords and roughly follow the ordering of descriptions in this chapter.

11. Test that you can reconvert the literate program into the original code files (or at least
sufficiently similar versions which also compile and generate a working kernel). Also
create a LATEX file and from that a PDF version.

12. In the folderTutorial 3 tutorial// you find yet another version of the U kernel which
contains an improved version of the paging code. It is a literate program (ulix.nw).
cd into the folder and use make to extract the source code files ulix.c und start.asm
from ulix.nw. ey will automatically be compiled or assembled. en launch the
kernel with make run. e system performs some tests of memory management and
then halts.
Also take a look at the PDF file ulix.pdf (this file is wrien in German language, so
it is likely that you want to skip this step) that you can recreate with make pdf if you
apply changes to ulix.nw. In the document you can find a description of the code for
frame and page management; it is also a sample solution for exercise 10. Compare
how the code is broken down into code chunks in your own solution and in the sample
solution.

13. We have defined the page table descriptors (page_table_desc) and the page descrip-
tors (page_desca) as structures. Since they are both exactly 32 bits large, there is
an alternative interpretation as unsigned int. e goal of this exercise is to modify
the literate program so that it works with these simple integer types instead of the
structures.
First, create a copy of the folder (so that you can keep the original files). If you cd into
the tutorial folder, you can do that with the
cp -r 03 03-copy

command and make all your changes in -copy/.

a) Start with changing the type declarations for page_table_desc und page_desc to
typedef unsigned int page_table_desc;
typedef unsigned int page_desc;

b) e types page_directory and page_table are not needed any longer; instead you
can declare individual directories or tables like this:
page_table_desc pd[1024] __attribute__ ((aligned (4096)));
page_desc pt[1024] __attribute__ ((aligned (4096)));

at way, you can access entry n of pt via pt[n] instead of pt.pds[n]. e ex-
pression pt (without an index) serves as a pointer (of type unsigned int*) to the
start of the table. If you need to hand over a single descriptor to functions like
fill_page_desc() or fill_page_table_desc(), you can pass them a pointer to pt[n],
i. e., &pt[n].
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c) Aer the changes all functions whichworkwith these types are broken, you need
tomodify them. For example, in order to fill a page descriptor in fill_page_desc(),
you can take an address frame_addr and set its lowest twelve bits to 0:
tmpvalue = frame_addr & 0b11111111111111111111000000000000;

or
tmpvalue = frame_addr & 0xFFFFF000;

(e hexadecimal number combines four bits to one hex digit.) en you add the
flags in the lower twelve bits. You could define flag constants which are based
on the bit positions, e. g.,
#define FLAG_PRESENT 1<<0 // Bit 0: present
#define FLAG_ACCESSED 1<<5 // Bit 5: accessed

etc. en use a bitwise “or” operation (|), e. g.
tmpvalue = tmpvalue | FLAG_ACCESSED;

to set a specific bit. When everything is done, you can write the value with *desc
= tmpvalue;. (You must also modify the function prototype and pass a pointer to
unsigned int when you call the function.)

d) In order to extract the address from a descriptor, you simply set the lowest twelve
bits to 0 (like above). On the other hand, you can extract single flags by perform-
ing a bitwise “and” operation (&) with the appropriate FLAG_* constant and test
whether the result is 0 or not:
if ((descriptor & FLAG_ACCESSED) == 0) { /* flag is not set */ }

14. Verify that the old and new program versions work identically. In both versions you
can use the hexdumpc() function which displays a memory region as hex dump. Use
the starting and ending addresses of the page table or page directory as arguments,
e. g.
hexdump ( (unsigned int)current_pd, (unsigned int)current_pd + 4096 );

(which will output the whole page-sized table). e output is wrien to the file
output.txt (in the current directory of the development VM), you can later compare
them:
cd 03/; make; make run > output.txt
cd 03-copy/; make; make run > output.txt
cd .. ; diff ~/03*/output.txt

If diff creates no output, the two files are identical. (e hexdumpc() calls must occur
aer the test changes to the tables.)

15. Check with make pdf that your literate program can still be converted to a PDF file—if
that does not work, identify and remove the errors.





5
Interrupts and Faults

All modern CPUs and even many of the older ones such as the Zilog Z80 8-bit processor
can be interrupted: the CPU has an input line which can be triggered by an external device
connected to this line. When such an interrupt occurs, the current activity is suspended,
and the CPU continues operation at a specified address: it executes an interrupt handler.

In principle a device could be directly connected to the CPU, but modern machines con-
tain many devices which want to interrupt the processor, e. g. the disk controllers, the
keyboard controller, the serial ports, or the on-board clock. us an extra device, called
the interrupt controller interrupt

controller
, intermediates between the other devices and the CPU. One of the

advantages of such an interrupt controller is that it is programmable: it is possible to
enable or disable specific interrupts whereas the CPU itself can only completely enable
or disable all interrupts, using the sti sti, cli(set interrupt flag) and cli (clear interrupt flag) in-
structions. (ese machine instructions exist on Intel-x86-compatible CPUs; other chips
have similar instructions.) Being programmable also means that interrupt numbers can
be remapped (we will see later why this is helpful). Interrupt controllers with these fea-
tures are called programmable interrupt controllers PICs(PICs), and we’ll use that abbreviation
throughout the rest of this chapter.

Aer the implementation of interrupts we will also take a look at fault handling since
the involved mechanisms are very similar to those which we need for handling interrupts.
As we mentioned in the introduction, the main difference between interrupts and faults
is that faults occur as a direct consequence of some specific instruction that our code exe-
cutes. In that sense they are synchronoussynchronous. Interrupts on the other hand occur without any
connection to the currently executing instruction, since they are not triggered (immedi-
ately) by our code but by some device. at is why they are called asynchronousasynchronous.
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5.1 Examples for Interrupt Usage
Interrupt handling is a core functionalitywhich is used in lots of places: without interrupts
we would not be able to build a useful operating system.

Let’s look at some example features of U which depend heavily on interrupts:

Multi-tasking U can execute several processes in parallel and switch between them
using a simple round-robin scheduling mechanism. at is only possible because
the clock chip on the motherboard regularly generates timer interrupts, and U in-
stalls a timer interrupt handlertimer handler which—when activated—calls the scheduler to check
whether it is time to switch to a different process. If there were no interrupts, we
could only implement non-preemptive scheduling which relies on the processes to
give up the CPU voluntarily.

Keyboard input Whenever you press or release a key on a PC, either event generates an
interrupt. U picks up these interrupts and the keyboard interrupt handlerkeyboard

handler
reads

a key press or key release code from the controller.
A keyboard driver does not need interrupts, but the alternative is to constantlypolling poll
(query) the keyboard controller in order to find out whether a new event has oc-
curred. at’s possible but wastes a lot of CPU time. Polling does not work well
in a multi-tasking environment. (However for a single-tasking operating system it
may be good enough.)

Media Reading and writing hard disks and floppy disks also depends on interrupts: In
the U implementation of filesystems (and disk access) a process which wants
to read or write makes a system call which sends a request to the drive controller.
en U puts the calling process to sleep. Once the request has been served, the
drive controller generates an interrupt, and the interrupt handler for the hard disk
controller or the floppy disk controllerATA/FDC

handlers
(these are two separate handlers) deals with

the data and wakes up the sleeping process.
Again, this could be done without interrupts. But the process would have to remain
active and continuously poll the controller to find out whether the data transfer has
been completed.

Serial ports Finally, the serial ports are similar to the keyboard, since all of them are
character devices: they transfer single bytes (instead of blocks of bytes).

5.2 Interrupt Handling on the Intel Architecture
e classical IBM PC used theIntel 8259 PIC Intel 8259 Programmable Interrupt Controller, compatible
descendents of which are still used in modern computers. e 8259 has eight input lines
(through which up to eight separate devices may connect) and one output line which
forwards received interrupt signals to the CPU. It is possible to usemore than one 8259 PIC



5.2 Interrupt Handling on the Intel Architecture 131

since these controllers can be Cascading PICscascaded which means that a second controller’s output pin
is connected with one of the first controller’s input pins (typically the one for device 2, see
Figure 5.1). With that cascade, devices connected to the first controller keep their normal
numbers (0, 1, 3–7 with 2 reserved for the second controller), and devices connected to the
second controller use device numbers between 8 and 15, allowing for a total of 15 (= −)
separate device numbers. e first or primary controller is called Master PICMaster PIC, the second
one is the Slave PIC Slave PIC(as it is not directly connected to the CPU but relies on the master PIC
to have its interrupts signals forwarded). e numbers 0–15 are called IRQInterrupt Request
Numbers (IRQs).
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Figure 5.1: Two PICs are cascaded, which allows for 15 distinct interrupts.

As you can see from the figure, there is a fixed mapping of some devices to specific IRQs.
We will use the following IRQs in the U implementation:

• 0: Timer Chip. On a PC’s mainboard you can find a (programmable) timer chip which
regularly generates interrupts. We will use timer interrupts to call the scheduler (be-
sides other tasks).

• 1: Keyboard. is is the interrupt generated by PS/2 keyboards. A USB keyboard
would be handled differently, but we do not support USB devices.

• 2: Slave PIC. As already mentioned, IRQ 2 is reserved for connecting the secondary
(slave) PIC.

• 3: Serial Port 2. e second serial port will be used for our implementation of what
we’ve called the serial hard disk—you can find it in Chapter 13.4.

• 4: Serial Port 1. We only use the first serial port for output (when running U in a
PC emulator), thus we will not install an interrupt handler for this IRQ.

• 6: Floppy. is is the IRQ for the floppy controller. It can handle up to two floppy
drives.

• 14: Primary IDE Controller. And finally, 14 is the IRQ of the primary IDE controller.
Many PC mainboards contain two controllers, with each of them allowing two drives
to connect. e secondary IDE controller would generate the interrupt number 15,
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but we’re going to support only one controller.

We can define names for the IRQ numbers right now:
[132] ⟨constants 112a⟩+≡ (44a) ◁ 112a 134 ▷

#define IRQ_TIMER 0
#define IRQ_KBD 1
#define IRQ_SLAVE 2 // Here the slave PIC connects to master
#define IRQ_COM2 3
#define IRQ_COM1 4
#define IRQ_FDC 6
#define IRQ_IDE 14 // primary IDE controller; secondary has IRQ 15

Defines:
IRQ_COM1, used in chunk 344c.
IRQ_COM2, used in chunks 344c and 520a.
IRQ_FDC, used in chunk 552c.
IRQ_IDE, used in chunk 534b.
IRQ_KBD, used in chunk 323b.
IRQ_SLAVE, used in chunk 139b.
IRQ_TIMER, used in chunk 339a.

5.2.1 Using Ports for I/O Requests
Going

where?
We want to initialize the PICs, which
means directly talking to these con-
trollers. Like with most other devices we
can use the machine instructions in and

out to find out the PIC’s current status
and tell it what to do.

Here we provide the code which lets us
access the controllers.

Access to many hardware components (including the PICs) is possible viaI/O Ports I/O ports. Using
in and out machine instructions it is possible to transfer bytes, words or doublewords
between a CPU register and a memory location or register on some device (such as a hard
disk controller).

e Intel 80386 Programmer’s Reference Manual [Int86, pp. 146–147] explains:

“e I/O instructions IN and OUTin, out are provided to move data between I/O ports
and the EAX (32-bit I/O), the AX (16-bit I/O) or AL (8-bit I/O) general registers.
IN and OUT instructions address I/O ports either directly, with the address of
one of up to 256 port addresses coded in the instruction, or indirectly via the
DX register to one of up to 64K port addresses.

IN (Input from Port) transfers a byte, word or doubleword from an input
port to AL, AX or EAX . If a program specifies AL with the IN instruction, the
processor transfers 8 bits from the selected port to AL. If a program specifies
AX with the IN instruction, the processor transfers 16 bits from the port to AX .
If a program specifies EAX with the IN instruction, the processor transfers 32
bits from the port to EAX .

OUT (Output to Port) transfers a byte, word or doubleword to an output port
from AL, AX or EAX . e program can specify the number of the port using the
same methods as the IN instruction.”
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For accessing 8-bit, 16-bit and 32-bit ports, the Intel assembler language provides sepa-
rate commands inb / outb (byte), inw / outw (word) and inl / outl (long: doubleword) which
make it explicit what kind of transfer is wanted. We’ll use them in the functions

[133a]⟨function prototypes 45a⟩+≡ (44a) ◁ 119c 138b ▷
byte inportb (word port);
word inportw (word port);
void outportb (word port, byte data);
void outportw (word port, word data);

ere are several possible C implementations with inline assembler code, the following
code is most readable:

[133b]⟨function implementations 100b⟩+≡ (44a) ◁ 123d 138c ▷
byte inportb (word port) {

byte retval; asm volatile ("inb %%dx, %%al" : "=a"(retval) : "d"(port));
return retval;

}

word inportw (word port) {
word retval; asm volatile ("inw %%dx, %%ax" : "=a" (retval) : "d" (port));
return retval;

}

void outportb (word port, byte data) {
asm volatile ("outb %%al, %%dx" : : "d" (port), "a" (data));

}

void outportw (word port, word data) {
asm volatile ("outw %%ax, %%dx" : : "d" (port), "a" (data));

}
Defines:

inportb, used in chunks 140a, 320b, 336b, 339d, 344c, 345c, 519d, and 532–34.
outportb, used in chunks 135, 139e, 146a, 328a, 336b, 338c, 339d, 344c, 345c, 526, 527, 534b, and 552c.
outportw, used in chunk 133a.

We could provide inportl and outportl (for 32-bit values) in a similar fashion, using inl,
outl and the 32-bit register EAX (instead of the 16-bit and 8-bit versions AX and AL), but
we do not need them. (Remember that EAX , AX and AL are (parts o) the same register, see
Figure 5.2. On a 64-bit machine, RAX is the 64-bit extended version of EAX .)

AH AL

AX

EAX

078151631

Figure 5.2: e lower half of EAX is AX which in turn is split into AH (high) and AL (low).
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5.2.2 Initializing the PIC
Going

where?
Now that we have functions for talking to
devices we can set up the two PICs. We
will configure one asmaster and the other
as slave, and we also remap the interrupt

numbers from 0–15 to 32–47 because the
first 32 numbers are reserved for faults
(see Section 5.3).

e PICs can be accessed via the following four ports:
[134] ⟨constants 112a⟩+≡ (44a) ◁ 132 145a ▷

// I/O Addresses of the two programmable interrupt controllers
#define IO_PIC_MASTER_CMD 0x20 // Master (IRQs 0-7), command register
#define IO_PIC_MASTER_DATA 0x21 // Master, control register

#define IO_PIC_SLAVE_CMD 0xA0 // Slave (IRQs 8-15), command register
#define IO_PIC_SLAVE_DATA 0xA1 // Slave, control register

Defines:
IO_PIC_MASTER_CMD, used in chunks 135a and 146a.
IO_PIC_MASTER_DATA, used in chunks 135, 139e, and 140a.
IO_PIC_SLAVE_CMD, used in chunks 135a and 146a.
IO_PIC_SLAVE_DATA, used in chunks 135, 139e, and 140a.

ey need to be initialized by sending them four “Initialization Command Words” (ICW)
called ICW1, ICW2, ICW3 and ICW4 in a specific order, using specific ports. Each of
the PICs has a command register and a data register. During normal operation we can
write to the data register (using the ports IO_PIC_MASTER_DATA and IO_PIC_SLAVE_DATA
for PIC1 or PIC2, respectively) to set the interrupt maskinterrupt

mask
: at’s a byte where each bit tells

the controller whether it shall respond to a specific interrupt (1 means: mask, i. e., ignore
the interrupt; 0 means: forward it to the CPU). We will start with an interrupt mask of
0xFF for each controller (all bits are 1), thus all hardware interrupts will be ignored.

e following code was taken from Bran’s Kernel Development Tutorial [Fri05] (e. g.
from the source file irq.c) and modified.

For programming the controller, we can send configuration data to the data port, but
we have to initialize the programming by writing to the command port. e complete
sequence is as follows:

• First we send ICW1 to both PICs. ICW1 is a byte whose bits have the following
meaning [Int88, p. 11]:
0 D: ICW4 needed? We set this to 1 since we want to program the controller.
1 D: Single (1) / Cascade (0) mode: We set this to 0 since there’s a slave.
2 D: Call Address Interval (ignored), the default value is 0.
3 D: Level (1) / Edge (0) Triggered Mode: we set this to 0.
4 D: Initialization Bit: We set it to 1 because we want to initialize the controller.
5,6,7 D, D, D: not used on x86 hardware, set to 0.
is results in the byte 00010001 (0x11). e value is the same for both PICs. As
mentioned before, ICW1 must be sent to the PICs’ command registers.
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[135a]⟨remap the interrupts to 32..47 135a⟩≡ (139b) 135b ▷
outportb (IO_PIC_MASTER_CMD, 0x11); // ICW1: initialize; begin programming
outportb (IO_PIC_SLAVE_CMD, 0x11); // ICW1: dito, for PIC2

Uses IO_PIC_MASTER_CMD 134, IO_PIC_SLAVE_CMD 134, and outportb 133b.

• In the next step we send ICW2 to the PICs’ data registers. e lowest three bits specify
the offset for remapping remap the

interrupts
the interrupts. Since the first 32 interrupts must be reserved

for processor exception handlers (e. g. “Division by Zero” and “Page Fault” handlers),
we map the interrupts 0–15 to the range 32–47 (0x20 – 0x2f).
Each PIC would normally generate interrupts in the range 0–7, thus the offset is not
the same for both PICs: For PIC1 it is 0x20 (32; mapping 0–7 to 32-39), and for PIC2 it
is 0x28 (40; mapping 0–7 to 40–47).

[135b]⟨remap the interrupts to 32..47 135a⟩+≡ (139b) ◁ 135a 135c ▷
outportb (IO_PIC_MASTER_DATA, 0x20); // ICW2 for PIC1: offset 0x20

// (remaps 0x00..0x07 -> 0x20..0x27)
outportb (IO_PIC_SLAVE_DATA, 0x28); // ICW2 for PIC2: offset 0x28

// (remaps 0x08..0x0f -> 0x28..0x2f)
Uses IO_PIC_MASTER_DATA 134, IO_PIC_SLAVE_DATA 134, and outportb 133b.

• e next command word is ICW3. Its functionality depends on whether we send it
to the master (PIC1) or the slave (PIC2): e PICs already know that they are master
and slave (because we sent that information as part of ICW1) [Int88, p. 12].
e master expects a command word byte in which each set bit specifies a slave con-
nected to it. We have only one slave and want to make it signal new interrupts on
interrupt line 2 of the master. us, only the third bit (from the right) must be set:
00000100b = 0x04.
e slave needs a slave ID. We give it the ID 2 = 0x02.

[135c]⟨remap the interrupts to 32..47 135a⟩+≡ (139b) ◁ 135b 135d ▷
outportb (IO_PIC_MASTER_DATA, 0x04); // ICW3 for PIC1: there's a slave on IRQ 2

// (0b00000100 = 0x04)
outportb (IO_PIC_SLAVE_DATA, 0x02); // ICW3 for PIC2: your slave ID is 2

Uses IO_PIC_MASTER_DATA 134, IO_PIC_SLAVE_DATA 134, and outportb 133b.

• To end the sequence, we send ICW4 which is just 0x01 for x86 processors [Int88, p.
12].

[135d]⟨remap the interrupts to 32..47 135a⟩+≡ (139b) ◁ 135c
outportb (IO_PIC_MASTER_DATA, 0x01); // ICW4 for PIC1 and PIC2: 8086 mode
outportb (IO_PIC_SLAVE_DATA, 0x01);

Uses IO_PIC_MASTER_DATA 134, IO_PIC_SLAVE_DATA 134, and outportb 133b.

With the remapping in place we can now create entries for the interrupt handler table—
we need some new data structures for them.



136 5 Interrupts and Faults

5.2.3 Interrupt Descriptor Table

Going
where?

The PICs are initialized and will do the
right thing when an interrupt occurs, but
we haven’t told the CPU yet what to do
when it receives one. This calls for a new

data structure, the Interrupt Descriptor
Table, which we must define according
to the Intel standards and fill with proper
values.

While the first Intel-8086/8088-based personal computers used a fixed address in RAM to
store the interrupt handler addresses, modern machines let us place the table anywhere
in memory. Aer preparing the table we must use the machine instructionlidt lidt (load
interrupt descriptor table register) to tell the CPU where to search.

e procedure we need to follow is similar to the one for activating segmentation via a
GDT (see pages 90–92):

1. We first store interrupt descriptors (each of which is eight bytes large) in a table
consisting of struct idt_entrya entries,

2. then we create some kind of pointer structure struct idt_ptrb which contains the
length and the start address of the table,

3. and finally we execute lidt (compare this to lgdt for the GDT).

Figure 5.3 shows the layout of an IDT entry. e Flags halyte (second line, le in the
figure) consists of

• the present flag (bit 3) which must always be set to 1,
• two bits (2 and 1) for the Descriptor Privilege Level (DPL). We will always set this to

11b = 3 since we want all interrupts to be available all the time (when we’re in kernel
or user mode) and

• a so-called “storage segment” flag (bit 0; which must be set to 0 for an “interrupt gate”,
see next entry).

e Type halyte declares what kind of descriptor this is: we will always set it to 1110b,
making this descriptor an
• 80386 32-bit interrupt gateinterrupt gate descriptor (which is what we want).

0123456789101112131415

Address: 31–16
7..6

P DPL 0 Type 0 0 0 (unused)
5..4

GDT Selector
3..2

Address: 15–0
1..0

Figure 5.3: An Interrupt Descriptor contains the address of an interrupt handler and some
configuration information.
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Besides this type, there are alternatives:
• 0101b for an 80386 32-bit task gate,
• 0110b for an 80286 16-bit interrupt gate,
• 0111b for an 80286 16-bit trap gate and
• 1111b for an 80386 32-bit trap gate trap gate,

but we will not go into the details about these. Instead of interrupt gates we could also
use trap gates, the difference between those being that “for interrupt gates, interrupts
are automatically disabled upon entry and reenabled upon IRET which restores the saved
EFLAGS” [OSD13]. We will use a trap gate for the system call handler (see Chapter 6.4).

An interrupt descriptor table entry is described by the following datatype definitions:
[137a]⟨type definitions 91⟩+≡ (44a) ◁ 103d 137b ▷

struct idt_entry {
unsigned int addr_low : 16; // lower 16 bits of address
unsigned int gdtsel : 16; // use which GDT entry?
unsigned int zeroes : 8; // must be set to 0
unsigned int type : 4; // type of descriptor
unsigned int flags : 4;
unsigned int addr_high : 16; // higher 16 bits of address

} __attribute__((packed));
Defines:

idt_entry, used in chunks 138a and 146d.

e selector must be the number of a code segment descriptor (in the GDT); we will always
set this to 0x08 since our kernel (ring 0) code segment uses that number (see code chunk
⟨install flat gdt 110a⟩ on page 110).

e IDT pointer has the same structure as the GDT pointer: it informs about the length
and the location of the IDT:

[137b]⟨type definitions 91⟩+≡ (44a) ◁ 137a 161 ▷
struct idt_ptr {

unsigned int limit : 16;
unsigned int base : 32;

} __attribute__((packed));
Defines:

idt_ptr, used in chunk 138a.

In theory, an interrupt number can be any byte, i. e., a value between 0 and 255. We will
use a full IDT with 256 entries even though most of the entries will be null descriptors—if
somehow an interrupt is generated which has a null descriptor, the CPU will generate an
“unhandled interrupt” exception. We will talk about exceptions right aer we’ve finished
the interrupt handling code.
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[138a] ⟨global variables 92b⟩+≡ (44a) ◁ 115a 139a ▷
struct idt_entry idt[256] = { { 0 } };
struct idt_ptr idtp;

Defines:
idt, used in chunks 138c and 146d.
idtp, used in chunks 146d and 147a.

Uses idt_entry 137a and idt_ptr 137b.

e variables idta and idtpa will now be used in a way that is similar to how we used
gdtb (a struct gdt_entry[] array) and gpb (a struct gdt_ptra structure) when we
wrote the GDT code.

We start with a function
[138b] ⟨function prototypes 45a⟩+≡ (44a) ◁ 133a 138d ▷

void fill_idt_entry (byte num, unsigned long address,
word gdtsel, byte flags, byte type);

which writes an entry of the IDT:
[138c] ⟨function implementations 100b⟩+≡ (44a) ◁ 133b 139e ▷

void fill_idt_entry (byte num, unsigned long address,
word gdtsel, byte flags, byte type) {

if (num ≥ 0 && num < 256) {
idt[num].addr_low = address & 0xFFFF; // address is the handler address
idt[num].addr_high = (address >> 16) & 0xFFFF;
idt[num].gdtsel = gdtsel; // GDT sel.: user mode or kernel mode?
idt[num].zeroes = 0;
idt[num].flags = flags;
idt[num].type = type;

}
}

Defines:
fill_idt_entry, used in chunks 138b, 139b, 148b, and 202e.

Uses idt 138a.

Parts of all of our interrupt handlers will be assembler code (whichwe store in start.asm);
we’ll explain soon why that has to be. For the moment, let’s declare 16 external function
symbols irq0, irq1, …, irq15 whose addresses we’re about to enter into the IDT
with fill_idt_entryc:

[138d] ⟨function prototypes 45a⟩+≡ (44a) ◁ 138b 139c ▷
extern void irq0(), irq1(), irq2(), irq3(), irq4(), irq5(), irq6(), irq7();
extern void irq8(), irq9(), irq10(), irq11(), irq12(), irq13(), irq14(), irq15();

We will store the function addresses in an array which simplifies accessing them:
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[139a]⟨global variables 92b⟩+≡ (44a) ◁ 138a 145b ▷
void (*irqs[16])() = {

irq0, irq1, irq2, irq3, irq4, irq5, irq6, irq7, // store them in
irq8, irq9, irq10, irq11, irq12, irq13, irq14, irq15 // an array

};
Defines:

irqs, used in chunk 139b.
Uses irq0 144, irq1 144, irq10 144, irq11 144, irq12 144, irq13 144, irq14 144, irq15 144, irq2 144, irq3 144,

irq4 144, irq5 144, irq6 144, irq7 144, irq8 144, and irq9 144.

e following code chunk enters their address in the IDT:
[139b]⟨install the interrupt handlers 139b⟩≡ (45b) 323c ▷

⟨remap the interrupts to 32..47 135a⟩
set_irqmask (0xFFFF); // initialize IRQ mask
enable_interrupt (IRQ_SLAVE); // IRQ slave

for (int i = 0; i < 16; i++) {
fill_idt_entry (32 + i,

(unsigned int)irqs[i],
0x08,
0b1110, // flags: 1 (present), 11 (DPL 3), 0
0b1110); // type: 1110 (32 bit interrupt gate)

}
Uses enable_interrupt 140b, fill_idt_entry 138c, IRQ_SLAVE 132, irqs 139a, and set_irqmask 139e.

is code chunk sets the IRQ mask IRQ maskto 0xFFFF = 1111111111111111b via
[139c]⟨function prototypes 45a⟩+≡ (44a) ◁ 138d 139d ▷

static void set_irqmask (word mask);

which disables all interrupts, and then it enables the interrupt for the slave PIC with
[139d]⟨function prototypes 45a⟩+≡ (44a) ◁ 139c 139f ▷

static void enable_interrupt (int number);

—both functions have not been mentioned so far. e IRQ mask is a 16-bit value in which
each bit says whether some interrupt is enabled (value 0) or not (value 1). We must talk
to both PICs to set the mask, the master PIC gets the lower eight bits (for the interrupts
0–7), the slave PIC gets the upper eight bits (for the interrupts 8–15):

[139e]⟨function implementations 100b⟩+≡ (44a) ◁ 138c 140a ▷
static void set_irqmask (word mask) {

outportb (IO_PIC_MASTER_DATA, (char)(mask % 256) );
outportb (IO_PIC_SLAVE_DATA, (char)(mask >> 8) );

}
Defines:

set_irqmask, used in chunks 139 and 140b.
Uses IO_PIC_MASTER_DATA 134, IO_PIC_SLAVE_DATA 134, and outportb 133b.

We can also read the mask from the two PICs with a similar function we call
[139f]⟨function prototypes 45a⟩+≡ (44a) ◁ 139d 146b ▷

word get_irqmask ();
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in which we read the two data registers instead of writing them:
[140a] ⟨function implementations 100b⟩+≡ (44a) ◁ 139e 140b ▷

word get_irqmask () {
return inportb (IO_PIC_MASTER_DATA)

+ (inportb (IO_PIC_SLAVE_DATA) << 8);
}

Defines:
get_irqmask, used in chunks 139f and 140b.

Uses inportb 133b, IO_PIC_MASTER_DATA 134, and IO_PIC_SLAVE_DATA 134.

In the following chapters we will oen enable a specific interrupt for some device aer
we’ve prepared its usage, e. g. for the floppy controller. For that purpose, we will always
use enable_interruptb() like we did above. It simply reads the current IRQ mask, clears
a bit, and writes the new value back:

[140b] ⟨function implementations 100b⟩+≡ (44a) ◁ 140a 146a ▷
static void enable_interrupt (int number) {

set_irqmask (
get_irqmask () // the current value
& ~(1 << number) // 16 one-bits, but bit "number" cleared

);
}

Defines:
enable_interrupt, used in chunks 139, 323b, 339a, 344c, 520a, 534b, and 552c.

Uses get_irqmask 140a and set_irqmask 139e.

5.2.4 Writing the Interrupt Handler
Going

where?
Everything is prepared for interrupt hand-
lers — now we need to define them, i. e.,
implement the irq0(), … irq15()

functions. This step requires some assem-
bler code and some C code.

We have installed handlers for all 16 interrupts, but what do they do? We will define part
of their code in the assembler file, but we start with a description of what we expect to
happen in general.

When an interrupt occurs, the CPU suspends the currently running code, saves some
information on the stack, and then jumps to the address that it finds in the IDT. (It also uses
a different stack and switches to kernel mode if it was in user mode when the interrupt
occurred.) en the interrupt handler runs, and once it has finished its job, it returns
with the iret instruction.iret iret is different from the regular ret instruction which normal
functions use for returning to the calling function: it is the special “return from interrupt”
instruction which restores the original state (user or kernel mode, stack, EFLAGS register)
so that the regular code can continue as if the interrupt had never happened.

Switching to the interrupt handler can mean a change of the privilege level that the
CPU executes in: So far we’ve only let U work in ring 0 (kernel mode), but later when
we introduce processes it can happen that an interrupt occurs while the CPU runs in ring
3 (user mode). If that is the case, the privilege level changes (from 3 to 0). When such a
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transition occurs, the information (return address etc.) is not wrien to the process’ user
mode stack, but on the process’ kernel stack which is located elsewhere and normally
used during the execution of system calls—we’ll describe that in more detail later. For
now, the relevant piece of information is that different information gets stored on the
“target stack”: In case of a privilege change the CPU first writes the contents of the SS and
ESP registers on the (new) stack—this does not happen if the CPU was already operating
in ring 0. Next, EFLAGS, CS and EIP are wrien to the stack: that is all we need for returning
to the interrupted code. Figure 5.4 shows the different stack contents when the interrupt
handler starts executing [Int86, p. 159].

CPU already in level 0 →
no privilege level change

Old SS:ESP
Old EFLAGS

Old CS
Old EIP

New SS:ESP

Direction 
of Stack 
Growth

CPU in level 3 → level changes 
to 0, switch to kernel stack

SS:ESP 
from TSS

Old EFLAGS
Old CS

Old EIP
New SS:ESP

Direction 
of Stack 
Growth

Old ESP
Old SS

31                             0

31                             0

Figure 5.4: When entering the interrupt handler, the stack contains information for return-
ing from the handler. Le: without privilege level change; right: with change
from level 3 to 0, extra data marked red.

We cannot directly use a C function as an interrupt handler because once it would finish
its work, it would do a regular RET which does not do what we want. (Of course we could
use inline assembler code inside the C function to make it work anyway, but it makes
more sense to directly implement parts of the handlers in assembler.)

5.2.4.1 The Context Data Structure

We want to be able to define handler functions in C which get called from the assembler
code. ose functions will all have the following prototype:

void handler_function (context_t *r);

where context_ta is contexta central data structure that can hold all the registers we use on the
Intel machine. It will also be used in fault handlers, system call handlers and several other
functions which need information about the current state.

We define the context_ta structure so that it matches the way in which we set up the
stack in the assembler part of the handler:
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[142a] ⟨public type definitions 142a⟩≡ (44a 48a) 175 ▷
typedef struct {

unsigned int gs, fs, es, ds;
unsigned int edi, esi, ebp, esp, ebx, edx, ecx, eax;
unsigned int int_no, err_code;
unsigned int eip, cs, eflags, useresp, ss;

} context_t;
Defines:

context_t, used in chunks 142b, 146, 151c, 174b, 175, 201d, 206d, 209c, 213d, 216b, 219c, 221–24, 234b, 255c,
258b, 260a, 276d, 282c, 289a, 299a, 310a, 319d, 328c, 331a, 332d, 342b, 370d, 372, 416, 426b, 433b, 493b,
513a, 519d, 532d, 546b, 565c, 566d, 583a, 587, 590b, and 610.

5.2.4.2 Assembler Part of the Handler

In order to have a handler function see useful values in the structure that r points to, we
need to push the register contents in the reverse order onto the stack:

[142b] ⟨push registers onto the stack 142b⟩≡ (143b 144 150b 202c)
pusha
push ds
push es
push fs
push gs
push esp ; pointer to the context_t

e first instruction pusha (push all general registers) pushes a lot of registers onto the
stack: EAX , ECX , EDX , EBX , the old value of ESP (before the pusha execution began), EBP, ESI,
and EDI—in that order. We add the segment registers DS, ES, FS and GS, and you can see that
we’ve successfully handled the first two lines of the context_ta type definition. When
the interrupt occurred, the registers EFLAGS, CS and EIP (and possibly also SS and the user
mode’s ESP) were also pushed on the stack which gives us the values in the fourth line of
the context_ta definition.

What’s missing are the values on the third line: We want to tell the handler which
interrupt occurred so that we can use the same interrupt handler for several interrupts—
for example, if we supported both IDE controllers (with interrupts 14 and 15) we could
use that trick to run the same IDE handler when either of those interrupts occurred; thus,
between the automatically happening push operations and the ones we perform in ⟨push
registers onto the stack 142b⟩we also push the interrupt number and another value err_code
which can hold an error code. Interrupts don’t have an error code, but we will recycle the
same code later when we deal with faults, and some of those do provide an error code.

e final push esp statement in ⟨push registers onto the stack 142b⟩ is necessary because
we cannot just place the structure contents on the stack: the handler function expects
a pointer (context_ta *r), and ESP contains just that pointer: the start address of the
structure. Figure 5.5 shows the layout of the stack aer the assembler part has finished
the preparations.

Later, when the handler’s task is completed, we will need to pop the registers from the
stack—in the reverse order:
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SS:ESP 
from TSS

Old EFLAGS
Old CS

Old EIP

New SS:ESP

Direction 
of Stack 
Growth

Old ESP
Old SS

31                             0

err_code

int_no

EAX

ECX

EDX

EBX

ESP

EBP

EDX

EBX

ESI

EDI

DS

ES

FS

GS

context 

context_t

Figure 5.5: Stack aer interrupt handler initialization by the assembler part.

[143a]⟨pop registers from the stack 143a⟩≡ (143b 144 150b 202c)
pop esp
pop gs
pop fs
pop es
pop ds
popa

Now here’s an example of how we could implement the interrupt handler for IRQ 15:
[143b]⟨irq15 example 143b⟩≡

push byte 0 ; error code
push byte 15 ; interrupt number
⟨push registers onto the stack 142b⟩
call irq_handler ; call C function
⟨pop registers from the stack 143a⟩
add esp, 8 ; for errcode, irq no.
iret

Uses irq_handler 146a.

is contains all we need:
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1. e two push commands add the error code and the interrupt number (which is 15 in
this example).

2. With ⟨push registers onto the stack 142b⟩ we complete the context_ta data structure
and also push a pointer to it.

3. Now the stack is prepared properly to call the C function irq_handlera.
4. Aer returning, we first have to undo the push operations with ⟨pop registers from

the stack 143a⟩.
5. en we modify the stack address: we add 8, thus undoing the two push operations

for the error code and the interrupt number.
6. Finally we return from the handler with iret.

We need almost the same code 16 times (for IRQs 0 to 15)—the only difference between the
16 versions is the interrupt number that we push in the second instruction. We simplify
our code by having our individual handlers just push the two values (0 and the interrupt
number) and then jump to an address which provides the common commands. e 0
value is a placeholder for an error code which cannot occur in interrupt handlers, but (as
mentioned before) we will also implement fault handlers which shall use the same stack
layout, and some of them will write a fault-specific error code into that location.

[144] ⟨start.asm 87⟩+≡ ◁ 110b 147a ▷
global irq0, irq1, irq2, irq3, irq4, irq5, irq6, irq7
global irq8, irq9, irq10, irq11, irq12, irq13, irq14, irq15

%macro irq_macro 1
push byte 0 ; error code (none)
push byte %1 ; interrupt number
jmp irq_common_stub ; rest is identical for all handlers

%endmacro

irq0: irq_macro 32
irq1: irq_macro 33
irq2: irq_macro 34
irq3: irq_macro 35
irq4: irq_macro 36
irq5: irq_macro 37
irq6: irq_macro 38
irq7: irq_macro 39
irq8: irq_macro 40
irq9: irq_macro 41
irq10: irq_macro 42
irq11: irq_macro 43
irq12: irq_macro 44
irq13: irq_macro 45
irq14: irq_macro 46
irq15: irq_macro 47
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extern irq_handler ; defined in the C source file

irq_common_stub: ; this is the identical part
⟨push registers onto the stack 142b⟩
call irq_handler ; call C function
⟨pop registers from the stack 143a⟩
add esp, 8
iret

Defines:
irq0, used in chunk 139a.
irq1, used in chunk 139a.
irq10, used in chunk 139a.
irq11, used in chunk 139a.
irq12, used in chunk 139a.
irq13, used in chunk 139a.
irq14, used in chunk 139a.
irq15, used in chunk 139a.
irq2, used in chunk 139a.
irq3, used in chunk 139a.
irq4, used in chunk 139a.
irq5, used in chunk 139a.
irq6, used in chunk 139a.
irq7, used in chunk 139a.
irq8, used in chunk 139a.
irq9, used in chunks 138d and 139a.

Uses irq_handler 146a.

Our interrupt handling code is a slightly improved version of the code which Bran’s
Kernel Tutorial [Fri05] uses; the original code contains some extra instructions that we
don’t need for the U kernel.

5.2.4.3 C Part of the Handler

Finally, we show what happens when the assembler code calls the external handler func-
tion irq_handlera() that we implement in the C file.

e first thing our handler needs to do is acknowledge the interrupt. For that purpose
it sends the command

[145a]⟨constants 112a⟩+≡ (44a) ◁ 134 158a ▷
#define END_OF_INTERRUPT 0x20

Defines:
END_OF_INTERRUPT, used in chunk 146a.

to all PICs which are involved: In case of an interrupt number between 0 and 7 that is only
the primary PIC; in case the number is 8 or higher, both controllers need to be informed.
Omiing this step would stop the controller from raising further interrupts which would
basically disable interrupts completely.

Next we check whether a specific handler for the current interrupt has been installed
in the

[145b]⟨global variables 92b⟩+≡ (44a) ◁ 139a 148a ▷
void *interrupt_handlers[16] = { 0 };

Defines:
interrupt_handlers, used in chunk 146.
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array of interrupt handlers.
[146a] ⟨function implementations 100b⟩+≡ (44a) ◁ 140b 146c ▷

void irq_handler (context_t *r) {
int number = r->int_no - 32; // interrupt number
void (*handler)(context_t *r); // type of handler functions

if (number ≥ 8) {
outportb (IO_PIC_SLAVE_CMD, END_OF_INTERRUPT); // notify slave PIC

}
outportb (IO_PIC_MASTER_CMD, END_OF_INTERRUPT); // notify master PIC (always)

handler = interrupt_handlers[number];
if (handler != NULL) {

handler (r);
}

}
Defines:

irq_handler, used in chunks 143b and 144.
Uses context_t 142a, END_OF_INTERRUPT 145a, interrupt_handlers 145b, IO_PIC_MASTER_CMD 134,

IO_PIC_SLAVE_CMD 134, NULL 46a, and outportb 133b.

As a last step we provide a function
[146b] ⟨function prototypes 45a⟩+≡ (44a) ◁ 139f 146e ▷

void install_interrupt_handler (int irq, void (*handler)(context_t *r));
Uses context_t 142a and install_interrupt_handler 146c.

which lets us enter (pointers to) handler functions in this array; it is prey simple:
[146c] ⟨function implementations 100b⟩+≡ (44a) ◁ 146a 151c ▷

void install_interrupt_handler (int irq, void (*handler)(context_t *r)) {
if (irq ≥ 0 && irq < 16)

interrupt_handlers[irq] = handler;
}

Defines:
install_interrupt_handler, used in chunks 146b, 323b, 339a, 520a, 534b, and 552c.

Uses context_t 142a and interrupt_handlers 145b.

Early in the ⟨initialize system 45b⟩ step of the kernel’s mainb() function we need to load
the Interrupt Descriptor Table Register (IDTRIDTR ) so that the CPU can find the table:

[146d] ⟨install the interrupt descriptor table 146d⟩≡ (45b)
idtp.limit = (sizeof (struct idt_entry) * 256) - 1; // must do -1
idtp.base = (int) &idt;
idt_load ();

Uses idt 138a, idt_entry 137a, idt_load 147a, and idtp 138a.

It uses the assembler function
[146e] ⟨function prototypes 45a⟩+≡ (44a) ◁ 146b 147b ▷

extern void idt_load ();
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which is related to gdt_flushb, just writing the address of idtpa to the IDTR register
via the lidt lidtinstruction instead of writing the address of gpb to GDTR via lgdt:

[147a]⟨start.asm 87⟩+≡ ◁ 144 148c ▷
extern idtp ; defined in the C file
global idt_load
idt_load: lidt [idtp]

ret
Defines:

idt_load, used in chunk 146.
Uses idtp 138a.

In the following chapters we will oen use this function in commands similar to

install_interrupt_handler (IRQ_SOMEDEV, somedev_handler);

For comparison, once more gdt_flushb and idt_loada:

extern gp ; defined in the C file
global gdt_flush

gdt_flush: lgdt [gp]
mov ax, 0x10
mov ds, ax
mov es, ax
mov fs, ax
mov gs, ax
mov ss, ax
jmp 0x08:flush2

flush2: ret

extern idtp ; defined in the C file
global idt_load

idt_load: lidt [idtp]
ret

(e gdt_flushb function does more than idt_loada since it also updates all segment
registers.)

5.3 Faults
As we’ve mentioned in the introduction to this chapter, handling a fault is very similar to
handling an interrupt. Since you’ve just seen the interrupt code, you will recognize many
concepts at once while we present the fault handling code.

Like we defined the interrupt handlers irq0() to irq15() in the assembler file start.
asm, we do the same with 32 fault handler functions fault0b() to fault31b().

[147b]⟨function prototypes 45a⟩+≡ (44a) ◁ 146e 151b ▷
extern void

fault0(), fault1(), fault2(), fault3(), fault4(), fault5(), fault6(),
fault7(), fault8(), fault9(), fault10(), fault11(), fault12(), fault13(),
fault14(), fault15(), fault16(), fault17(), fault18(), fault19(), fault20(),
fault21(), fault22(), fault23(), fault24(), fault25(), fault26(), fault27(),
fault28(), fault29(), fault30(), fault31();
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Uses fault0 149b, fault1 149b, fault10 149b, fault11 149b, fault12 149b, fault13 149b, fault14 149b,
fault15 149b, fault16 149b, fault17 149b, fault18 149b, fault19 149b, fault2 149b, fault20 149b,
fault21 149b, fault22 149b, fault23 149b, fault24 149b, fault25 149b, fault26 149b, fault27 149b,
fault28 149b, fault29 149b, fault3 149b, fault30 149b, fault31 149b, fault4 149b, fault5 149b, fault6 149b,
fault7 149b, fault8 149b, and fault9 149b.

and we enter these in the IDT just like we did with the irq*() functions.
[148a] ⟨global variables 92b⟩+≡ (44a) ◁ 145b 151a ▷

void (*faults[32])() = {
fault0, fault1, fault2, fault3, fault4, fault5, fault6, fault7,
fault8, fault9, fault10, fault11, fault12, fault13, fault14, fault15,
fault16, fault17, fault18, fault19, fault20, fault21, fault22, fault23,
fault24, fault25, fault26, fault27, fault28, fault29, fault30, fault31

};
Defines:

faults, used in chunks 148b and 607c.
Uses fault0 149b, fault1 149b, fault10 149b, fault11 149b, fault12 149b, fault13 149b, fault14 149b,

fault15 149b, fault16 149b, fault17 149b, fault18 149b, fault19 149b, fault2 149b, fault20 149b,
fault21 149b, fault22 149b, fault23 149b, fault24 149b, fault25 149b, fault26 149b, fault27 149b,
fault28 149b, fault29 149b, fault3 149b, fault30 149b, fault31 149b, fault4 149b, fault5 149b, fault6 149b,
fault7 149b, fault8 149b, and fault9 149b.

We install those handlers in the same way that we registered the interrupt handlers
earlier (see page 139):

[148b] ⟨install the fault handlers 148b⟩≡ (45b) 202e ▷
for (int i = 0; i < 32; i++) {

fill_idt_entry (i,
(unsigned int)faults[i],
0x08,
0b1110, // flags: 1 (present), 11 (DPL 3), 0
0b1110); // type: 1110 (32 bit interrupt gate)

}
Uses faults 148a and fill_idt_entry 138c.

In the assembler file we use the same trick for the fault*() functions that you’ve just
seen for irq*():

[148c] ⟨start.asm 87⟩+≡ ◁ 147a 149a ▷
global fault0, fault1, fault2, fault3, fault4, fault5, fault6, fault7
global fault8, fault9, fault10, fault11, fault12, fault13, fault14, fault15
global fault16, fault17, fault18, fault19, fault20, fault21, fault22, fault23
global fault24, fault25, fault26, fault27, fault28, fault29, fault30, fault31

e handlers all look similar: We push one or two bytes on the stack and then jump
to fault_common_stubb. e choice of one or two arguments depends on the kind of
interrupt that occurred: for some faults the CPU pushes a one-byte error codeerror code on the
stack, and for some others it does not. In order to have the same stack setup (regardless
of the fault) we push an extra null byte in those cases where no error code is pushed.

e code always looks like one of the following two cases:
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fault5: push byte 0 ; error code fault8: ; no error code
push byte 5 push byte 8
jmp fault_common_stub jmp fault_common_stub

Since we do not want to type this repeatedly, we use nasm’s macro feature which lets us
write simple macros for both cases. fault_macro_0a handles the cases where we need to
push an extra null byte (as in fault5b above), and fault_macro_no0a handles the other
cases (as in fault8b above):

[149a]⟨start.asm 87⟩+≡ ◁ 148c 149b ▷
%macro fault_macro_0 1

push byte 0 ; error code
push byte %1
jmp fault_common_stub

%endmacro

%macro fault_macro_no0 1
; don't push error code
push byte %1
jmp fault_common_stub

%endmacro
Defines:

fault_macro_0, used in chunk 149b.
fault_macro_no0, used in chunk 149b.

Uses fault_common_stub 150b.

With these macros the rest is straight-forward:
[149b]⟨start.asm 87⟩+≡ ◁ 149a 150a ▷

fault0: fault_macro_0 0 ; Divide by Zero
fault1: fault_macro_0 1 ; Debug
fault2: fault_macro_0 2 ; Non Maskable Interrupt
fault3: fault_macro_0 3 ; INT 3
fault4: fault_macro_0 4 ; INTO
fault5: fault_macro_0 5 ; Out of Bounds
fault6: fault_macro_0 6 ; Invalid Opcode
fault7: fault_macro_0 7 ; Coprocessor not available
fault8: fault_macro_no0 8 ; Double Fault
fault9: fault_macro_0 9 ; Coprocessor Segment Overrun
fault10: fault_macro_no0 10 ; Bad TSS
fault11: fault_macro_no0 11 ; Segment Not Present
fault12: fault_macro_no0 12 ; Stack Fault
fault13: fault_macro_no0 13 ; General Protection Fault
fault14: fault_macro_no0 14 ; Page Fault
fault15: fault_macro_0 15 ; (reserved)
fault16: fault_macro_0 16 ; Floating Point
fault17: fault_macro_0 17 ; Alignment Check
fault18: fault_macro_0 18 ; Machine Check
fault19: fault_macro_0 19 ; (reserved)
fault20: fault_macro_0 20 ; (reserved)
fault21: fault_macro_0 21 ; (reserved)
fault22: fault_macro_0 22 ; (reserved)
fault23: fault_macro_0 23 ; (reserved)
fault24: fault_macro_0 24 ; (reserved)
fault25: fault_macro_0 25 ; (reserved)
fault26: fault_macro_0 26 ; (reserved)
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fault27: fault_macro_0 27 ; (reserved)
fault28: fault_macro_0 28 ; (reserved)
fault29: fault_macro_0 29 ; (reserved)
fault30: fault_macro_0 30 ; (reserved)
fault31: fault_macro_0 31 ; (reserved)

Defines:
fault0, used in chunks 147b and 148a.
fault1, used in chunks 147b and 148a.
fault10, used in chunks 147b and 148a.
fault11, used in chunks 147b and 148a.
fault12, used in chunks 147b and 148a.
fault13, used in chunks 147b and 148a.
fault14, used in chunks 147b and 148a.
fault15, used in chunks 147b and 148a.
fault16, used in chunks 147b and 148a.
fault17, used in chunks 147b and 148a.
fault18, used in chunks 147b and 148a.
fault19, used in chunks 147b and 148a.
fault2, used in chunks 147b and 148a.
fault20, used in chunks 147b and 148a.
fault21, used in chunks 147b and 148a.
fault22, used in chunks 147b and 148a.
fault23, used in chunks 147b and 148a.
fault24, used in chunks 147b and 148a.
fault25, used in chunks 147b and 148a.
fault26, used in chunks 147b and 148a.
fault27, used in chunks 147b and 148a.
fault28, used in chunks 147b and 148a.
fault29, used in chunks 147b and 148a.
fault3, used in chunks 147b and 148a.
fault30, used in chunks 147b and 148a.
fault31, used in chunks 147b and 148a.
fault4, used in chunks 147b and 148a.
fault5, used in chunks 147b and 148a.
fault6, used in chunks 147b and 148a.
fault7, used in chunks 147b and 148a.
fault8, used in chunks 147b and 148a.
fault9, used in chunks 147 and 148.

Uses fault_macro_0 149a and fault_macro_no0 149a.

fault_common_stubb is—almost—a rewrite of irq_common_stub, the only difference is
that we call a different C function fault_handlerc() in the middle.

[150a] ⟨start.asm 87⟩+≡ ◁ 149b 150b ▷
extern fault_handler

Uses fault_handler 151c.

e stub saves the processor state, calls the handler function and restores the stack frame:
[150b] ⟨start.asm 87⟩+≡ ◁ 150a 197c ▷

fault_common_stub:
⟨push registers onto the stack 142b⟩
call fault_handler ; call C function
⟨pop registers from the stack 143a⟩
add esp, 8 ; for errcode, irq no.
iret

Defines:
fault_common_stub, used in chunk 149a.

Uses fault_handler 151c.
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Initially our fault handlers will just output a message stating the cause of the fault and
then halt the system; later we will provide fault handlers for some types of faults which
try to solve the problem and let the operation go on. Here are the error messages:

[151a]⟨global variables 92b⟩+≡ (44a) ◁ 148a 162b ▷
char *exception_messages[] = {

"Division By Zero", "Debug", // 0, 1
"Non Maskable Interrupt", "Breakpoint", // 2, 3
"Into Detected Overflow", "Out of Bounds", // 4, 5
"Invalid Opcode", "No Coprocessor", // 6, 7
"Double Fault", "Coprocessor Segment Overrun", // 8, 9
"Bad TSS", "Segment Not Present", // 10, 11
"Stack Fault", "General Protection Fault", // 12, 13
"Page Fault", "Unknown Interrupt", // 14, 15
"Coprocessor Fault", "Alignment Check", // 16, 17
"Machine Check", // 18
"Reserved", "Reserved", "Reserved", "Reserved", "Reserved",
"Reserved", "Reserved", "Reserved", "Reserved", "Reserved",
"Reserved", "Reserved", "Reserved" // 19..31

};
Defines:

exception_messages, used in chunk 152a.

We get the correct message by accessing the proper entry of the array, e. g., for a page
fault (with fault number 14) it is stored in exception_messagesa[14].

Our C Fault Handlerfault handler
[151b]⟨function prototypes 45a⟩+≡ (44a) ◁ 147b 162c ▷

void fault_handler (context_t *r);

displays some information about the problem and checks whether the fault occurred while
a process was running (by testing whether r->eip < 0xc0000000). If not, the system
switches to the kernel mode shell (and is broken).

e page fault handler is a special case: we expect to deal with page faults silently (see
Chapter 9), so we check for this case before doing anything else.

[151c]⟨function implementations 100b⟩+≡ (44a) ◁ 146c 162d ▷
void fault_handler (context_t *r) {

if (r->int_no == 14) { // fault 14 is a page fault
page_fault_handler (r); return;

}

memaddress fault_address = (memaddress)(r->eip);

if (r->int_no < 32) {
⟨fault handler: display status information 152a⟩

if ( fault_address < 0xc0000000 ) { // user mode
⟨fault handler: terminate process 152b⟩

}
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⟨disable scheduler 276b⟩ // error inside the kernel
⟨enable interrupts 47b⟩
printf ("\n");
asm ("jmp kernel_shell");

}
}

Defines:
fault_handler, used in chunks 150 and 151b.

Uses context_t 142a, kernel_shell 610a, memaddress 46c, page_fault_handler 289a, and printf 601a.

For displaying the status information we look at the register contents which are pro-
vided by r. Especially interesting are the task number, the address space number, the
address of the faulting instruction, the EFLAGS register and the error code which the CPU
has provided upon entry into the fault handler.

[152a] ⟨fault handler: display status information 152a⟩≡ (151c 290a)
printf ("'%s' Exception at 0x%08x (task=%d, as=%d).\n",

exception_messages[r->int_no], r->eip, current_task, current_as);
printf ("eflags: 0x%08x errcode: 0x%08x\n", r->eflags, r->err_code);
printf ("eax: %08x ebx: %08x ecx: %08x edx: %08x \n",

r->eax, r->ebx, r->ecx, r->edx);
printf ("eip: %08x esp: %08x int: %8d err: %8d \n",

r->eip, r->esp, r->int_no, r->err_code);
printf ("ebp: %08x cs: 0x%02x ds: 0x%02x es: 0x%02x fs: 0x%02x ss: 0x%02x \n",

r->ebp, r->cs, r->ds, r->es, r->fs, r->ss);
printf ("User mode stack: 0x%08x-0x%08x\n", TOP_OF_USER_MODE_STACK

- address_spaces[current_as].stacksize, TOP_OF_USER_MODE_STACK);
Uses address_spaces 162b, current_as 170b, current_task 192c, exception_messages 151a, printf 601a,

and TOP_OF_USER_MODE_STACK 159b.

If a process was running, the fault handler terminates it:
[152b] ⟨fault handler: terminate process 152b⟩≡ (151c 290a 291)

thread_table[current_task].state = TSTATE_ZOMBIE;
remove_from_ready_queue (current_task);
r->ebx = -1; // exit code for this process
syscall_exit (r);

Uses current_task 192c, remove_from_ready_queue 184c, syscall_exit 216b, thread_table 176b,
and TSTATE_ZOMBIE 180a.

Since we have not talked about processes yet, you need not worry about the reference
to the thread table via thread_table[current_task] or remove_from_ready_queuec(). We
will explain this function and the thread table data structure later, and we will also show
what the syscall_exitb() function does. You can choose to ignore the complete ⟨fault
handler: terminate process 152b⟩ block in the code for now.

A page fault need not be a problem: it oen occurs because the code aempted to
access an invalid address (which is bad), but yet more oen the address will be valid, but
the page won’t be in the physical RAM.at situation can be helped. In Chapter 9 we will
implement the page fault handlerpage fault

handler
. It requires a working hard disk since we will page out

pages to the disk and later page them in again.



5.4 Exercises 153

5.4 Exercises
16. Keyboard driver: Polling

In Tutorial 4the folder tutorial// you find a version of the U kernel which contains the
new interrupt and fault handling code. It is a literate program (ulix.nw). You will now
develop a simple keyboard driver, extending the provided code, and you should try to
retain the literate programming style, i. e., integrate code and documentation in the
file.
cd into the folder and open the file ulix.nw. At the end you will find a section “key-
board driver” where you can place your new code; at least most of it. e rest of the
file corresponds to the literate program from the last exercise, but some new mecha-
nisms have been added.
As a first step you can test querying the keyboard controller via polling:

a) e keyboard controller can be accessed via two ports (0x60 and 0x64) which you
can read from via inportbb(). Append the port numbers to the ⟨constants 112a⟩
code chunk:
#define KBD_DATA_PORT 0x60
#define KBD_STATUS_PORT 0x64

edata port delivers information about pressed and released keys, and the status
port lets you check whether a key was pressed (or released) at all.

b) Try to continuously read the data port in a loop and print the results (as numbers).
You can query with the following code:
byte scancode;
scancode = inportb (KBD_DATA_PORT);

(We have prepared an empty code chunk ⟨kernel main: user-defined tests ⟩ at
the end of the Noweb file which will be called aer initialization.) Print the
scan codes with printfa(). is will quickly fill the screen (even if you add no
newlines to your printfa call), so you should clear the screen when you reach
the boom line:
if (posy == 25) clrscr ();

You will notice that this approach writes a continuous (and quick) stream of data
onto the screen. While the system is running, press a few keys; that will modify
the output. keyboard

scan code
(You may have to keep the keys pressed to recognize the changes.)

e values are keyboard scan codes, each of them represents an action of pressing
or releasing a key. You will see the same value again and again until a new
press/release event occurs.

c) Improve the code by also checking the status register (via the status port). at
works in the same way that you’ve accessed the data port, but uses the port
number KBD_STATUS_PORT. If the lowest bit of the return value is set (which you
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can check with if ((status & 1) == 1)), then there is a fresh scan code, and only
then should you query the data port. e modified code will only generate an
output when you press or release a key.

d) e scan codes for pressing and releasing a key only differ in the eighth bit (it it
set for release events), so for example scan codes for the “A” key are 30 and 158
(= + ), for its le neighbor key “S” they are 31 and 159 (= + ). Create
a mapping table which stores the upper case leers which correspond to a few
scan codes. You need not look up an ASCII table but can simply enter characters,
such as 'A' or 'B', in the table. Initialize the table with zero values:
char scancode_table[128] = { 0 };

en you can start with adding entries for the scan codes you already know, e. g.
30 and 31 for the “A” and “S” keys. (We ignore release codes in this table.)
scancode_table[30] = 'A';
scancode_table[31] = 'S';

Identify the return key’s scan code. e corresponding character is '\n'.
Modify your existing code so that it does not only print the scan code but also
the character (if it is known, i. e., the corresponding table entry is not 0). Test
your program. (e printfa format code for characters is %c. When you print
release scan codes you get negative numbers—you can get rid of them by casting
the scan code to the int type.)

is leaves you with a simple, polling keyboard driver.

17. Keyboard driver: Interrupts

In this exercise you switch to an interrupt-based keyboard driver.

a) Add the following lines to an appropriate place in the system initialization, e. g.
in the ⟨kernel main: initialize system ⟩ chunk:
install_interrupt_handler (IRQ_KBD, keyboard_handler);
enable_interrupt (IRQ_KBD);
asm ("sti"); // enable interrupts

IRQ_KBD is already #defined as 1: It is the interrupt number used by the key-
board controller. Now you have to implement the keyboard handler. It has the
signature
void keyboard_handler (struct regs *r);

(struct regs is the same as context_ta in the rest of the book.) It will automat-
ically be called whenever you press or release a key.

b) Make sure that your handler gets called by leing it print a single character (e. g.
'*') and leaving the handler with return;.
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c) In the next step you evaluate and print the values that you can read from the
keyboard controller. It is not necessary to query the controller’s data port (as you
did in the above exercise), because the handler is only called when a new event
has occurred. Aer the output (like above, using the scan code table) you can
leave the handler with return;. Note that again, due to the simplified printfa
implementation, you will need to insert clrscrd() calls when you reach the
screen’s boom.
e advantage of using interrupts is that the main program (in mainb) need not
concern itself with the keyboard.

d) Next, implement a function
void kreadline (char *s, int len);

that you call from mainb(), e. g. with
char input[41]; // 40 characters plus \0 terminator
kreadline ((char*)input, 40);

e goal is that kreadline() fills the provided string (a char pointer) with the char-
acters you enter (as far as they are known in the scan code table) until you either
complete the input by pressing [Enter] or until the maximum number of charac-
ters (len) is reached. Only then shall the function return. e main program can
then print the read string and start over, using an infinite loop.
e important aspect of this exercise is that the kreadline needs to cooperate
with the interrupt handler. You will need two new global variables for an input
buffer and for the next character position in the buffer:
char buffer[256]; // buffer for input
short int pos = 0; // current position in the buffer

e interrupt handler should work as follows:

• If the scan code is larger than 127 (release event), the handler returns imme-
diately (it simply ignores release events).

• When an unknown scan code shows up, the handler also returns at once.
• Otherwise it will print the character and also write it into the buffer.
• en it increases pos and returns.

kreadline() performs an infinite loop and checkswhether (pos>0 && buffer[pos-1]
=='\n') is true—if so, then the function copies the entered string (from position 0
to pos-2) to s, sets pos=0 and returns. Note that the stringmust be '\0'-terminated
so that printfa() can later use it. You can simply replace the '\n' chacracter
with '\0' if the input is terminated by pressing [Enter]; if you reach themaximum
allowed number of characters, you write '\0' into the last byte of the string.
For copying the string you can use strncpyb(). at function works like the
corresponding Linux function (see man strncpy), i. e., it expects target, source and
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maximum length of the target string as arguments.
Your scan code table will need an entry for the [Enter] key in order to make this
work.

18. Baspace Support

Modify your code for the keyboard handler and the kreadline function so that it treats
the backspace key appropriately: With that key you shall be able to delete the last
character that was entered. It shall both be removed from the screen and from the
string which kreadline returns.

19. Faults
e current version of the mini kernel contains fault handlers. Verify that they work
correctly by generating some typical faults:

• Division by zero: Have your main program perform a division by zero, for exam-
ple via int z = 1 / 0;—you can ignore any compiler warnings that this code will
cause.

• Try to access non-available memory, e. g., with
char *address = (char*)0xE0000000; char tmp = *address;

• Set the segment register DS to an invalid segment number, e. g.:
asm ("mov $32, %ax; mov %ax, %ds");

• You can explicitly cause each fault (for fault numbers between 0 and 31) by using
the assembler instruction int $number. For example, in order to generate an “Out
of Bounds Fault” (number 5), you can use the line asm ("int $5");.

e reward should be a Division by Zero Fault, a Page Fault and a General Protection
Fault (and an Out of Bounds Fault in the last step).



6
Implementation of Processes

We have now wrien most of the code that we need to introduce the most important
concept: the process. In this chapter we take a first look at the data structures and kernel
functions which will let us create and schedule processes.

• In Chapter 6.1 we present the desired memory layout of a U process and describe
our implementation of address spaces.

• Chapter 6.2 introduces the central data structure for processes and threads, the pro-
cess control block (which we will refer to as a thread control block, TCB), as well as
queues for handling ready and blocked threads.

• Chapter 6.3 shows what we need to do in order to start the very first process; all
further processes will be created via the forkg mechanism.

• Since forking will require the existence of a system call interface, it is time to intro-
duce it: we present our implementation in Chapter 6.4.

• With system calls available we can explain the implementation of the forkmechanism
(and the fork system call) in Chapter 6.5.

• While it is an important step to bring new processes into existence, we also need to
handle their termination. In Chapter 6.6 we show how to exit from a process.

e remaining sections of this chapter are less interesting but still required: We provide
a method for requesting process information in Chapter 6.7 (which will let us write a
ps program), describe the ELF binary format and an ELF program loader in Chapter 6.8
(so that a process can start a different application via exec) and finally discuss an idle
process that will be activated when there is no other process that could do something
useful (Chapter 8.3.3).
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Everything you will see in this chapter deals with single-threaded processes. In Chap-
ter 7 we will extend our execution model so that it also supports multiple threads inside
one process. You might want to remember this whenever you wonder why we keep talk-
ing about thread control blocks (instead of process control blocks) throughout this chapter.

ere’s also a need to discuss how the system can switch between concurrent processes
and threads: once we have more than one active task, a scheduler must take care of this.
We delay this until Chapter 8.

6.1 Address Spaces for Processes
We will store information about memory usage in a data structure that we call address
space descriptoraddress space

descriptor
. e idea is that every process uses its own address space while several

threads (of the same process) share a common address space.
Address space descriptors are stored in one large address space table. is table must

be finite, i. e., there must exist a maximum number of address spaces for the system. is
must correspond to themaximumnumber of threads MAX_THREADSa that we’ll soon define:
While threads may share an address space, it is impossible for one thread to use more than
one address space. us MAX_ADDR_SPACESa has to be ≤ MAX_THREADSa—we give both
constants the same value:

[158a] ⟨constants 112a⟩+≡ (44a) ◁ 145a 159a ▷
#define MAX_ADDR_SPACES 1024

Defines:
MAX_ADDR_SPACES, used in chunks 162, 171a, 307a, and 308c.

As we will see later, every thread may have its own virtual address space and needs
to own a reference to an address space descriptor. Even the kernel will have to do that.
Since there can be so many address spaces, we need a shorthand to identify virtual address
spaces. We introduce the type addr_space_idb to do this. It is declared as unsigned int.
Basically, an addr_space_idb can be thought of as an index into the address space table.
So rather than storing a complete address space descriptor per thread, we will rather store
an address space identifier.

[158b] ⟨public elementary type definitions 45e⟩+≡ (44a 48a) ◁ 46c 178a ▷
typedef unsigned int addr_space_id;

Defines:
addr_space_id, used in chunks 122c, 158c, 162d, 163c, 166c, 168–72, 188, 190a, 210a, and 308c.

We already note that the thread control block (which will be the central data structure
for processes and threads) needs an addr_space_idb element. at data structure is called
TCB, andwewill define it later in this chapter, but youwill oen see the code chunk ⟨more
TCB entries 158c⟩ that lets us append entries to this structure whenever the need occurs:

[158c] ⟨more TCB entries 158c⟩≡ (175) 181 ▷
addr_space_id addr_space;

Uses addr_space_id 158b.
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6.1.1 Memory Layout of a Process
Every process needs three (virtual) memory areas.

• Code and Data: We will later compile user mode binaries which expect to be loaded
to the virtual addresses 0x0 and above. is area is used for the code (the machine
instructions in the binary) as well as variables defined statically in the program. e

Heapheap will exist just behind this memory area, processes can later dynamically expand
this memory area using the sbrkd function.

[159a]⟨constants 112a⟩+≡ (44a) ◁ 158a 159b ▷
#define BINARY_LOAD_ADDRESS 0x0

Defines:
BINARY_LOAD_ADDRESS, used in chunks 163c, 190c, and 192d.

• UserMode Sta: Every process needs its own stack: at is where the CPUwill store
return addresses and arguments whenever the process makes a function call. We’ll
use the virtual addresses below 0xb0000000 which will leave a lot of space between
the code and data and the stack: We want the stack to grow automatically, so we’ll
start with just one single page of memory for the stack and increase it as needed:
When you think of recursive functions where the end of the recursion depends on
some calculation inside the program, it is clear that we cannot have a maximum size
for the stack. Expanding the stack is a task for the page fault handler which we’ve
already mentioned. You will see its implementation on page 287 ff.

[159b]⟨constants 112a⟩+≡ (44a) ◁ 159a 159c ▷
#define TOP_OF_USER_MODE_STACK 0xb0000000

Defines:
TOP_OF_USER_MODE_STACK, used in chunks 152a, 165a, 167b, 192d, 231, 289c, and 291.

• Kernel Sta: For several reasons we need a second stack when a process switches to
kernel mode (using a system call, see Section 6.4). While it would be possible to share
one kernel stack between all the processes, that would also limit us: With a single
kernel stack we would run into problems when two or more processes need to enter
kernel mode at the same time.
ere’s also a security aspect: e kernel stack may contain kernel data that the
process should not have access to.
We’ll put the kernel stack just under the kernel space of memory, at addresses below
0xc0000000.

[159c]⟨constants 112a⟩+≡ (44a) ◁ 159b 162a ▷
#define TOP_OF_KERNEL_MODE_STACK 0xc0000000

Defines:
TOP_OF_KERNEL_MODE_STACK, used in chunks 192b, 196a, 211b, 257b, 261, and 280a.

us, the memory layout of a process is as shown in Figure 6.1. e double line below
0xc0000000marks the barrier between process-specific and generic memory ranges: every-
thing above 0xc0000000 is globally visible and identical in every address space, whereas the
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lower addresses differ for each process, and they do not exist at all before the first process
has been created.

Address ranges marked ‘K’ in the last column need kernel privileges to be accessed.
Heap areas will only become available aer they are manually requested. e ‘(U)’ anno-
tation of the combined stack/heap area refers to the fact that it is not allocated when a
process starts but rather can grow both from the top and from the boom, depending on
the process’ actions.

Address Range Usage Access
0xD4000000 – 0xFFFFFFFF unused –
0xD0000000 – 0xD3FFFFFF 64 MByte Physical RAM (mapped) K
0xC0000000 – 0xCFFFFFFF Kernel Code and Data K
0xBFFFF000 – 0xBFFFFFFF Kernel Stack (4 KByte = one page) K
0xB0000000 – 0xBFFFEFFF unused –

… – 0xAFFFFFFF User Mode Stack U

User Mode Stack (grows automatically)
(U)

Heap (can be grown with sbrkd)

0x00000000 – … Process Code and Data U

Figure 6.1: is is the memory layout of a process.

We will later provide a modified version of this memory model, when we introduce sev-
eral threads (of the same process), but for now this description is sufficient to understand
the process implementation.

6.1.2 Creating a New Address Space
Essentially, an address space is just a fresh page directory. Its kernel memory part (ad-
dresses 0xc0000000 and higher) will be identical to the kernel’s page directory which we’ve
already set up earlier.

It is helpful to reconsider how the CPU (or the MMU) accesses the paging information:
A register holds the address of the page directory which has 1024 entries, each of which
is either null or points to a page table.

e upper − =  entries are responsible for the kernel memory (0xC0000000 –
0xFFFFFFFF), and the lower 768 entries are available for process memory (0x00000000 –
0xBFFFFFFF) with the upper part of each process’ private memory (0xBFFFF000 – 0xBFFFFFFF)
being the kernel stack which is only available in kernel mode.

We want to allow for three different situations, as far as access to process memory and
kernel memory is concerned:
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pure kernel mode: e kernel is actively dealing with specific kernel tasks, such as
memory management or interrupt service. e kernel’s view on memory in this
state is as it was aer we enabled paging: It sees its own memory (0xC0000000 –
0xCFFFFFFF) and the physical memory which is mapped to addresses starting at
0xD0000000, but no process memory. We will not use this mode once the first process
was created.

process in user mode: A process is active and running in user mode. It only sees its
own memory (0x00000000 – 0xAFFF.FFFF: code, data, heap and user mode stack). e
paging information will map the kernel stack and the kernel’s memory as well, but
since it will be marked non-user-mode-accessible, that will be the same as not hav-
ing it at all when running in user mode. In this mode any aempt to access kernel
memory (either its data or its code) will generate a page fault—even if the address
is valid.

process in kernel mode: A process has entered kernel mode via a system call or an
interrupt has occurred. In this situation the page tables must give access to both the
current process’ memory and the kernel memory. All 4 GByte of virtual memory
are visible. e paging information can be the same as for the process in user mode:
the current level of execution (kernel mode instead of user mode) grants the access
to all of the virtual memory. (For handling an interrupt it is not necessary to see
the current process’ user mode memory, so we could switch to pure kernel mode in
order to prevent interrupt handlers from looking at process memory. But since we
intend to trust our interrupt handlers, we will not do that.)

We reserve memory for an address space list. is list does not hold the page directory
or the page tables it points to, but just the address of the page directory and some status
information:

[161]⟨type definitions 91⟩+≡ (44a) ◁ 137b 178b ▷
typedef struct {

void *pd; // pointer to the page directory
int pid; // process ID (if used by a process; -1 if not)
short status; // are we using this address space?
memaddress memstart, memend; // first/last address below 0xc000.0000
unsigned int stacksize; // size of user mode stack
memaddress kstack_pt; // stack page table (for kernel stack)
unsigned int refcount; // how many threads use this address space?
⟨more address_space entries 257a⟩

} address_space;
Defines:

address_space, used in chunks 162b, 173a, and 304a.

pd holds the (virtual) address of the page directory. memstart and memend contain the first
and last user mode address (for code, data and heap), and stacksize tells the size of the
user mode stack. We also want to keep the address of the kernel mode stack’s page table
handy, thus we will store it in kstack_pt. refcount lets us count how oen the address
space is used—for non-threaded processes this value will always be 1.
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We define three possible values for the status field of an address space:
[162a] ⟨constants 112a⟩+≡ (44a) ◁ 159c 168b ▷

#define AS_FREE 0
#define AS_USED 1
#define AS_DELETE 2

Defines:
AS_DELETE, used in chunk 166c.
AS_FREE, used in chunks 162d, 169a, 171a, and 307a.
AS_USED, used in chunks 122c, 162e, 163c, and 308c.

e meaning of AS_FREEa and AS_USEDa is obvious, but why we need a third state
AS_DELETEa will only become clear when you reach the section that deals with process
termination. Briefly, we cannot immediately destroy the address space of a process which
has actively requested its termination, so that has to happen a bit later, and in the mean-
time the address space will be marked as “to be deleted”.

e address space tableaddress space
table

is an array of address space descriptors, and we will need a
function that lets us search for a free entry in the table:

[162b] ⟨global variables 92b⟩+≡ (44a) ◁ 151a 168c ▷
address_space address_spaces[MAX_ADDR_SPACES] = { { 0 } };

Defines:
address_spaces, used in chunks 122c, 152a, 162, 163c, 165–67, 169–71, 173a, 210, 211, 232c, 233c, 255b, 257b,

260a, 261, 279c, 289c, 291, 296, 297, 307a, and 308c.
Uses address_space 161 and MAX_ADDR_SPACES 158a.

[162c] ⟨function prototypes 45a⟩+≡ (44a) ◁ 151b 163a ▷
int get_free_address_space ();

It returns an integer value that serves as an index into the table.
[162d] ⟨function implementations 100b⟩+≡ (44a) ◁ 151c 163c ▷

int get_free_address_space () {
addr_space_id id = 0;
while ((address_spaces[id].status != AS_FREE) && (id < MAX_ADDR_SPACES)) id++;
if (id == MAX_ADDR_SPACES) id = -1;
return id;

}
Defines:

get_free_address_space, used in chunks 162c and 163c.
Uses addr_space_id 158b, address_spaces 162b, AS_FREE 162a, and MAX_ADDR_SPACES 158a.

We use the first entry of the array address_spacesb for the kernel and let it point to
the kernel page directory. We add the code for initializing this entry just aer enabling
paging:

[162e] ⟨enable paging for the kernel 109a⟩+≡ (97) ◁ 109a
address_spaces[0].status = AS_USED;
address_spaces[0].pd = &kernel_pd;
address_spaces[0].pid = -1; // not a process

Uses address_spaces 162b, AS_USED 162a, and kernel_pd 105a.

Seing pid to − marks this entry as an address space which belongs to no process.
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Here is what we need to do in order to create a fresh address space: We first retrieve a
new address space ID and mark its entry in the table as used. en we reserve memory
for a new page directory and copy the system’s one into it. Finally we set up some user
space memory and add it to the page directory:

[163a]⟨function prototypes 45a⟩+≡ (44a) ◁ 162c 164c ▷
int create_new_address_space (int initial_ram, int initial_stack);

e argument initial_ram defines the amount of process-private memory that should be
allocated at once, similarly initial_stack is the initial size of the user mode stack which
will always be just 4 KByte (though it can grow later). We expect the initial_ram and
initial_stack values to be multiples of the page size (4 KByte)—if not, we will make them
so, using this macro:

[163b]⟨macro definitions 35a⟩+≡ (44a) ◁ 117 174a ▷
#define MAKE_MULTIPLE_OF_PAGESIZE(x) x = ((x+PAGE_SIZE-1)/PAGE_SIZE)*PAGE_SIZE

Defines:
MAKE_MULTIPLE_OF_PAGESIZE, used in chunk 163c.

Uses PAGE_SIZE 112a.

If the function call is successful, create_new_address_spacec returns the ID of the newly
created address space, otherwise −:

[163c]⟨function implementations 100b⟩+≡ (44a) ◁ 162d 165b ▷
int create_new_address_space (int initial_ram, int initial_stack) {

MAKE_MULTIPLE_OF_PAGESIZE (initial_ram);
MAKE_MULTIPLE_OF_PAGESIZE (initial_stack);
// reserve address space table entry
addr_space_id id;
if ( (id = get_free_address_space ()) == -1 ) return -1; // fail
address_spaces[id].status = AS_USED;
address_spaces[id].memstart = BINARY_LOAD_ADDRESS;
address_spaces[id].memend = BINARY_LOAD_ADDRESS + initial_ram;
address_spaces[id].stacksize = initial_stack;
address_spaces[id].refcount = 1; // default: used by one process
⟨reserve memory for new page directory 164a⟩ // sets new_pd
address_spaces[id].pd = new_pd;
⟨copy master page directory to new directory 164b⟩

int frameno, pageno; // used in the following two code chunks
if (initial_ram > 0) { ⟨create initial user mode memory 164d⟩ }
if (initial_stack > 0) { ⟨create initial user mode stack 165a⟩ }
return id;

};
Defines:

create_new_address_space, used in chunks 163–65, 190a, and 210a.
Uses addr_space_id 158b, address_spaces 162b, AS_USED 162a, BINARY_LOAD_ADDRESS 159a, get_free_address_space

162d, and MAKE_MULTIPLE_OF_PAGESIZE 163b.

As usual we use request_new_pagea to get a fresh page of virtual memory which will
store the new page directory: that function will also update the page directories of all
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already existing address spaces if it has to create a new page table (for addresses in the
kernel memory).

[164a] ⟨reserve memory for new page directory 164a⟩≡ (163c)
page_directory *new_pd = request_new_page ();
if (new_pd == NULL) { // Error

printf ("\nERROR: no free page, aborting create_new_address_space\n");
return -1;

};
memset (new_pd, 0, sizeof (page_directory));

Uses create_new_address_space 163c, memset 596c, NULL 46a, page_directory 103d, printf 601a,
and request_new_page 120a.

For copying the kernel page directory to the new directory, we simply use an assign-
ment; this copies all references to page tables which exist in the original (kernel) page
directory.

[164b] ⟨copy master page directory to new directory 164b⟩≡ (163c)
*new_pd = kernel_pd;
memset ((char*)new_pd, 0, 4); // clear first entry (kernel pd contains

// old reference to some page table)
Uses kernel_pd 105a and memset 596c.

Note that once we have more than one address space, we must make sure that all
changes to the kernel part (the addresses starting at 0xC0000000) will be made in each
copy. e page tables of that area are all shared, but when we create a new page table,
we have to write the new mapping into every page directory—you have already seen the
code on page 122.

We modify the new page directory so that it contains information about the user mode
memory, stack and kernel stack. For that purpose we will use a function

[164c] ⟨function prototypes 45a⟩+≡ (44a) ◁ 163a 166b ▷
int as_map_page_to_frame (int as, unsigned int pageno, unsigned int frameno);

which can create mappings of page numbers to frame numbers in a specific address space.
Wewill define it just aerwards; it finds out what page table entry tomodify and, if needed,
also creates a new page table and updates the page directory to point to it.

[164d] ⟨create initial user mode memory 164d⟩≡ (163c)
pageno = 0;
while (initial_ram > 0) {

if ((frameno = request_new_frame ()) < 0) {
printf ("\nERROR: no free frame, aborting create_new_address_space\n");
return -1;

};
as_map_page_to_frame (id, pageno, frameno);
pageno++;
initial_ram -= PAGE_SIZE;

};
Uses as_map_page_to_frame 165b, create_new_address_space 163c, PAGE_SIZE 112a, printf 601a,

and request_new_frame 118b.
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Reserving memory for the user mode stack looks almost the same, we just let the stack
grow downwards whereas above the memory addresses moved upwards: so we need to
modify the page number with pageno-- instead of pageno++:

[165a]⟨create initial user mode stack 165a⟩≡ (163c)
pageno = TOP_OF_USER_MODE_STACK / PAGE_SIZE;
while (initial_stack > 0) {

if ((frameno = request_new_frame ()) < 0) {
printf ("\nERROR: no free frame, aborting create_new_address_space\n");
return -1;

};
pageno--;
as_map_page_to_frame (id, pageno, frameno);
initial_stack -= PAGE_SIZE;

}
Uses as_map_page_to_frame 165b, create_new_address_space 163c, PAGE_SIZE 112a, printf 601a,

request_new_frame 118b, and TOP_OF_USER_MODE_STACK 159b.

We will now describe how to enter the page-to-frame mapping in the new address
space’s page tables. Geing new physical memory is not a problem since we already
have defined the function request_new_frameb() which reserves a new frame.

e function as_map_page_to_frameb creates such a mapping in a given address space.
It will basically be a rewrite of parts of ⟨enter frames in page table 121a⟩.

[165b]⟨function implementations 100b⟩+≡ (44a) ◁ 163c 166c ▷
int as_map_page_to_frame (int as, unsigned int pageno, unsigned int frameno) {

// for address space as, map page #pageno to frame #frameno
page_table *pt;
page_directory *pd;

pd = address_spaces[as].pd; // use the right address space
unsigned int pdindex = pageno/1024; // calculuate pd entry
unsigned int ptindex = pageno%1024; // ... and pt entry

if ( ! pd->ptds[pdindex].present ) {
// page table is not present
⟨create new page table for this address space 166a⟩ // sets pt

} else {
// get the page table
pt = (page_table*) PHYSICAL(pd->ptds[pdindex].frame_addr << 12);

};
if (pdindex < 704) // address below 0xb0000000 -> user access

UMAP ( &(pt->pds[ptindex]), frameno << 12 );
else

KMAP ( &(pt->pds[ptindex]), frameno << 12 );
return 0;

};
Defines:

as_map_page_to_frame, used in chunks 164, 165a, 173a, 211a, 257c, and 291.
Uses address_spaces 162b, KMAP 101a, page_directory 103d, page_table 101b, PHYSICAL 116a, and UMAP 101a.
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In the last lines of this function we differentiate between user mode and kernel modemem-
ory and use the appropriate macro (UMAPa or KMAPa) to create an entry which allows
or forbids access for processes in user mode: e address range 0x00000000 – 0xafffffff
grants the process access in user mode, whereas 0xb0000000 – 0xffffffff shall only be ac-
cessible in kernel mode.

Remember that every page directory entry lets us address one page table which holds
the addresses of up to 1 024 pages, or  ×  =    bytes (4 MByte) of memory.

0xb0000000

 ×  
= 

so we must use UMAPa if pdindex < .
Now we need to explain how to create a new page table: We start with fetching a free

frame and point to it from the page directory.
[166a] ⟨create new page table for this address space 166a⟩≡ (165b)

int new_frame_id = request_new_frame ();
memaddress address = PHYSICAL (new_frame_id << 12);
pt = (page_table *) address;
memset (pt, 0, sizeof (page_table));
UMAPD ( &(pd->ptds[pdindex]), new_frame_id << 12);

Uses memaddress 46c, memset 596c, new_frame_id, page_table 101b, PHYSICAL 116a, request_new_frame 118b,
and UMAPD 103c.

6.1.3 Destroying an Address Space
When we exit from a process, we must also destroy its address space and release all pages
used by it. For that purpose we write a function destroy_address_spacec():

[166b] ⟨function prototypes 45a⟩+≡ (44a) ◁ 164c 168a ▷
void destroy_address_space (addr_space_id id);

Its main task is to undo all the memory allocations that were performed when we created
the address space so that no memory leaks occur: A sequence like

id = create_new_address_space (...);
destroy_address_space (id);

should return the global memory status to the same situation that it had before the cre-
ation:

[166c] ⟨function implementations 100b⟩+≡ (44a) ◁ 165b 168d ▷
void destroy_address_space (addr_space_id id) {

// called only from syscall_exit(), with interrupts off
if (--address_spaces[id].refcount > 0) return;
addr_space_id as = current_as; // remember current address space
current_as = id; // set current_as: we call release_page()

⟨destroy AS: release user mode pages 167a⟩ // all pages used by the process
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⟨destroy AS: release user mode stack 167b⟩ // all its user mode stack pages
⟨destroy AS: release page tables 167c⟩ // the page tables (0..703)

current_as = as; // restore current_as
address_spaces[id].status = AS_DELETE; // change AS status

// remove kernel stack (cannot do this here, this stack is in use right now)
add_to_kstack_delete_list (id);

}
Defines:

destroy_address_space, used in chunks 166b and 216b.
Uses add_to_kstack_delete_list 168d, addr_space_id 158b, address_spaces 162b, AS_DELETE 162a,

current_as 170b, release_page 122d, and syscall_exit 216b.

e comment in the above chunk’s first line refers to protection of the thread table data.
We will later discuss synchronization issues (in Chapter 11), and the address space table is
one of the critical data structures that must be treated carefully. So, one would expect to
see code for protecting it in this function, but this protection occurs elsewhere. In short,
we will only modify the address space table when we hold a lock for the thread table, and
that lock is already held when the kernel enters this function. (e same holds for the
create_new_address_spacec function.)

Releasing the user mode memory is done in two simple steps:
[167a]⟨destroy AS: release user mode pages 167a⟩≡ (166c)

for ( int i = address_spaces[id].memstart / PAGE_SIZE;
i < address_spaces[id].memend / PAGE_SIZE;
i++ ) {

release_page (i);
};

Uses address_spaces 162b, PAGE_SIZE 112a, and release_page 122d.

[167b]⟨destroy AS: release user mode stack 167b⟩≡ (166c)
for ( int i = TOP_OF_USER_MODE_STACK / PAGE_SIZE - 1;

i > (TOP_OF_USER_MODE_STACK-address_spaces[id].stacksize) / PAGE_SIZE - 1;
i-- ) {

release_page (i);
};

Uses address_spaces 162b, PAGE_SIZE 112a, release_page 122d, and TOP_OF_USER_MODE_STACK 159b.

Aer releasing all the individual pages, we can also get rid of the page tables which
refer to user mode memory:

[167c]⟨destroy AS: release page tables 167c⟩≡ (166c)
page_directory *tmp_pd = address_spaces[id].pd;
for (int i = 0; i < 704; i++) {

if (tmp_pd->ptds[i].present)
release_frame (tmp_pd->ptds[i].frame_addr);

}
Uses address_spaces 162b, page_directory 103d, and release_frame 119b.
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In the last code chunk the loop goes from 0 to 703 since that is the last page directory
entry which points to a page table that is used in user mode (cf. the discussion of UMAPa
vs. KMAPa usage in the implementation of as_map_page_to_frameb on page 166).

We will remove the kernel stack later when we’re not using it any more—doing this
right now would crash the system because that memory is still in use. For that purpose
we use a global variable which contains either 0 or the ID of an address space whose kernel
stack needs removal. at is why we called the function

[168a] ⟨function prototypes 45a⟩+≡ (44a) ◁ 166b 170a ▷
void add_to_kstack_delete_list (addr_space_id id);

in the above code. We allow up to 1024 entries in the kernel stack delete list:
[168b] ⟨constants 112a⟩+≡ (44a) ◁ 162a 169b ▷

#define KSTACK_DELETE_LIST_SIZE 1024
Defines:

KSTACK_DELETE_LIST_SIZE, used in chunks 168 and 169a.

e kernel stack delete listkernel stack
delete list

is just an array of address space IDs that we initialize with
null values.

[168c] ⟨global variables 92b⟩+≡ (44a) ◁ 162b 170b ▷
addr_space_id kstack_delete_list[KSTACK_DELETE_LIST_SIZE] = { 0 };

Uses addr_space_id 158b and KSTACK_DELETE_LIST_SIZE 168b.

Entering an address space ID in the delete list is simple:
[168d] ⟨function implementations 100b⟩+≡ (44a) ◁ 166c 170c ▷

void add_to_kstack_delete_list (addr_space_id id) {
⟨begin critical section in kernel 380a⟩
int i;
for (i = 0; i < KSTACK_DELETE_LIST_SIZE; i++) {

// try to enter it here
if (kstack_delete_list[i] == 0) {

// found a free entry
kstack_delete_list[i] = id; break;

}
}
⟨end critical section in kernel 380b⟩
if (i == KSTACK_DELETE_LIST_SIZE)

printf ("ERROR ADDING ADDRESS SPACE TO KSTACK DELETE LIST!\n");
}

Defines:
add_to_kstack_delete_list, used in chunk 166c.

Uses addr_space_id 158b, KSTACK_DELETE_LIST_SIZE 168b, and printf 601a.

We have not shown the code for the scheduler yet, it is responsible for switching be-
tween the processes and is called regularly by the timer interrupt handler. Whenever the
system activates the scheduler it will execute the following code chunk ⟨scheduler: free
old kernel stacks 169a⟩ which frees those old kernel stacks that we’ve put into the list:
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[169a]⟨scheduler: free old kernel stacks 169a⟩≡ (277b)
// check all entries in the to-be-freed list
⟨begin critical section in kernel 380a⟩
for (int entry = 0; entry < KSTACK_DELETE_LIST_SIZE; entry++) {

if (kstack_delete_list[entry] != 0 && kstack_delete_list[entry] != current_as) {
// remove it
addr_space_id id = kstack_delete_list[entry];
page_directory *tmp_pd = address_spaces[id].pd;
page_table *tmp_pt = (page_table *) address_spaces[id].kstack_pt;
// this is the page table which maps the last 4 MB below 0xC0000000
for (int i = 0; i < KERNEL_STACK_PAGES; i++) {

int frameno = tmp_pt->pds[1023-i].frame_addr;
release_frame (frameno);

}
⟨remove extra thread kernel stacks 261⟩ // see Chapter 7
kstack_delete_list[entry] = 0; // remove entry from kstack delete list
release_page (((memaddress)tmp_pt) >> 12); // free memory for page table
release_page (((memaddress)tmp_pd) >> 12); // ... and page directory
address_spaces[id].status = AS_FREE; // mark address space as free

}
}
⟨end critical section in kernel 380b⟩

Uses addr_space_id 158b, address_spaces 162b, AS_FREE 162a, current_as 170b, KERNEL_STACK_PAGES 169b, kstack,
KSTACK_DELETE_LIST_SIZE 168b, memaddress 46c, page_directory 103d, page_table 101b, release_frame 119b,
and release_page 122d.

We haven’t defined the constant KERNEL_STACK_PAGESb yet: it tells the system how
many pages it shall reserve for the kernel stack.

[169b]⟨constants 112a⟩+≡ (44a) ◁ 168b 176a ▷
// kernel stack (per process): 1 page = 4 KByte
#define KERNEL_STACK_PAGES 4
#define KERNEL_STACK_SIZE PAGE_SIZE * KERNEL_STACK_PAGES

Defines:
KERNEL_STACK_PAGES, used in chunks 169a, 211, 257b, and 261.
KERNEL_STACK_SIZE, used in chunks 192b and 211b.

Uses PAGE_SIZE 112a.

We may sometimes also need to know the size of the kernel stack (KERNEL_STACK_SIZEb).

6.1.4 Switching between Address Spaces
In order to switch between two address spaces it is sufficient to load the new address
space’s page directory address into the CR3 register.

Note that using the function activate_address_spacec (which we show in this section)
should be avoided because it has the side effect of switching the kernel stack. Even while
it is implemented as inline function, it is still not safe to call it: parameter passing creates
local variables (on the kernel stack) which are lost aer the context switch. We will only
use it when we start the very first process.
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In earlier versions of the code, ⟨scheduler: context switch 279c⟩ used to make a function
call to activate_address_spacec() and it caused many problems (the operating system
crashed). Aer moving the CR3 loading code directly into the context switch, the problems
disappeared.

[170a] ⟨function prototypes 45a⟩+≡ (44a) ◁ 168a 170d ▷
inline void activate_address_space (addr_space_id id) __attribute__((always_inline));

[170b] ⟨global variables 92b⟩+≡ (44a) ◁ 168c 176b ▷
addr_space_id current_as = 0; // global variable: current address space

Defines:
current_as, used in chunks 120c, 123a, 152a, 166c, 169a, 170c, 173a, 210a, 216b, 232c, 233c, 255, 257, 260a,

279c, 289–91, 298a, 299a, 342b, 605c, and 614a.
Uses addr_space_id 158b.

[170c] ⟨function implementations 100b⟩+≡ (44a) ◁ 168d 170e ▷
inline void activate_address_space (addr_space_id id) {

// NOTE: Do not call this from the scheduler - where needed, replicate the code
memaddress virt = (memaddress)address_spaces[id].pd; // get PD address
memaddress phys = mmu (0, virt); // and find its physical address
asm volatile ("mov %0, %%cr3" : : "r"(phys)); // write CR3 register
current_as = id; // set current address space
current_pd = address_spaces[id].pd; // set current page directory

};
Defines:

activate_address_space, used in chunks 190a and 605c.
Uses addr_space_id 158b, address_spaces 162b, current_as 170b, current_pd 105a, memaddress 46c, mmu 172a,

and write 429b.

Here we use another function called mmua which emulates the behavior of the mem-
ory management unit (MMU) and calculates the physical address belonging to a virtual
address with respect to an address space. We will implement it soon.

We provide a helper function
[170d] ⟨function prototypes 45a⟩+≡ (44a) ◁ 170a 171b ▷

void list_address_spaces ();

which shows the list of used address spaces; it is only needed for debugging.
[170e] ⟨function implementations 100b⟩+≡ (44a) ◁ 170c 171a ▷

void list_address_space (addr_space_id id) {
int mem = (memaddress) address_spaces[id].pd;
int phys = mmu (id, (memaddress) address_spaces[id].pd); // emulate MMU
int memstart = address_spaces[id].memstart;
int memend = address_spaces[id].memend;
int stack = address_spaces[id].stacksize;
printf ("ID: %d, MEM: %08x, PHYS: %08x - USER: %08x, USTACK: %08x\n",

id, mem, phys, memend-memstart, stack);
}

Defines:
list_address_space, used in chunk 171a.

Uses addr_space_id 158b, address_spaces 162b, memaddress 46c, mmu 172a, and printf 601a.
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[171a]⟨function implementations 100b⟩+≡ (44a) ◁ 170e 171c ▷
void list_address_spaces () {

addr_space_id id;
for (id = 0; id < MAX_ADDR_SPACES; id++) {

if (address_spaces[id].status != AS_FREE) {
list_address_space (id);

}
}

}
Defines:

list_address_spaces, used in chunks 170d and 608b.
Uses addr_space_id 158b, address_spaces 162b, AS_FREE 162a, list_address_space 170e, and MAX_ADDR_SPACES

158a.

list_address_spacee also uses the mmua function—it is time to provide its implemen-
tation. We start with a function mmu_pc which, given an address space ID and a page
number, finds out whether the page is mapped in that address space and returns the frame
number of the mapped frame.

[171b]⟨function prototypes 45a⟩+≡ (44a) ◁ 170d 172b ▷
unsigned int mmu_p (addr_space_id id, unsigned int pageno); // pageno -> frameno
memaddress mmu (addr_space_id id, memaddress vaddress); // virtual -> phys. addr.

mmu_pc looks up the page directory and then the right page table which holds the map-
ping for the virtual address. Note that this function can only work if the page table is in
memory—if it was paged out, it will return − (or actually: INT32_MAX, since it is of type
unsigned int).

[171c]⟨function implementations 100b⟩+≡ (44a) ◁ 171a 172a ▷
unsigned int mmu_p (addr_space_id id, unsigned int pageno) {

unsigned int pdindex = pageno/1024;
unsigned int ptindex = pageno%1024;
page_directory *pd = address_spaces[id].pd;
if ( ! pd->ptds[pdindex].present ) {

return -1;
} else {

page_table *pt = (page_table*) PHYSICAL(pd->ptds[pdindex].frame_addr << 12);
if ( pt->pds[ptindex].present ) {

return pt->pds[ptindex].frame_addr;
} else {

return -1;
};

}
};

Defines:
mmu_p, used in chunks 120c, 123a, 171b, 172a, 261, 293d, 294, and 614a.

Uses addr_space_id 158b, address_spaces 162b, page_directory 103d, page_table 101b, and PHYSICAL 116a.

and with mmu_pc we can easily implement mmua because we just have to split a virtual
address into page number and offset, then call mmu_pc to find the frame number and
reassemble that and the offset to form a physical address:
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[172a] ⟨function implementations 100b⟩+≡ (44a) ◁ 171c 173a ▷
memaddress mmu (addr_space_id id, memaddress vaddress) {

unsigned int tmp = mmu_p (id, (vaddress >> 12));
if (tmp == -1)

return -1; // fail
else

return (tmp << 12) + (vaddress % PAGE_SIZE);
}

Defines:
mmu, used in chunks 170, 211, and 279c.

Uses addr_space_id 158b, memaddress 46c, mmu_p 171c, and PAGE_SIZE 112a.

Note that both functions return − if the page or virtual address does not exist, but
only when calling mmu_pc we can be sure that a return value of − indicates a non-exist-
ing page—aer all, some virtual address might be mapped to physical address 0xFFFFFFFF
(which is the same as −).

6.1.5 Enlarging an Address Space
We want to allow processes to increase their standard memory usage (which is 64 KByte).
Unix systems provide an implementation of malloc as part of their standard library.

e brk system call (and corresponding library function) is still available on modern
Unix systems, but its use is advised against. brk adds one or more pages to the calling
process’ data “segment”. e function sbrkd does the same but is more user-friendly:
It takes an increment as argument, so if the process needs 16 KByte of extra memory, it
can call sbrkd(16*1024). sbrkd returns the lowest address of the new memory: Aer
executing void *mem = sbrkd(incr), the address range [mem ; mem + incr − ] is available
to the process.

How can we do this in U? Remember that each process uses an address_space
which has elements named memstart and memend (the last of which is the first address that
is not available) and a pointer to the address space’s page directory (pd). us, sbrkd
just needs to

• acquire the needed number of frames,
• modify the page directory so that the new frames are mapped just aer the last old

pages and
• update the memend element.

It then returns the first (virtual) address of the first new page.
We start with the kernel-internal function u_sbrka; we expect that its argument is

always a multiple of PAGE_SIZEa:
[172b] ⟨function prototypes 45a⟩+≡ (44a) ◁ 171b 178c ▷

void *u_sbrk (int incr);
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[173a]⟨function implementations 100b⟩+≡ (44a) ◁ 172a 183c ▷
void *u_sbrk (int incr) {

int pages = incr / PAGE_SIZE;
address_space *aspace = &address_spaces[current_as];
memaddress oldbrk = aspace->memend;

for (int i = 0; i < pages; i++) {
int frame = request_new_frame ();
if (frame == -1) { return (void*)(-1); } // error!
as_map_page_to_frame (current_as, aspace->memend/PAGE_SIZE, frame);
aspace->memend += PAGE_SIZE;

}
return (void*) oldbrk;

}
Defines:

u_sbrk, used in chunks 172–74, 233c, and 257c.
Uses address_space 161, address_spaces 162b, as_map_page_to_frame 165b, current_as 170b, memaddress 46c,

PAGE_SIZE 112a, and request_new_frame 118b.

Next we need to provide a system call for the u_sbrka function so that a process can
call this function. So far, you have not seen how U implements system calls (we will
show this in Chapter 6.4), so you might want to skip the following description and turn
back to it when you reach the system call chapter. We’ve also put a reminder into that
section.

As a brief summary, system calls are functions whose start addresses we enter in a
syscall table. A process can make a system call by loading a syscall number (which serves
as an index into that table) into the EAX register, storing arguments for the syscall in further
registers (EBX , ECX , …) and then executing the int 0x80 assembler instruction. Filling a
syscall table entry is handled by the function install_syscall_handlerb.

e system call number __NR_brkc is defined as 45. ere is no sbrkd system call
since normally the sbrkd function is implemented by calling a similar brk function. But
we only implement u_sbrka and reuse the brk system call number.

[173b]⟨syscall prototypes 173b⟩≡ (202a) 206c ▷
void syscall_sbrk (context_t *r);

[173c]⟨code for syscall_sbrk 173c⟩≡
void syscall_sbrk (context_t *r) {

// ebx: increment
r->eax = (memaddress)u_sbrk (r->ebx);
return;

}

[173d]⟨initialize syscalls 173d⟩≡ (44b) 206f ▷
install_syscall_handler (__NR_brk, syscall_sbrk);

Uses __NR_brk 204c, install_syscall_handler 201b, and syscall_sbrk 174b.
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is is the first of many appearances of a code paern: Most system call handlers set
r->eax in order to provide a return value and then leave the function with r->eax. To sim-
plify our code we will provide a macro eax_returna which combines these two activities
and also performs the type cast to an unsigned integer:

[174a] ⟨macro definitions 35a⟩+≡ (44a) ◁ 163b 209b ▷
#define eax_return(retval) { r->eax = (unsigned int)((retval)); return; }

Defines:
eax_return, used in chunks 174b, 206d, 213d, 219c, 220a, 222b, 223e, 234b, 299a, 310a, 370d, 372, 426b, 433b,

566d, 583a, 587d, and 590b.

With this macro we can rewrite syscall_sbrkb like this:
[174b] ⟨syscall functions 174b⟩≡ (202b) 206d ▷

void syscall_sbrk (context_t *r) {
// ebx: increment
eax_return ( u_sbrk (r->ebx) );

}
Defines:

syscall_sbrk, used in chunk 173.
Uses context_t 142a, eax_return 174a, and u_sbrk 173a.

We also provide a user mode library function sbrkd so that you can simply call sbrkd
in an application program (instead ofmanually inserting the necessary code for the system
call). Again, this will become clear once you reach the description of our system call
interface—which is only a few pages away. We only display the necessary code without
further explanation:

[174c] ⟨ulixlib function prototypes 174c⟩≡ (48a) 203a ▷
void *sbrk (int incr);

Uses sbrk 174d.

[174d] ⟨ulixlib function implementations 174d⟩≡ (48b) 203b ▷
void *sbrk (int incr) { return (void*)syscall2 (__NR_brk, incr); }

Defines:
sbrk, used in chunk 174c.

Uses __NR_brk 204c and syscall2 203c.

6.2 Thread Control Blocks and Thread eues
e thread control block (TCB)TCB is the central place in the kernel where information about a
thread is held. In the times when people used to speak about processes instead of threads,
the TCB was called the PCBPCB which stands for process control block.

One main purpose of the TCB is to store the processor state of a thread (sometimes also
called context) during the times when it is not assigned to a physical processor. Note that
the processor state is not the same as the thread state. As you will see soon, the state of a
thread can be running, blocked etc. e processor state is all information that is necessary
to pretend that the processor has never executed any other thread as the one to which the
TCB belongs.
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e TCB contains (among other data) the following information:
• A unique identifier of the thread. is is the so-called thread identifier (TID) Thread ID. In

previous times, the TID was oen called PID Process IDfor process identifier. We also keep a PID
entry in the TCB, it will be needed when we introduce threads as part of a process.

• Storage space to save the processor context, i. e., the registers, the stack pointer(s),
etc.

• Depending on the thread state, the TCB contains an indication on what event the
thread is waiting for if it is in state blocked.

• Information about the memory that this thread is using—we have already defined
address spaces, and we will store an address space ID in the TCB.

• Any other information which may be useful to keep the system running efficiently.
For example, statistical information could be stored here on how oen the thread has
been running in the past. is could help the scheduler make efficient scheduling
decisions.

Note that the information about the address space must be handled differently in PCBs
and in TCBs. In a system where multiple threads can run within one address space, there
is an n :  mapping between threads and address spaces. In a classical Unix system with
processes (one address space with exactly one thread), the mapping is  :  and each thread
can store the full address space information in the PCB itself. With an n :  mapping, an
extra data structure is necessary to avoid having redundant information in the TCBs.

So here is the declaration of the TCB structure. We have entries for the thread ID tid,
the process ID pid, a parent process ID ppid (so we can build a process tree), the processor
context (of type context_ta) consisting of the general purpose registers and the special
purpose registers and a reference to the address space in which the thread runs (which we
already added to the data structure when we discussed address spaces). We also reserve
place for three memory addresses which hold the instruction pointer, stack pointer and
base pointer contents). More entries will follow later.

[175]⟨public type definitions 142a⟩+≡ (44a 48a) ◁ 142a 254a ▷
typedef struct {

thread_id pid; // process id
thread_id tid; // thread id
thread_id ppid; // parent process
int state; // state of the process
context_t regs; // context
memaddress esp0; // kernel stack pointer
memaddress eip; // program counter
memaddress ebp; // base pointer
⟨more TCB entries 158c⟩

} TCB;
Defines:

TCB, used in chunks 176b, 188, 190a, 210, 223e, 224f, 255c, 260a, 276c, 280a, 291, 562b, and 580–82.
Uses context_t 142a, memaddress 46c, and thread_id 178a.
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e TCBs of all threads are collected in a large table within the kernel. is table is
called the thread tableThread Table . Again, in ancient times when the table was a collection of PCBs
instead of TCBs, it was called process tableProcess Table .

e thread table is simply an array of TCBs. e size of the table must be finite, so
there exists a maximum number of threads which can coexist at any point in time.

[176a] ⟨constants 112a⟩+≡ (44a) ◁ 169b 190b ▷
#define MAX_THREADS 1024

Defines:
MAX_THREADS, used in chunks 176b, 188a, 217b, 219c, 223e, 281, 322b, and 605d.

[176b] ⟨global variables 92b⟩+≡ (44a) ◁ 170b 180b ▷
TCB thread_table[MAX_THREADS];

Defines:
thread_table, used in chunks 152b, 184–88, 190a, 206b, 210b, 216, 217, 219c, 220a, 222–24, 234b, 255c, 260a,

277, 278, 281, 322, 324a, 328–30, 332b, 334b, 335b, 368, 369c, 371a, 381a, 383a, 412b, 416b, 424, 426b,
432e, 478b, 487a, 562b, 564–66, 573b, 577c, 580–82, 587d, 588b, 605d, and 606.

Uses MAX_THREADS 176a and TCB 175.

We define the maximum number of threads here. It should somehow correspond to the
maximum number of address spaces MAX_ADDR_SPACESa defined earlier in Section 6.1. For
example, it doesn’t make sense to allow more address spaces than threads (since every
thread can have at most one address space). We have set both values to 1024 which would
let U run 1023 processes, each of which has its individual address space. e number
0 is reserved—both in the address space table (where it refers to the kernel address space)
and in the thread table (because we use that entry for a different purpose related to the
scheduler).

6.2.1 Thread State
For each thread, the TCB contains a state field. We will define the possible values which
this field can hold later (p. 180), but here we already give an overview of the what can
theoretically happen to a thread.

6.2.1.1 Simple State Model for Threads

reads have a lifecycle. ey are born, live and finally die. During their life they undergo
many changes. For example, they sometimes are executed by a physical processor and
sometimes not. is is what is called the thread stateThread State or simply state. e number and type
of states together with the transitions which a thread can experience during its lifetime is
called a state modelState Model .

e simplest state model which can be found in almost every textbook on operating
systems consists of three states: running, ready and blocked. Here’s what these states mean:
• A thread in state running is actually executing on a physical processor. If there is more

than one processor in the system, more than one thread can be in this state.
• A thread in state ready is not currently assigned to a physical processor, but it could

be assigned. In other words, the thread is ready to run in case a physical processor
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becomes free. Many threads can be in this state at the same time; they are kept within
a list called the ready queue Ready eue.

• A thread in state blocked is waiting for a certain event. Only aer this event has
happened, it can become running or ready again. ere can be many different events
for which a thread can wait. For example, a thread could be waiting for a page fault to
be serviced, i. e., waiting for an I/O operating to terminate. Another example is that
a thread is waiting for a synchronization operation to be executed by another thread
(see Chapter 11).
Usually an indication of the event for which the thread is waiting is part of the blocked
state. is can be interpreted as many different blocked states. For simplicity, most
textbooks therefore reduce these states to just one. Many threads can be in a blocked
state at the same time. ey are kept internally within one (or more) blocked queues Blocked eue.

We will use this state model in U.
e possible transitions between thread states are depicted in Figure 6.2. We enumerate

and explain them here now:
• add: a new thread is dynamically created and enters the set of threads in the state

ready.
• assign: a new thread from state ready is assigned to the processor and becomes

running.
• block: a running thread invokes a blocking system operation (e. g., I/O), runs into a

page fault or must wait for some other event to continue operation. Now a new thread
can become running. (Note the difference between the thread state blocked and the
state transition block.)

• deblockb: the event for which a blocked thread is waiting has happened. Conse-
quently, the blocked thread is transferred to the state ready. (Sometimes this transi-
tion is also called ready, but since this can be confused with the thread state ready we
prefer to call it deblock.)

resign

ready running

blocked

assign

blockdeblock

add retire

Figure 6.2: States and state transitions in the simple state model for threads.
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• resignf : the thread which is currently running has finished executing parts of its
program and leaves the physical processor. It transits from state running back into
state ready. Now a new thread can become running.

• retireb: a currently running thread has finished executing its program code and
terminates its lifetime.

Not all possible transitions from one state to the other exist in the state model because
a reduced state model decreases the complexity of the implementation. For example it is
rather uncommon to transit from blocked directly to running. Similarly, a newly created
thread must be ready first before it may become running.

e transitions of a thread from one state to the other are initiated by the operating sys-
tem and happen “instantaneously”. Since a state change needsmanymachine instructions,
real instantaneousness cannot be achieved, so the operating system simulates atomic tran-
sitions using synchronization operations in the kernel (see Chapter 11). In essence, the
atomic transitions are implemented in such “atomic” kernel functions which carry the
same name as the state transitions (e. g., assign, resignf , etc.). e place in the kernel
where all these functions are collected is called the dispatcher.

Here are the forward declarations of the dispatcher functions. eywill be implemented
on the following pages. Note that the dispatcher operation block takes an indication to
the event on which the thread is blocking. is indication is encoded in the particular
blocked queue to which the thread should be added. e data type of blocked_queuea
will be explained below.

[178a] ⟨public elementary type definitions 45e⟩+≡ (44a 48a) ◁ 158b 560a ▷
typedef unsigned int thread_id;

Defines:
thread_id, used in chunks 175, 178c, 181, 183–88, 190a, 192c, 209c, 210a, 216b, 255, 278a, 281, 322a, 362,

364c, 366c, 368, 391a, 424, 426b, and 546a.

[178b] ⟨type definitions 91⟩+≡ (44a) ◁ 161 194b ▷
⟨declaration of blocked queue 183a⟩

[178c] ⟨function prototypes 45a⟩+≡ (44a) ◁ 172b 183b ▷
void add (thread_id t);
void block (blocked_queue *q, int new_state);
void deblock (thread_id t, blocked_queue *q);
void retire (thread_id t);

(Instead of a resign function we will later provide a code chunk ⟨resign 221d⟩. Assigning
happens only inside the scheduler, so we do not implement a specific function for this
activity.)

6.2.1.2 Thread States with Swapping

In case of shortage of memory it may make sense to completely “swap out” a process
with all its threads and virtual memory to external storage. In this case it is necessary to
define an additional thread state swapped, which also leads to a more complex set of state



6.2 Thread Control Blocks and Thread eues 179

ready running

blocked

swap in

swapped

swap out

Figure 6.3: read states and state transitions for a system that swaps processes out and
back in.

transitions since both a ready or blocked thread might be swapped out; depending on the
implementation even an active process may ask for being swapped out. e system must
remember the last state and restore it when it swaps the process back in (see Figure 6.3).
U does not implement swapping since it uses the more advanced paging model.

6.2.1.3 Thread eues

e operating system has to perform bookkeeping of the state of threads. is can be done
in several ways. One approach would be to store an entry state of an enumeration type in
the TCB that can have the values blocked, ready or running. is is viable but not actually
necessary. In modern operating systems the thread state is stored implicitly through the
collection of linked lists. ese lists contain threads and function as queues. e ready
queue Ready euefor example is a list of threads which all are in state ready.

As global data structures we therefore need a couple of global variables:
• For every CPU in the system we need a reference to the thread that is currently as-

signed to the processor. For monoprocessor systems (like those that U supports)
it is sufficient to provide a global variable current_taskc of type thread_ida. For
multiprocessor systems we would have to provide such a variable for every CPU in
the system.

• A ready queue enumerating all threads that are in state ready.
• For every separate class of events which can cause a thread to go into state blocked,

we need a blocked queue enumerating all threads that wait for such an event.
• In case we have a systemwith swapping, another list is necessary holding all swapped

out threads. is is called the swapped out queue.
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6.2.1.4 Thread States in the U Implementation

U does not support swapping but writes out individual pages to disk, so we will not
need a swapped state. However, we will use several separate states to indicate a specific
blocked state. (As we described above, we could use queue membership to indicate the
specific blocked state, but using several states lets us access the state more quickly.) e
following code chunk lists all the possible states that a process (or thread) can be in:

[180a] ⟨public constants 46a⟩+≡ (44a 48a) ◁ 111c 205a ▷
// Thread states
#define TSTATE_READY 1 // process is ready
#define TSTATE_FORK 3 // fork() has not completed
#define TSTATE_EXIT 4 // process has called exit()
#define TSTATE_WAITFOR 5 // process has called waitpid()
#define TSTATE_ZOMBIE 6 // wait for parent to retrieve exit value
#define TSTATE_WAITKEY 7 // wait for key press event
#define TSTATE_WAITFLP 8 // wait for floppy
#define TSTATE_LOCKED 9 // wait for lock
#define TSTATE_STOPPED 10 // stopped by SIGSTOP signal
#define TSTATE_WAITHD 11 // wait for hard disk

Defines:
TSTATE_EXIT, used in chunks 216b, 217a, 260a, 281, and 564a.
TSTATE_FORK, used in chunks 210b and 255c.
TSTATE_LOCKED, used in chunks 361c, 366a, 391, and 392.
TSTATE_READY, used in chunks 184b, 186b, 278, 563b, and 564c.
TSTATE_STOPPED, used in chunk 563.
TSTATE_WAITFLP, used in chunks 545b and 564c.
TSTATE_WAITFOR, used in chunks 217a, 219c, 281, and 564c.
TSTATE_WAITHD, used in chunks 531a and 564c.
TSTATE_WAITKEY, used in chunks 416b and 564c.
TSTATE_ZOMBIE, used in chunks 152b, 217a, and 281.

We also define a list of state names which can be used when displaying the process list:
[180b] ⟨global variables 92b⟩+≡ (44a) ◁ 176b 187c ▷

char *state_names[12] = {
"---", "READY", "---", "FORK", "EXIT", "WAIT4", "ZOMBY", "W_KEY", // 0.. 7
"W_FLP", "W_LCK", "STOPD", "W_IDE" // 8..11

};
Defines:

state_names, used in chunk 605d.

Figure 6.4 shows the state transitions in U. e various TSTATE_* states are shown as
a single state in order to simplify the picture.

6.2.2 Implementing Lists of Threads
eues are standard data structures offered by almost all modern programming languages.
As an example, Java provides the generic class ArrayList<E> in which objects of any type
E can be stored and manipulated with standard operations like add(), size() and get().
Unfortunately, “plain” C does not offer this convenience so we have to implement queues
by ourselves.
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TSTATE_READY
TSTATE_READY
(current_task)

TSTATE_WAITFOR
TSTATE_WAITKEY
TSTATE_WAITHD
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kill(pid, SIGSTOP)

TSTATE_FORK TSTATE_EXIT
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kill(pid, SIGCONT)

fork()

exit()

fork()
block()

deblock()

Scheduler
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kill(pid, 
SIGSTOP)

TCB Removal

Figure 6.4: Process states and state transitions as implemented by U.

As explained in Section 6.2.1.3, we have to maintain a couple of thread queues within
the kernel. In U we maintain only two: the ready queue and the blocked queue. In fact,
the blocked queue is not a single queue but there can be multiple blocked queues, one for
every event upon which a thread can wait.

When implementing such queues, we could think about using the standard implemen-
tation of a (double) linked list found in any introductory textbook on programming. How-
ever these implementations usually are examples of programming with dynamic memory
allocation, e. g., in C using the malloc library call to allocate fresh memory on the heap.
is would be a problem in U since we neither have a heap nor a library to call into.

So how canwe program linked lists without allocatingmemory? e first option is to do
it like Knuth did it in TEX [Knu86] and provide both a large memory area plus functions
for memory allocation and deallocation by ourselves. Since this would be overkill, we
choose the second option, which is also the option taken in many operating systems: We
use the thread table to implement lists. e idea is to declare two additional entries in the
thread control block: one entry called next and one called prev. Both point to other entries
in the thread table. So consider a thread control block TCB t. e entry t.next points to
the “next” thread in the queue that t belongs to. Similarly, t.prev points to the “previous”
thread in t’s queue.

We define the range of these two pointers to be thread_ida.
[181]⟨more TCB entries 158c⟩+≡ (175) ◁ 158c 187b ▷

thread_id next; // id of the ``next'' thread
thread_id prev; // id of the ``previous'' thread

Uses thread_id 178a.

An example of the semantics of the prev and next entries in the thread table is shown in
Figure 6.5. It shows that the thread identifier 0 is used as an “end marker” for the lists. It
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Figure 6.5: Implementation of ready queue and blocked queues. e beginning of the
ready queue is implicitly defined by entry 0 in the thread table. e begin-
ning of a blocked queue is a pair of thread identifiers pointing into the thread
table from “outside”.

also shows that the prev entry of the first entry in the queue points to the last element
in the queue. In this way, it is easily possible to navigate through the queues in any way
which is convenient.

Figure 6.5 also shows a small implementation trick. e thread identifier of the thread
itself is always equal to the index of the thread in the thread table. Given a TID of t, then
thread_tableb[t] is the thread control block of that thread. is also means that the
entry tid in the thread control block is more or less superfluous.

Now since we are using the value 0 to mark the end of a list, the entry 0 in the thread
table has become more or less useless to store thread information. We use it instead as
the “anchor” of the ready queue. So to access the first element in the ready queue, we just
need to look into:

thread_tableb[0].next

e last entry in the ready queue can similarly be accessed using the following expression:

thread_tableb[0].prev

e ready queue in the figure contains threads 1, 4 and 7 (in this order).
Recalling the simple state model of threads in Section 6.2.1.1, every thread is in exactly

one state at any time. is means that a thread is either running, ready or blocked. It also
means that a thread can be in at most one queue at a time. In case the thread is blocked
instead of ready, we can re-use the prev and next entries in the thread table to implement
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the blocked list. We only need to have an anchor for this blocked list. is anchor will be
a structure similar to entry 0 in the thread table, but without all the extra fields.

[183a]⟨declaration of blocked queue 183a⟩≡ (178b)
typedef struct {

thread_id next; // id of the ``next'' thread
thread_id prev; // id of the ``previous'' thread

} blocked_queue;
Defines:

blocked_queue, used in chunks 183c, 185–87, 218b, 323d, 360a, 362, 365a, 366c, 368, 391a, 522a, 529a, 544d,
and 606.

Uses thread_id 178a.

So assume b is a variable of type blocked_queuea representing a blocked list. If both
entries in b are 0, then the list is empty. If not, then using the thread table we can now
find the first, second etc. element by following the next pointers. is way, we can traverse
the entire list until we reach an entry in which next==0. at’s the end of the list. Looking
again at Figure 6.5, the blocked queue contains threads 2, 5 and 6 (in this order).

Finally, here’s a useful function to initialize a blocked queue:
[183b]⟨function prototypes 45a⟩+≡ (44a) ◁ 178c 184a ▷

void initialize_blocked_queue (blocked_queue *q);

is is just to encapsulate the semantics of “emptiness”.
[183c]⟨function implementations 100b⟩+≡ (44a) ◁ 173a 184b ▷

void initialize_blocked_queue (blocked_queue *q) {
q->prev = 0;
q->next = 0;

}
Defines:

initialize_blocked_queue, used in chunks 183b, 218c, 323e, 363d, 364b, 367b, 522b, 529b, and 544e.
Uses blocked_queue 183a.

6.2.2.1 Dispatcher Operations as Critical Sections

Before we actually implement queue operations we need to make a slight forward refer-
ence to Chapter 11 on synchronization and introduce the notion of a critical section, at
least intuitively. Briefly spoken, a critical section is a sequence of code that accesses shared
resources. Such a section is critical, because (as is explained in Chapter 11) concurrent
accesses to a shared resource can wreak havoc with these resources, potentially making
them unusable. e shared resources in question here are the shared kernel queues. What
we need to ensure is that no two critical sections are executed concurrently. We refrain
here from explaining how this can be achieved. What we however do at this point is to
mark the beginning and end of the critical sections using the code chunk ⟨begin critical
section in kernel 380a⟩ and ⟨end critical section in kernel 380b⟩ and leave the implementation
to Chapter 11.
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6.2.2.2 Implementing the Ready eue

We now provide some convenient functions to add and remove threads from the queues.
We start with the ready queue. e function add_to_ready_queueb(t) adds the thread
with identifier t to the end of the ready queue. It assumes that the TCB of thread t has
been set up and initialized already.

e function remove_from_ready_queuec(t) removes the thread with identifier t from
the ready queue. It assumes that t is contained in the ready queue.

[184a] ⟨function prototypes 45a⟩+≡ (44a) ◁ 183b 185a ▷
void add_to_ready_queue (thread_id t);
void remove_from_ready_queue (thread_id t);

Adding to the end of the ready queue is as easy since we have a double linked list.
[184b] ⟨function implementations 100b⟩+≡ (44a) ◁ 183c 184c ▷

void add_to_ready_queue (thread_id t) {
⟨begin critical section in kernel 380a⟩
thread_id last = thread_table[0].prev;
thread_table[0].prev = t;
thread_table[t].next = 0;
thread_table[t].prev = last;
thread_table[last].next = t;
thread_table[t].state = TSTATE_READY; // set its state to ready
⟨end critical section in kernel 380b⟩

}
Defines:

add_to_ready_queue, used in chunks 186b, 192d, 212, 257c, 364c, and 563b.
Uses thread_id 178a, thread_table 176b, and TSTATE_READY 180a.

Removing is similarly easy.
[184c] ⟨function implementations 100b⟩+≡ (44a) ◁ 184b 185b ▷

void remove_from_ready_queue (thread_id t) {
⟨begin critical section in kernel 380a⟩
thread_id prev_thread = thread_table[t].prev;
thread_id next_thread = thread_table[t].next;
thread_table[prev_thread].next = next_thread;
thread_table[next_thread].prev = prev_thread;
⟨end critical section in kernel 380b⟩

}
Defines:

remove_from_ready_queue, used in chunks 152b, 186b, 187a, 216b, 260a, and 564c.
Uses thread_id 178a and thread_table 176b.

We initialize the ready queue to be empty.
[184d] ⟨initialize kernel global variables 184d⟩≡ (44b) 306c ▷

thread_table[0].prev = 0;
thread_table[0].next = 0;

Uses thread_table 176b.

Note that we cannot use our initialize_blocked_queuec function. Even though we ac-
cess the same elements (prev and next), the structures do not match.
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6.2.2.3 Implementing a Blocked eue

Blocked queues are implemented similar to the ready queue, except that the functions are
parameterized with a blocked list anchor defined above. We provide again two functions
to add and remove a thread from a blocked list. Adding to the queue happens at the “end”
of the queue. An additional function allows to inspect the “front” queue element.

[185a]⟨function prototypes 45a⟩+≡ (44a) ◁ 184a 188c ▷
void add_to_blocked_queue (thread_id t, blocked_queue *bq);
void remove_from_blocked_queue (thread_id t, blocked_queue *bq);
thread_id front_of_blocked_queue (blocked_queue bq);

We implement the easy inspector function to retrieve the front of a blocked queue first.
It is so easy that we could have avoided writing this function altogether, but we spell it
out for students who have learnt the concept of information hiding.

[185b]⟨function implementations 100b⟩+≡ (44a) ◁ 184c 185c ▷
thread_id front_of_blocked_queue (blocked_queue bq) {

return bq.next;
}

Defines:
front_of_blocked_queue, used in chunk 364c.

Uses blocked_queue 183a and thread_id 178a.

Wenow implement add_to_blocked_queuec. Adding happens at the end of the queue. e
following code is an adaption of the code for the ready queue. e conditional statement
at the end is necessary since thread_tableb[0] is not the anchor of a blocked queue.

[185c]⟨function implementations 100b⟩+≡ (44a) ◁ 185b 186a ▷
void add_to_blocked_queue (thread_id t, blocked_queue *bq) {
⟨begin critical section in kernel 380a⟩
thread_id last = bq->prev;
bq->prev = t;
thread_table[t].next = 0; // t is ``last'' thread
thread_table[t].prev = last;
if (last == 0) {

bq->next = t;
} else {

thread_table[last].next = t;
}
⟨end critical section in kernel 380b⟩

}
Defines:

add_to_blocked_queue, used in chunk 187a.
Uses blocked_queue 183a, thread_id 178a, and thread_table 176b.

Removal is similar to the function of the ready queue, except for again the special cases
at the end.
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[186a] ⟨function implementations 100b⟩+≡ (44a) ◁ 185c 186b ▷
void remove_from_blocked_queue (thread_id t, blocked_queue *bq) {
⟨begin critical section in kernel 380a⟩
thread_id prev_thread = thread_table[t].prev;
thread_id next_thread = thread_table[t].next;
if (prev_thread == 0) {

bq->next = next_thread;
} else {

thread_table[prev_thread].next = next_thread;
}
if (next_thread == 0) {

bq->prev = prev_thread;
} else {

thread_table[next_thread].prev = prev_thread;
}
⟨end critical section in kernel 380b⟩

}
Defines:

remove_from_blocked_queue, used in chunks 186b, 364c, and 564c.
Uses blocked_queue 183a, thread_id 178a, and thread_table 176b.

6.2.2.4 Simple Dispatcher Operations

Wenow look at the implementations of the three simplest dispatcher operations. ese are
add, retireb and deblockb. ey are simple because they basically only move threads
from one queue to the other.

e functions add and retireb take as parameter the identifier of the thread which is
newly born or about to die. e function deblockb needs another argument: e blocked
queue from which the thread is to be removed. Note that add and retireb do not need
to be declared as critical sections, because the queue operation already is. deblockb and
later block however must be executed without interruption so that kernel data structures
remain consistent (see Chapter 11).

[186b] ⟨function implementations 100b⟩+≡ (44a) ◁ 186a 187a ▷
void add (thread_id t) {

add_to_ready_queue (t);
}

void retire (thread_id t) {
remove_from_ready_queue (t);

}

void deblock (thread_id t, blocked_queue *q) {
⟨begin critical section in kernel 380a⟩
remove_from_blocked_queue (t, q);
add_to_ready_queue (t);
thread_table[t].state = TSTATE_READY;
⟨end critical section in kernel 380b⟩

}
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Defines:
deblock, used in chunks 217a, 281, 322a, 362, 366c, 368, 391a, 522c, 532d, and 546a.

Uses add_to_ready_queue 184b, blocked_queue 183a, remove_from_blocked_queue 186a, remove_from_ready_queue
184c, thread_id 178a, thread_table 176b, and TSTATE_READY 180a.

For blocking the current thread we provide a function blockwhich takes two arguments:
a blocked queue that the thread shall bemoved to and the new state (e. g. TSTATE_WAITHDa):

[187a]⟨function implementations 100b⟩+≡ (44a) ◁ 186b 188d ▷
void block (blocked_queue *q, int new_state) {

if (current_task == 0) return;
⟨begin critical section in kernel 380a⟩
thread_table[current_task].state = new_state;
remove_from_ready_queue (current_task);
add_to_blocked_queue (current_task, q);
⟨end critical section in kernel 380b⟩

}
Uses add_to_blocked_queue 185c, blocked_queue 183a, current_task 192c, remove_from_ready_queue 184c,

and thread_table 176b.

Note that with the above functions we can easily write code that deblocks the “front”
element from a blocked queue (if it exists) as follows:

deblockb (front_of_blocked_queueb (bq), &bq);

6.2.3 Allocating and Initializing a New TCB
Whenever we create a new thread or process, we will need a fresh TCB entry and initialize
it. We add a used entry to the thread control block structure TCB

[187b]⟨more TCB entries 158c⟩+≡ (175) ◁ 181 205b ▷
boolean used;

which lets us declare an entry as used. (Since we initialize the TCB structures with null
bytes, we use used and not free: remember that false=0.)

is will allow us to quickly find a free TCB when we create a new thread. Instead of
adding such a field, we could have used a bitmap, but since we restrict ourselves to 1024
TCBs, not much space is wasted this way, and searching for a free TCB will be quick.

We will remember in a global variable
[187c]⟨global variables 92b⟩+≡ (44a) ◁ 180b 192c ▷

thread_id next_pid = 1;
Defines:

next_pid, used in chunk 188.
Uses thread_id 178a.

at which thread number we will start our search (instead of always searching from 1): this
will later lead to a continuous sequence of process/thread numbers: even if we terminate
a thread, its TCB will not be recycled immediately.
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[188a] ⟨find free TCB entry 188a⟩≡ (188d) 188b ▷
boolean tcbfound = false;
thread_id tcbid;
for (tcbid = next_pid; ((tcbid<MAX_THREADS) && (!tcbfound)); tcbid++) {

if (thread_table[tcbid].used == false) {
tcbfound = true;
break; // leave for loop

}
};

Uses MAX_THREADS 176a, next_pid 187c, thread_id 178a, and thread_table 176b.

However, once we’ve reached the maximum number (1023), the search for a free TCB will
start over, and from that point on thread numbers will no longer indicate the order of
creation of the threads.

[188b] ⟨find free TCB entry 188a⟩+≡ (188d) ◁ 188a
if (!tcbfound) { // continue searching at 1

for (tcbid = 1; ((tcbid<next_pid) && (!tcbfound)); tcbid++) {
if (thread_table[tcbid].used == false) {

tcbfound = true;
break; // leave for loop

}
};

};

if (tcbfound) next_pid = tcbid+1; // update next_pid:
// either tcbfound == false or tcbid == index of first free TCB

Uses next_pid 187c, TCB 175, and thread_table 176b.

Once we have a free address space (or reuse one) and also have a free TCB, we can
connect them:

[188c] ⟨function prototypes 45a⟩+≡ (44a) ◁ 185a 196b ▷
int register_new_tcb (addr_space_id as_id);

Uses addr_space_id 158b and register_new_tcb 188d.

is function searches for a free TCB, marks it as used and enters the address space ID
which we provide as an argument. us, whenever we create a new thread, we always
call create_new_address_spacec first and register_new_tcbd aerwards:

[188d] ⟨function implementations 100b⟩+≡ (44a) ◁ 187a 189 ▷
int register_new_tcb (addr_space_id as_id) {

// called by u_fork()
⟨find free TCB entry 188a⟩
if (!tcbfound) return -1; // no free TCB!
thread_table[tcbid].used = true; // mark as used
thread_table[tcbid].addr_space = as_id; // enter address space ID
return tcbid;

}
Defines:

register_new_tcb, used in chunks 188c, 190a, 210a, and 255b.
Uses addr_space_id 158b, TCB 175, thread_table 176b, and u_fork 209c.
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Note that so far we have not entered the new TCB in the ready or one of the blocked
queues. is will happen later when the thread has been fully initialized.

6.3 Starting the First Process
Starting the first (init) process init processis different from how all further processes are created: We
have to manually set up the memory regions and data structures and load a first program
from the disk. Of course, this requires filesystem support which we will implement later—
for now assume that the kernel can use filesystem functions similar to the standard Unix
functions open, read and close.

Once the init process is running, all further processes will be created using forkg (see
Section 6.5). is is what we need to do:

• Setup the TCB (thread control block) list and mark the first TCB as used.
• Create a new address space and reserve memory for user mode (low addresses, with

user access).
• Load the process binary from disk into the new address space.
• Reserve memory for the process’ kernel stack (low addresses, without user access).
• Enter all the information in the new TCB.
• Update a data structure called TSS TSS(Task State Segment, see Section 6.3.5).
• Switch from kernel mode (ring 0) to usermode (ring 3) and start executing the process’

code.

[189]⟨function implementations 100b⟩+≡ (44a) ◁ 188d 197a ▷
void start_program_from_disk (char *progname) {
⟨start program from disk: prepare address space and TCB entry 190a⟩
⟨start program from disk: load binary 190c⟩
⟨start program from disk: create kernel stack 192a⟩
⟨start program from disk: set uid, gid, euid, egid 573b⟩
⟨start program from disk: activate the new process 192d⟩

};
Defines:

start_program_from_disk, used in chunk 45d.

As you can see, the start routine is rather complex. We discuss the necessary tasks step by
step in the following sections, with one exception: e code chunk ⟨start program from
disk: set uid, gid, euid, egid 573b⟩ will be explained much later when we discuss user and
group management.

6.3.1 Preparations
We start with registering a new thread control block and fresh address space and entering
useful data. e following code chunk contains a few instructions that will not make
much sense to you right now since they deal with kernel components you have not seen
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yet. For example, it sets the TCB element cwd (current working directory) to "/" and the
file descriptors 0, 1 and 2 to standard input, standard output and standard error output—all
of that will be discussed in Chapter 12 where we introduce the U filesystem.

It is important that we activate the new process’ address space at this step, because right
aer that we will load the program binary of the init program into the lower memory of
the process, and that would be unavailable in the kernel’s address space.

[190a] ⟨start program from disk: prepare address space and TCB entry 190a⟩≡ (189)
// create new address space (64 KB + 4 KB stack) and register TCB entry
addr_space_id as = create_new_address_space (64*1024, 4096);
thread_id tid = register_new_tcb (as); // get a fresh TCB
TCB *tcb = &thread_table[tid];

// fill TCB structure
tcb->tid = tcb->pid = tid; // identical thread/process ID
tcb->ppid = 0; // parent: 0 (none)
tcb->terminal = 0; // default terminal: 0
memcpy (tcb->cwd, "/", 2); // set current directory
memcpy (tcb->cmdline, "new", 4); // set temporary command line
thread_table[tid].files[0] = DEV_STDIN; // initialize standard I/O
thread_table[tid].files[1] = DEV_STDOUT; // file descriptors
thread_table[tid].files[2] = DEV_STDERR;
for (int i = 3; i < MAX_PFD; i++) tcb->files[i] = -1;
activate_address_space (as); // activate the new address space

Uses activate_address_space 170c, addr_space_id 158b, create_new_address_space 163c, cwd, DEV_STDERR 415c,
DEV_STDIN 415c, DEV_STDOUT 415c, MAX_PFD 424b, memcpy 596c, register_new_tcb 188d, TCB 175, thread_id 178a,
and thread_table 176b.

6.3.2 Loading the Program
Loading the init program is simple because we do not use a special file format for the
file, but instead link it into a “flat binary”, similar to the historical .COM files that MS-
DOS and CP/M used [Vil96, p. 171–175, 182–189]. e loader assumes that the filesize
is less than 32 KByte and simply reads the whole file (or its first 32 KByte) into the virtual
memory location that starts at BINARY_LOAD_ADDRESSa. We have set that constant to 0x0
in Section 6.1.1.

[190b] ⟨constants 112a⟩+≡ (44a) ◁ 176a 200a ▷
#define PROGSIZE 32768

Defines:
PROGSIZE, used in chunk 190c.

For reading the file it uses the U virtual filesystem functions u_openc, u_readb
and u_closea which act like the well-known POSIX functions open, read and close.

[190c] ⟨start program from disk: load binary 190c⟩≡ (189)
int fd = u_open (progname, O_RDONLY, 0); // open the file
u_read (fd, (char*)BINARY_LOAD_ADDRESS, PROGSIZE); // load to virtual address 0
u_close (fd); // close the file

Uses BINARY_LOAD_ADDRESS 159a, O_RDONLY 460b, PROGSIZE 190b, u_close 418a, u_open 412c, and u_read 414b.
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e function start_program_from_disk is called with the argument "/init" /init, so we need
an init binary in the root directory of the root disk. at program does not do much, but
only starts the login program via the execve function.

[191a]⟨lib-build/init.c 191a⟩≡
#include "ulixlib.h"
void umain() {

char *args[] = { "/bin/login", 0 };
execv (args[0], args);
printf ("exec failed\n"); for (;;);

}
Uses execv 235e, login 584c, and printf 601a.

For compiling this flat binary, we need a special linker configuration file that lets the
GNU linker ld create such a format:

[191b]⟨lib-build/process.ld 191b⟩≡
OUTPUT_FORMAT("binary")
phys = 0x00000000;
virt = 0x00000000;
SECTIONS {

. = phys;

.setup : AT(phys) {
*(.setup)

}

.text : AT(code - virt) {
code = .;
*(.text)
*(.rodata*)
. = ALIGN(4096);

}

.data : AT(data - virt) {
data = .;
*(.data)
. = ALIGN(4096);

}

.bss : AT(bss - virt) {
bss = .;
*(COMMON*)
*(.bss*)
. = ALIGN(4096);

}
end = .;

}

In the makefile for the user mode files (lib-tools/Makefile) the init program will later
be compiled and linked with

compile:
$(CC) $(CCOPTIONS) -g -c ulixlib.c
$(CC) $(CCOPTIONS) -c init.c
# link it with linker script "process.ld"
$(LD) $(LDOPTIONS) -T process.ld -o init init.o ulixlib.o

6.3.3 Creating the Kernel Stack
Next we need to provide a kernel stack for the process. So far, U has used the initial
kernel stack defined as _sys_stacka in the assembler file start.asm, but as we explained
earlier, we need a separate kernel stack for every process (or thread).
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We have already defined the number of kernel stack pages, KERNEL_STACK_PAGESb, so
now we simply register as many frames and write a mapping into the page table via
as_map_page_to_frameb.

[192a] ⟨start program from disk: create kernel stack 192a⟩≡ (189) 192b ▷
unsigned int framenos[KERNEL_STACK_PAGES]; // frame numbers of kernel stack
for (int i = 0; i < KERNEL_STACK_PAGES; i++) { // pages

framenos[i] = request_new_frame ();
as_map_page_to_frame (current_as, 0xbffff - i, framenos[i]);

}

Aer that we need to store the information about the process kernel stack into two TCB
fields esp0 and ebp.

[192b] ⟨start program from disk: create kernel stack 192a⟩+≡ (189) ◁ 192a
char *kstack = (char*) (TOP_OF_KERNEL_MODE_STACK-KERNEL_STACK_SIZE);
memaddress adr = (memaddress)kstack; // one page for kernel stack

tcb->esp0 = (uint)kstack + KERNEL_STACK_SIZE; // initialize top-of-stack and
tcb->ebp = (uint)kstack + KERNEL_STACK_SIZE; // ebp (base pointer) values

Uses KERNEL_STACK_SIZE 169b, kstack, memaddress 46c, and TOP_OF_KERNEL_MODE_STACK 159c.

6.3.4 Activating the New Process
Finally we can activate the process. We’ve completed all the required steps, and the pro-
gram sits in the memory, waiting to be started. Let’s declare the varible current_taskc
(that always holds the ID of the currently executing process or thread)

[192c] ⟨global variables 92b⟩+≡ (44a) ◁ 187c 195 ▷
thread_id current_task;

Defines:
current_task, used in chunks 152, 187a, 192d, 206b, 209c, 212, 216b, 217b, 219c, 222, 224c, 234b, 255a, 260a,

277b, 279c, 290a, 324a, 328–30, 332b, 334b, 335b, 366, 369c, 371a, 412b, 416b, 424, 426b, 432e, 478b, 487a,
518d, 522e, 533b, 545b, 563–66, 577c, 580–82, 587d, and 588b.

Uses thread_id 178a.

and initialize it. We also add the init process to the ready queue and enable the scheduler.
en the last step is switching to user mode.

[192d] ⟨start program from disk: activate the new process 192d⟩≡ (189)
current_task = tid; // make this the current task
add_to_ready_queue (tid); // add process to ready queue
⟨enable scheduler 276a⟩
cpu_usermode (BINARY_LOAD_ADDRESS,

TOP_OF_USER_MODE_STACK); // jump to user mode
Uses add_to_ready_queue 184b, BINARY_LOAD_ADDRESS 159a, cpu_usermode 198, current_task 192c,

and TOP_OF_USER_MODE_STACK 159b.

e cpu_usermode function will be wrien in Assembler, we discuss it in detail in the
following section.
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6.3.5 Configuring the TSS Structure and Entering UserMode
e Intel processor provides no command that would let us switch to user mode explicitly,
but there is a way for returning to user modewhich requires that the stack is set up properly
when executing an iret iretinstruction. at is what normally happens when, for example, a
process already runs in user mode and an interrupt forces a jump to the interrupt handler—
the CPUmodifies the stack so thatwhen the handler executes iret, executionwill continue
in the process. To make the system switch back to ring 3, the stack contains (besides other
values) values which will be loaded into the CS and SS segment registers (which tell the
CPU what segments to use for code and stack).

e segment registers always contain a value which is a multiple of 8, making them
an offset for the GDT whose entries are eight bytes long. us, the three lowest bits of
a segment register value are always 0. What we have not mentioned yet is that the CPU
modifies the lowest two bits when it pushes the register value on the stack (on interrupt
entry), and it reads them when it pops the registers back from the stack (during iret).
ese two bits are then interpreted as the privilege level to which the CPU shall switch
(see Figure 6.6).

TI RPLIndex

RPL: Requested Privilege Level (0–3)

01215 3

TI: Table Indicator (0: GDT,  1: LDT)

Figure 6.6: e Segment selector contains an index, a table indicator and the requested
privilege level.

We can now force the system into user mode by generating a stack which looks just
like the one that the CPU automatically generates when an interrupt occurs. Where the
segment register contents are expected we push a value that we can calculate with val =
seg | 3; (which will set the lowest two bits; 3 = 11b).

However, we cannot use the segment descriptors which we have created during the
system initialization: both the code and the data segment descriptors have the entry flags
(which contains a two-bit value descriptor privilege level (DPL DPL), describing the necessary
level for accessing this segment) set to 0—the system would halt, because it would switch
to user mode but would not be allowed to use the memory. So we need two new segment
descriptors which are designed specifically for user mode. ey are identical to the old
descriptors except for the flags entry where they have the DPL value set to 3 instead of 0.

So here’s how we fill the descriptors:



194 6 Implementation of Processes

[194a] ⟨install GDTs for User Mode 194a⟩≡ (110a) 196a ▷
fill_gdt_entry (3, 0, 0xFFFFFFFF, 0b11111010, 0b1100);
fill_gdt_entry (4, 0, 0xFFFFFFFF, 0b11110010, 0b1100);

Uses fill_gdt_entry 109c.

e numbering continues with 3 since we’ve already filled the null descriptor (0) and the
kernel mode code (1) and data (2) segment descriptors (see page 110).

For a beer overview, we repeat the explanation of the old (kernel mode) GDT entries
and add the two new entries:

• 10011010b for the kernel code segment
(present; ring 0; fixed-1; executable; exact privilege level; allow reading; not accessed)

• 10010010b for the kernel data segment
(present; ring 0; fixed-1; not executable; grow upwards; allow writing; not accessed)

• 11111010b for the user mode code segment
(present; ring 3; fixed-1; executable; exact privilege level; allow reading; not accessed)

• 11110010b for the user mode data segment
(present; ring 3; fixed-1; not executable; grow upwards; allow writing; not accessed)

In order to enter user mode we also have to create a structure calledTSS TSS (task state
segment) which is another (and final) entry in the GDT; we must load its GDT offset in a
special task register (TR)TR, ltr using the ltr instruction.

e TSS is a 104 bytes long data structure [Int11, p. 303], shown in Figure 6.7. e CPU
designers had intended that operating system developers would supply such a structure
for each task (process or thread), and it is possible to simplify the task switch by following
this suggestion. However, we decided to ignore this possibility and do the task switch
without the help of the CPU because that is more instructional.

In our TSS type definition we only mention the elements which we may need and com-
bine less interesting areas of the structure in long long elements (u1, u2, u3):

[194b] ⟨type definitions 91⟩+≡ (44a) ◁ 178b 227 ▷
typedef struct {

unsigned int prev_tss : 32; // unused: previous TSS
unsigned int esp0, ss0 : 32; // ESP and SS to load when we switch to ring 0
long long u1, u2 : 64; // unused: esp1, ss1, esp2, ss2 for rings 1 and 2
unsigned int cr3 : 32; // unused: page directory
unsigned int eip, eflags : 32;
unsigned int eax, ecx, edx, ebx, esp, ebp, esi, edi, es, cs, ss, ds, fs, gs : 32;

// unused (dynamic, filled by CPU)
long long u3 : 64; // unused: ldt, trap, iomap

} __attribute__((packed)) tss_entry_struct;
Defines:

tss_entry_struct, used in chunk 195.

Most of the fields are only useful when using the TSS to perform task switching: they
store parts of the task context so that it is not necessary to keep track of them in the
thread control block. If you are interested in this approach, you can read more about it in
the Intel manual [Int11].
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e esp0 field must hold the address of the top of the kernel stack, and ss0 must contain
the segment number for kernel mode (0x10). e CPU will automatically set the stack
pointer to that value when it switches from user mode to kernel mode (ring 0).

We use the thread control block entry to store and retrieve the process context. at
is why we need only one TSS. (We cannot omit the TSS completely because the CPU
demands that one exists.)

[195]⟨global variables 92b⟩+≡ (44a) ◁ 192c 200b ▷
tss_entry_struct tss_entry;

Defines:
tss_entry, used in chunk 197a.

Uses tss_entry_struct 194b.

012345678910111213141516171819202122232425262728293031

I/O Map Base Address (reserved) T 100
(reserved) LDT Segment Selector 96
(reserved) GS 92
(reserved) FS 88
(reserved) DS 84
(reserved) SS 80
(reserved) CS 76
(reserved) ES 72

EDI 68
ESI 64
EBP 60
ESP 56
EBX 52
EDX 48
ECX 44
EAX 40

EFLAGS 36
EIP 32

CR3 (PDBR) 28
(reserved) SS2 24

ESP2 20
(reserved) SS1 16

ESP1 12
(reserved) SS0 8

ESP0 4
(reserved) Previous Task Link 0

Figure 6.7: e TSS (Task State Segment) structure.
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We add the data from tss_entry to the GDT definition (see pages 110 and 193), this is
the last GDT entry, and it uses number 5 since we’ve already used the entries 0–4.

[196a] ⟨install GDTs for User Mode 194a⟩+≡ (110a) ◁ 194a
write_tss (5, 0x10, (void*)TOP_OF_KERNEL_MODE_STACK); // gdt no., ss0, esp0

Uses gdt 92b, TOP_OF_KERNEL_MODE_STACK 159c, and write_tss 197a.

Here’s the prototype of write_tssa which calls fill_gdt_entryc to make the GDT
entry point to tss_entry:

[196b] ⟨function prototypes 45a⟩+≡ (44a) ◁ 188c 197d ▷
static void write_tss (int num, word ss0, void *esp0);

Regular GDT entries store a base address and a limit to perform the address transfor-
mation from a logical to a linear address (which is then further translated by the paging
mechanism). e TSS has a different purpose, but still gets stored in the same table. Here
the base address is recycled so that it holds the address of our tss_entry structure, and
the limit field stores the size of the structure, minus 1. e GDT entry type is 0, and the
required access value is 0xe9 = 11101001b.

As a reminder, Figure 6.8 shows the format of a regular segment descriptor at the top
(this is the same as Figure 4.2); below, you see the slightly modified format of the TSS
descriptor [Int11, p. 7-7]. B (bit 9 of the third word) can be 0 or 1, and we set it to 0, the
value is only relevant when using several TSS structures.

0123456789101112131415

Base: 31–24 Gr Sz 0 0 Limit: 19–16
7..6

P DPL 1 Type A Base: 23–16
5..4

Base: 15–0
3..2

Limit: 15–0
1..0

0123456789101112131415

Base: 31–24 Gr 0 0 0 Limit: 19–16
7..6

P DPL 0 1 0 B 1 Base: 23–16
5..4

Base: 15–0
3..2

Limit: 15–0
1..0

Figure 6.8: Segment descriptor (top) vs. TSS descriptor (boom).

When we call fill_gdt_entryc, we have to set the bits 7–4 of the fourth word to 0000b
(in the last argument gran of the function call) and the bits 15–8 of the third word to
11101001b (in the second last argument, access). is is the interpretation of the access
bitmap:

• 11101001b for the TSS descriptor
(present; ring 3; fixed-0; TSS type (1001)).
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With this information, we can implement write_tssa:
[197a]⟨function implementations 100b⟩+≡ (44a) ◁ 189 201b ▷

static void write_tss (int num, word ss0, void *esp0) {
fill_gdt_entry (num, (uint) &tss_entry, sizeof (tss_entry) - 1,

0b11101001, 0b0000); // write TSS entry to GDT
memset (&tss_entry, 0, sizeof (tss_entry)); // fill TSS with zeros
tss_entry.ss0 = ss0; // kernel stack segment
tss_entry.esp0 = (memaddress)esp0; // kernel stack pointer

}
Defines:

write_tss, used in chunks 196, 197b, and 280a.
Uses fill_gdt_entry 109c, memaddress 46c, memset 596c, and tss_entry 195.

us, all five calls of fill_gdt_entryc together look like this:
[197b]⟨collection of fill_gdt_entry calls 197b⟩≡

// no base limit access gran
// --------------------------------------------------------------------------------
fill_gdt_entry (0, 0, 0, 0, 0 ); // null descriptor
fill_gdt_entry (1, 0, 0xFFFFFFFF, 0b10011010, 0b1100); // kernel, code
fill_gdt_entry (2, 0, 0xFFFFFFFF, 0b10010010, 0b1100); // kernel, data
fill_gdt_entry (3, 0, 0xFFFFFFFF, 0b11111010, 0b1100); // user, code
fill_gdt_entry (4, 0, 0xFFFFFFFF, 0b11110010, 0b1100); // user, data
// write_tss (5, 0x10, (void*)TOP_OF_KERNEL_MODE_STACK); calls...
fill_gdt_entry (5, TSS_ADDR, TSS_SIZE - 1, 0b11101001, 0b0000); // TSS descriptor
// with TSS_ADDR = &tss_entry and TSS_SIZE = sizeof (tss_entry)

Finally, we add the code for loading the task register TR to the assembler file: the index
of the TSS in the GDT is 5, so the proper value to load is  ×  =  = 0x28. We have to
write the requested privilege level (RPL) into the two lowest bits:

0x28 | 0x03 = 0x0b

[197c]⟨start.asm 87⟩+≡ ◁ 150b 198 ▷
[section .text]

global tss_flush

tss_flush: mov ax, 0x28 | 0x03
ltr ax ; load the task register
ret

Defines:
tss_flush, used in chunks 110a, 197d, and 280a.

As always we need to tell the C compiler that the assembler function tss_flushc exists
elsewhere:

[197d]⟨function prototypes 45a⟩+≡ (44a) ◁ 196b 197e ▷
extern void tss_flush ();

Lastly, we present the cpu_usermode routine which performs the switch from kernel
mode (ring 0) to user mode (ring 3).

[197e]⟨function prototypes 45a⟩+≡ (44a) ◁ 197d 201a ▷
extern void cpu_usermode (memaddress address, memaddress stack); // assembler
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It prepares a stack that will create the first user mode process when executing iret. Since
iret performs a change of privilege level (from ring 0 to ring 3), it will pop the following:

• instruction pointer EIP
• code segment selector CS
• EFLAGS register
• stack pointer ESP
• stack segment selector SS

e other segment selectors (DS, ES, FS and GS) can be set via mov instructions. When we
enter the assembler function, there are three values on the stack:

• the return address in [esp] (in Assembler syntax, but note: we will never return to
that address),

• the first argument in [esp + 4],
• the second argument in [esp + 8].

But each time we push data on the stack, the offsets will change. To make the following
code more readable we will start with saving the current ESP value in EBP—that register
will then point to the same address even while we push and pop data.

[198] ⟨start.asm 87⟩+≡ ◁ 197c 202c ▷
global cpu_usermode

cpu_usermode: cli ; disable interrupts
mov ebp, esp ; remember current stack address
mov ax, 0x20 | 0x03 ; code selector 0x20 | RPL3: 0x03

; RPL = requested protection level
mov ds, ax
mov es, ax
mov fs, ax
mov gs, ax
mov eax, esp
push 0x20 | 0x03 ; code selector 0x20 | RPL3: 0x03
mov eax, [ebp + 8] ; stack address is 2nd argument
push eax ; stack pointer
pushf ; EFLAGS
pop eax ; trick: reenable interrupts when doing iret
or eax, 0x200
push eax
push 0x18 | 0x03 ; code selector 0x18 | RPL3: 0x03
mov eax, [ebp + 4] ; return address (1st argument) for iret
push eax
iret

Defines:
cpu_usermode, used in chunk 192d.

(ere are many ways to implement this switch to user mode; the version that you
see here originates from an osdev.org forum post by Jens Nyberg [Nyb11]. We added

osdev.org
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comments and made some changes which make it easier to understand the code. e
important point is to set up the stack properly for the final iret instruction.)

We’re using a trick to have interrupts automatically enabled whenwe execute iret: One
of the values on the stack is the EFLAGS register which contains the interrupt enable enabling

interrupts
flag

(IF) in bit 9. We cannot directly set that bit in EFLAGS, but we can modify the stack. e
sequence pop eax; or eax, 0x200; push eax pops the EFLAGS (which was just pushed in
the previous pushf instruction) from the stack, sets bit 9 ( =  = 0x200) and pushes
the modified value onto the stack.

6.4 System Calls
When the operating system is in kernel mode, it has access to all its internal data and
code: it may call any kernel function and, for example, read sectors from a disk or change
hardware seings. Processes on the other hand cannot do the same: even though U
maps the kernel memory in all address spaces, processes cannot access it because the
protection bits in the page tables define that this memory area may only be used when
the system runs in ring 0—and processes run in ring 3 (user mode).

Even if a process was allowed to call kernel functions (by seing up the page tables
differently) that would not help much since privileged machine instructions such as in
and out (for talking to hardware devices) cannot be executed in ring 3.

All operating systems provide system calls as a way to access these needed kernel func-
tions: on U they allow a controlled switch from user mode to kernel mode via the int
instruction which switches to ring 0 and executes a pre-defined interrupt handler. at
handler finds out which system call the process wants to execute (by looking at the system
call number that must be stored in the EAX register) and then proceeds by calling a system
call handler function.

While we implement system calls, we will also create functions for the standard library
that user mode programs must link in order to conveniently talk to the operating system
via functions such as forkg, openb, readb etc.

ere are several ways to implement system calls. Let’s first look at the way system calls
can be called from user space. On 32-bit Intel CPUs, Linux does it via soware interrupt
0x80 with arguments in registers:

[199]⟨example for system calls in linux 199⟩≡
_start: ; tell linker entry point

mov edx,len ; message length
mov ecx,msg ; message to write
mov ebx,1 ; file descriptor (stdout)
mov eax,4 ; system call number (sys_write)
int 0x80 ; software interrupt 0x80
mov eax,1 ; system call number (sys_exit)
int 0x80 ; software interrupt 0x80

section .data
msg db 'Hello, world!',0xa ; the string to be printed
len equ $ - msg ; length of the string
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(is examplewas taken from http://asm.sourceforge.net/intro/hello.html; the comments
were modified.)

On a Linux machine you could assemble, link and run this file with

$ nasm -f elf test.asm
$ ld test.o -o test
$ ./test
Hello, world!

In this program EAX always holds the system call number, the other registers (in this
example EBX , ECX and EDX are used for arguments. System call 4 is the sys_write syscall.

Other operating systems put arguments on the stack or into specific memory areas. We
will stick with the Linux way because it is simple to use registers.

Since adding assembler code to C programs for every system call would be laborious,
standard libraries make things simpler for the application developer; this can be done in
two steps:

• Supplying a generic syscall function (that takes an arbitrary number of arguments)
reduces the above code to executing

char *msg = "Hello, world!\n";
syscall (4, 1, msg, strlen (msg));

• But that is still unreadable, and also it is not portable because system call numbers
are not identical across different Unix versions. us, for all standard system calls,
some library provides the beer known functions (such as writeb) which allow the
above code to be wrien as

char *msg = "Hello, world!\n";
write (STDOUT_FILENO, msg, strlen (msg));

(with the constant STDOUT_FILENOb set to 1).

6.4.1 System Calls in U
U provides functions for adding (or modifying) system calls to the system and a generic
system call handler. For this purpose, we create a system call table syscall_tableb that
contains pointers to functions, so for example, syscall_tableb[4] should contain the
address of U’s sys_write function. If a system call is not defined, the table entry is a
null pointer, so we can initialize the whole table with null bytes:

[200a] ⟨constants 112a⟩+≡ (44a) ◁ 190b 233a ▷
#define MAX_SYSCALLS 1024 // max syscall number: 1023

Defines:
MAX_SYSCALLS, used in chunks 200 and 201.

[200b] ⟨global variables 92b⟩+≡ (44a) ◁ 195 205c ▷
void *syscall_table[MAX_SYSCALLS];

Defines:
syscall_table, used in chunk 201.

Uses MAX_SYSCALLS 200a.

http://asm.sourceforge.net/intro/hello.html
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Telling U what function to execute when a specific system call is made is as simple
as writing the address into the proper array entry. Nevertheless, we provide a function

[201a]⟨function prototypes 45a⟩+≡ (44a) ◁ 197e 202a ▷
void install_syscall_handler (int syscallno, void *syscall_handler);

which enters the handler address:
[201b]⟨function implementations 100b⟩+≡ (44a) ◁ 197a 201d ▷

void install_syscall_handler (int syscallno, void *syscall_handler) {
if (syscallno ≥ 0 && syscallno < MAX_SYSCALLS)

syscall_table[syscallno] = syscall_handler;
};

Defines:
install_syscall_handler, used in chunks 173d, 201c, 206f, 213e, 217c, 220–22, 224, 235c, 259a, 260c, 282d,

299b, 310c, 328e, 331b, 333a, 370e, 372b, 373a, 416c, 428a, 434a, 493d, 513b, 565a, 567a, 583b, 587e, 590c,
and 611a.

Uses MAX_SYSCALLS 200a, syscall_handler 201d, and syscall_table 200b.

So if we have already defined a function sys_write and declared the system call number
__NR_writec, we could activate the writeb system call by calling

[201c]⟨syscall entry example 201c⟩≡
install_syscall_handler (__NR_write, sys_write);

e actual system call handler simply checks if there is a handler for the given system call
number and (if so) calls it:

[201d]⟨function implementations 100b⟩+≡ (44a) ◁ 201b 202b ▷
void syscall_handler (context_t *r) {

void (*handler) (context_t*); // handler is a function pointer
int number = r->eax;
if (number != __NR_get_errno) set_errno (0); // default: no error
if (number ≥ 0 && number < MAX_SYSCALLS)

handler = syscall_table[number];
else

handler = 0; // illegal system call number, outside 0..1023
if (handler != 0) {

handler (r);
}
else

printf ("Unknown syscall no. eax=0x%x; ebx=0x%x. eip=0x%x, esp=0x%x. "
"Continuing.\n", r->eax, r->ebx, r->eip, r->esp);

}
Defines:

syscall_handler, used in chunks 201 and 202c.
Uses __NR_get_errno 206e, context_t 142a, MAX_SYSCALLS 200a, printf 601a, set_errno 206b,

and syscall_table 200b.

e set_errnob function sets the error field of the current TCB and can be used by sys-
tem call handlers to return an error code (see Section 6.4.3). We will later add system call
handlers to a special code chunk named ⟨syscall functions 174b⟩ and put their prototypes
in ⟨syscall prototypes 173b⟩.
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[202a] ⟨function prototypes 45a⟩+≡ (44a) ◁ 201a 202d ▷
⟨syscall prototypes 173b⟩

[202b] ⟨function implementations 100b⟩+≡ (44a) ◁ 201d 206b ▷
⟨syscall functions 174b⟩

We add a handler for interrupt 0x80 which looks just like our regular interrupt handlers
for hardware-generated interrupts (and also like the fault handlers). e difference is that
in this case we call neither irq_handlera nor fault_handlerc, but our new C function
syscall_handlerd. Apart from that we perform the same preparation as in the assembler
code which you’ve already seen: We store the context in the proper order on the stack
so that syscall_handlerd which takes a context_ta *r as argument can evaluate and
possibly change them.

[202c] ⟨start.asm 87⟩+≡ ◁ 198 213b ▷
[section .text]

extern syscall_handler
global syscallh

syscallh: push byte 0 ; put 128 on the stack so it looks the same
; push byte 128 ; as it does after a hardware interrupt
push byte -128 ; (getting rid of nasm error for signed byte)
⟨push registers onto the stack 142b⟩
call syscall_handler
⟨pop registers from the stack 143a⟩
add esp, 8 ; undo the two "push byte" commands from the start_
iret

Defines:
syscallh, used in chunk 202.

Uses syscall_handler 201d.

(In case you have forgoen it: ⟨push registers onto the stack 142b⟩ pushes the general pur-
pose registers as well as DS, ES, FS, GS and ESP onto the stack while ⟨pop registers from the
stack 143a⟩ pops them back in reverse order. We used this code when we introduced the
interrupt handlers.)

In order to have the system jump to the syscallhc Assembler function, we need to
register its address in the interrupt descriptor table (just like we did with the interrupt
and fault handlers):

[202d] ⟨function prototypes 45a⟩+≡ (44a) ◁ 202a 206a ▷
extern void syscallh ();

[202e] ⟨install the fault handlers 148b⟩+≡ (45b) ◁ 148b
fill_idt_entry (128,

(unsigned int)syscallh,
0x08,
0b1110, // flags: 1 (present), 11 (DPL 3), 0
0b1110); // type: 1110 (32 bit interrupt gate)

Uses fill_idt_entry 138c and syscallh 202c.
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Note that we create an interrupt gate like in ⟨install the interrupt handlers 139b⟩ (p. 139)
and ⟨install the fault handlers 148b⟩ (p. 148) and not a trap gate trap gate, so interrupts will be off
when we enter a system call handler. For an interruptible kernel version of U (see the
discussion in Chapter 11.6) we would use a trap gate so that interrupts remain enabled.

6.4.2 Making System Calls
Actually making a system call works just like in the Linux example we’ve shown earlier:
• load the system call number in EAX ,
• load arguments for the syscall in the next registers (EBX , ECX , …) and
• execute int 0x80.

e return value of the system call can then be read from EAX . e following functions
[203a]⟨ulixlib function prototypes 174c⟩+≡ (48a) ◁ 174c 213f ▷

inline int syscall4 (int eax, int ebx, int ecx, int edx);
inline int syscall3 (int eax, int ebx, int ecx);
inline int syscall2 (int eax, int ebx);
inline int syscall1 (int eax);

standardize this process. We do not need them in the kernel, but the user mode library
uses them to provide standard functions such as openb, readb, writeb or forkg:

[203b]⟨ulixlib function implementations 174d⟩+≡ (48b) ◁ 174d 203c ▷
inline int syscall4 (int eax, int ebx, int ecx, int edx) {

int result;
asm ( "int $0x80" : "=a" (result) : "a" (eax), "b" (ebx), "c" (ecx), "d" (edx) );
return result;

}
Defines:

syscall4, used in chunks 203a, 220d, 429b, and 591b.

e asm statement loads the EAX ("a"), EBX ("b"), ECX ("c") and EDX ("d") registers with
the supplied values (eax, ebx, ecx, edx), then executes the instruction (int $0x80) and finally
writes back the contents of EAX ("a"), which may have been modified, to result. For more
information about this syntax see Appendix B.

e other functions work identically, just with less parameters which are stored in less
registers:

[203c]⟨ulixlib function implementations 174d⟩+≡ (48b) ◁ 203b 213g ▷
inline int syscall3 (int eax, int ebx, int ecx) {

int result;
asm ( "int $0x80" : "=a" (result) : "a" (eax), "b" (ebx), "c" (ecx) );
return result;

}

inline int syscall2 (int eax, int ebx) {
int result;
asm ( "int $0x80" : "=a" (result) : "a" (eax), "b" (ebx) );
return result;

}



204 6 Implementation of Processes

inline int syscall1 (int eax) {
int result;
asm ( "int $0x80" : "=a" (result) : "a" (eax) );
return result;

}
Defines:

syscall1, used in chunks 207b, 213g, 221f, 223b, 260e, 282f, 310e, 331d, and 513d.
syscall2, used in chunks 174d, 218a, 224f, 259c, 299d, 328g, 333c, 373e, 429b, 434c, 493f, 584c, and 587b.
syscall3, used in chunks 224f, 235e, 331d, 373e, 429b, 434c, 568b, 584c, and 591b.

System calls differ in the number of arguments. Since C provides no internal commands
for accessing CPU registers and issuing int calls, we need inline assembler code.

As an example look at the writeb function which has the prototype
[204a] ⟨example: write() prototype 204a⟩≡

int write (int fd, const void *buf, int nbyte);

It takes three arguments, thus an implementation in a user mode library would look like
this:

[204b] ⟨example: write() implementation 204b⟩≡
int write (int fd, const void *buf, int nbyte) {

return syscall4 (__NR_write, fd, (int)buf, nbyte);
}

For increased Linux compatibility we will use the same system call numbers as Linux
does—at least for those calls that U does also provide.

e following definitions were taken from the 32-bit Linux¹ file /usr/include/i-
linux-gnu/asm/unistd_.h:

[204c] ⟨linux system calls 204c⟩≡ (205a)
#define __NR_exit 1
#define __NR_fork 2
#define __NR_read 3
#define __NR_write 4
#define __NR_open 5
#define __NR_close 6
#define __NR_waitpid 7
#define __NR_link 9
#define __NR_unlink 10
#define __NR_execve 11
#define __NR_chdir 12
#define __NR_chmod 15
#define __NR_lseek 19
#define __NR_getpid 20
#define __NR_sync 36
#define __NR_kill 37
#define __NR_mkdir 39
#define __NR_rmdir 40
#define __NR_brk 45

#define __NR_signal 48
#define __NR_dup2 63
#define __NR_getppid 64
#define __NR_symlink 83
#define __NR_readlink 85
#define __NR_readdir 89
#define __NR_truncate 92
#define __NR_ftruncate 93
#define __NR_stat 106
#define __NR_chown 182
#define __NR_getcwd 183
#define __NR_setreuid32 203
#define __NR_setregid32 204
#define __NR_setuid32 213
#define __NR_setgid32 214

Defines:
__NR_brk, used in chunks 173d and 174d.
__NR_chdir, used in chunk 434.
__NR_chmod, used in chunks 590c and 591b.
__NR_chown, used in chunks 590c and 591b.
__NR_close, used in chunks 428a and 429b.

¹ Ubuntu 11.10, http://www.ubuntu.com/

http://www.ubuntu.com/
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__NR_execve, used in chunk 235.
__NR_exit, used in chunks 217c and 218a.
__NR_fork, used in chunk 213.
__NR_getcwd, used in chunk 434.
__NR_getpid, used in chunks 222e and 223b.
__NR_getppid, used in chunks 222e and 223b.
__NR_kill, used in chunks 565a and 568b.
__NR_link, used in chunks 428a and 429b.
__NR_lseek, used in chunks 428a and 429b.
__NR_mkdir, used in chunks 428a and 429b.
__NR_open, used in chunks 428a and 429b.
__NR_read, used in chunks 428a and 429b.
__NR_readdir, used in chunks 428a and 429b.
__NR_readlink, used in chunks 428a and 429b.

__NR_rmdir, used in chunks 428a and 429b.
__NR_setgid32, used in chunks 583b and 584c.
__NR_setregid32, used in chunks 583b and 584c.
__NR_setreuid32, used in chunks 583b and 584c.
__NR_setuid32, used in chunks 583b and 584c.
__NR_signal, used in chunks 567a and 568b.
__NR_stat, used in chunks 428a and 429b.
__NR_symlink, used in chunks 428a and 429b.
__NR_sync, used in chunk 513.
__NR_truncate, used in chunks 428a and 429b.
__NR_unlink, used in chunks 428a and 429b.
__NR_waitpid, used in chunk 220.
__NR_write, used in chunks 428a and 429b.

Uses __NR_ftruncate.

[205a]⟨public constants 46a⟩+≡ (44a 48a) ◁ 180a 207a ▷
⟨linux system calls 204c⟩
⟨ulix system calls 206e⟩

As we already mentioned, system calls return arguments by storing the value in EAX .
Now that you have seen how system calls are implemented youmight want to turn back

to Chapter 6.1.5 (specifically: to the implementation of the sbrkd system call and library
function on page 173) because we have already used the system call interface in that code
and promised you a reminder once you’d get here.

6.4.3 Handling Errors with errno
Most system calls can fail: in that case they need to notify the calling process about the
cause of the error. Unix systems traditionally use a special global variable named errnob
for this purpose; the standard behavior is to make the system call return − and put a
specific (positive) value into errnob.

For U we will provide the error code via a system call (and a corresponding user
mode library function) called get_errnob(). For entering an error code into the process’
TCB structure, we add the system call and function set_errnob(). Every user mode ap-
plication must include the U standard headers which will contain a macro that defines
errnob as the result of a system call which executes get_errnob. All aempts to read
errnob will generate that system call which reads the error field of the TCB. We haven’t
defined it yet, so here it is:

[205b]⟨more TCB entries 158c⟩+≡ (175) ◁ 187b 219a ▷
int error;

(In the TCB we use the name error instead of errnob so that we can avoid confusion
about which is which.)

We also declare a variable startup_errnoc which will be used in the early phase of the
kernel initialization before the first process is started:

[205c]⟨global variables 92b⟩+≡ (44a) ◁ 200b 218b ▷
int startup_errno = 0;

Defines:
startup_errno, used in chunk 206b.
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Inside the kernel the two functions are easy to implement:
[206a] ⟨function prototypes 45a⟩+≡ (44a) ◁ 202d 209a ▷

int get_errno ();
void set_errno (int err);

[206b] ⟨function implementations 100b⟩+≡ (44a) ◁ 202b 209c ▷
int get_errno () {

if (scheduler_is_active) return thread_table[current_task].error;
else return startup_errno;

}

void set_errno (int err) {
if (scheduler_is_active) thread_table[current_task].error = err;
else startup_errno = err;

}
Defines:

get_errno, used in chunk 206d.
set_errno, used in chunks 201d, 206, 207c, 562b, 565c, 576, 577, and 579c.

Uses current_task 192c, scheduler_is_active 276e, startup_errno 205c, and thread_table 176b.

Now we need to turn these two functions into system calls. e system call handlers
simply call the above functions; an argument (for set_errnob()) can be found in the EBX
register, and we store a return value (for get_errnob()) in the EAX register. Both are
available via the context_ta structure which is provided as an argument to the system
call handlers:

[206c] ⟨syscall prototypes 173b⟩+≡ (202a) ◁ 173b 213c ▷
void syscall_get_errno (context_t *r);
void syscall_set_errno (context_t *r);

[206d] ⟨syscall functions 174b⟩+≡ (202b) ◁ 174b 213d ▷
void syscall_get_errno (context_t *r) { eax_return ( get_errno () ); };
void syscall_set_errno (context_t *r) { set_errno ((int)r->ebx); };

Defines:
syscall_get_errno, used in chunk 206f.
syscall_set_errno, used in chunk 206.

Uses context_t 142a, eax_return 174a, get_errno 206b, and set_errno 206b.

Finally we need to register the system calls:
[206e] ⟨ulix system calls 206e⟩≡ (205a) 221b ▷

#define __NR_get_errno 501
#define __NR_set_errno 502

Defines:
__NR_get_errno, used in chunks 201d, 206f, and 207b.
__NR_set_errno, used in chunk 206f.

[206f] ⟨initialize syscalls 173d⟩+≡ (44b) ◁ 173d 213e ▷
install_syscall_handler (__NR_get_errno, syscall_get_errno);
install_syscall_handler (__NR_set_errno, syscall_set_errno);

Uses __NR_get_errno 206e, __NR_set_errno 206e, install_syscall_handler 201b, syscall_get_errno 206d,
and syscall_set_errno 206d.
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We’ll collect error codes (such as EACCESa which is the code for “permission denied”)
in a new ⟨error constants 370a⟩ chunk:

[207a]⟨public constants 46a⟩+≡ (44a 48a) ◁ 205a 235a ▷
⟨error constants 370a⟩

and wewill fill this collection with entries as we go along and opportunities for generating
errors arise.

User mode programs can access the error code via the errnob macro which just re-
trieves the value:

[207b]⟨ulixlib constants 207b⟩≡ (48a)
#define errno (syscall1(__NR_get_errno))

Uses __NR_get_errno 206e and syscall1 203c.

Note that most system calls do not set an error value because we wanted to keep the
code compact. But it would be easy to change this: Aer all, the system call handlers do
check for errors and simply return − when one occurs. By writing a macro

[207c]⟨possible macro for readable error returns 207c⟩≡
#define err_return(retval,errno) \

set_errno (errno); \
return retval;

you could replace the return(-1); lines in the current code with err_return (-1, ECODE);
lines.

6.5 Forking a Process
We’re geing closer to having a multitasking operating system. We only use the function
start_program_from_disk for loading the first (initial) process—for everything else we
want to implement the standard Unix way of creating new processes: the fork.

Figure 6.9 shows how a process and its fork proceed over time; the depiction resembles
a (two-pronged) fork.

fork()

process, PID = a

parent process, PID = a

child process, PID = b, PPID = a

time

Figure 6.9: When the system forks a process, it creates an almost identical copy.

Here’s an excerpt from the fork manpage on a Debian GNU/Linux 7.1 machine [Lin12a]:
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NAME
fork - create a child process

DESCRIPTION
fork() creates a new process by duplicating the calling process. The new pro-
cess, referred to as the child, is an exact duplicate of the calling process,
referred to as the parent, except for the following points:

* The child has its own unique process ID, and this PID does not match the ID
of any existing process group (setpgid(2)).

* The child's parent process ID is the same as the parent's process ID.
...

RETURN VALUE
On success, the PID of the child process is returned in the parent, and 0 is
returned in the child. On failure, -1 is returned in the parent, no child pro-
cess is created, and errno is set appropriately.

...

Basically, when a Unix process calls fork() (and thus enters the fork system call), the
operating system creates a duplicate of the currently running process. Aer a successful
fork operation we have two processes which are almost identical. at means:

• Both processes execute the same program (i. e., the same binary is loaded in their
lower memory areas),

• variables and dynamic memory have identical contents, but the memory is duplicated
since both processes may make different changes to that memory once they continue
running aer the fork.

• ey also have their own copies of the user mode and kernel mode stack.
• Most process metadata (the contents of the thread control block) are identical as well,

with two important exceptions: the new process has its own process ID (and thread
ID), and the new process stores the old process’ thread ID in its parent process ID field
(ppid).

• Aer the fork, both processes return from the fork system call and continue execution
in the instruction immediately following the system call—so they need a way to find
out whether they are the original process (calledParent Process parent) or the newly forked process
(calledChild Process child). e user mode fork function will return 0 in the child process and the
newly created process’ ID in the parent process.

Note that other Unix implementations do not copy the whole process memory—instead
they use a technique called copy-on-writecopy-on-write that only creates a copy of the page tables and
marks them read-only (in both the parent and child process). is means that initially
both processes use the same physical memory, but the read-only mode guarantees that no
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problems can occur. When a process tries to modify its memory, that will cause a page
fault (due to the missing write permissions), and the fault handler will then create a copy
of that page so that both processes have their personal copy of the faulting page. is
copy (and the original) will have read and write permissions, and the faulting process can
repeat its write operation. U copies all of the memory which is less efficient, but allows
a simpler implementation.

While we create a new process we will set its state to TSTATE_FORKa to show that its
creation is still in progress.

Our goal for this section is to implement the function
[209a]⟨function prototypes 45a⟩+≡ (44a) ◁ 206a 213a ▷

int u_fork (context_t *r);

which will later be called from the fork system call handler (see page 213).
Sincewewill need a lot of memory copying operations, we declare twomacros which let

us copy physical memory areas (phys_memcpyb) and copy page frames (copy_frameb):
[209b]⟨macro definitions 35a⟩+≡ (44a) ◁ 174a 222c ▷

#define phys_memcpy(target, source, size) \
(unsigned int)memcpy ( (void*)PHYSICAL(target), (void*)PHYSICAL(source), size)

#define copy_frame(out, in) phys_memcpy (out << 12, in << 12, PAGE_SIZE)
Defines:

copy_frame, used in chunk 211c.
phys_memcpy, used in chunk 211b.

Uses memcpy 596c, PAGE_SIZE 112a, and PHYSICAL 116a.

So, phys_memcpyb does the same as memcpyc but expects its first two arguments to
be physical addresses (instead of virtual ones), and copy_frameb provides a shortcut
for copying physical frames since for that task the number of bytes to copy is always
PAGE_SIZEa.

Next comes the definition of u_forkc. is function will be called when the fork sys-
tem call is executed. Again, we declare everything that is done in this function as a critcal
section. If you ask, why there is no ⟨end critical section in kernel 380b⟩ in this chunk, see
⟨u_fork: branch parent and child 212⟩.

[209c]⟨function implementations 100b⟩+≡ (44a) ◁ 206b 217a ▷
int u_fork (context_t *r) {
⟨begin critical section in kernel 380a⟩
thread_id old_tid = current_task;
thread_id ppid = old_tid;
⟨u_fork: create new address space and TCB 210a⟩
⟨u_fork: fill new TCB 210b⟩
⟨u_fork: create new kernel stack and copy the old one 211a⟩
⟨u_fork: copy user mode memory 211c⟩
⟨u_fork: branch parent and child 212⟩

}
Defines:

u_fork, used in chunks 188d, 209a, and 213d.
Uses context_t 142a, current_task 192c, and thread_id 178a.

Now, here’s the actual implementation. We will present it in several steps and discuss
what’s happening.



210 6 Implementation of Processes

6.5.1 Reserving Memory and a Fresh TCB
We start by creating a new address space and cloning the current TCB into a free TCB
which we first have to search for.

is step is similar to the first step in start_program_from_disk, except that memory
and stack size are not free parameters, but are copied from the parent process:

[210a] ⟨u_fork: create new address space and TCB 210a⟩≡ (209c)
addr_space_id old_as = current_as;
// clone kernel part of PD; reserve user part of memory
addr_space_id new_as = create_new_address_space (

address_spaces[old_as].memend - address_spaces[old_as].memstart,
address_spaces[old_as].stacksize );

if (new_as == -1) return -1; // error: cannot create address space

thread_id new_tid = register_new_tcb (new_as);
if (new_tid == -1) return -1; // error: cannot create TCB entry

Uses addr_space_id 158b, address_spaces 162b, create_new_address_space 163c, current_as 170b,
register_new_tcb 188d, TCB 175, and thread_id 178a.

6.5.2 Filling the Child TCB
Basically the child is an almost identical copy of the parent, so we start with copying the
parent TCB to the child TCB. However, we need to modify some values, for example the
process, thread and parent process ID as well as the link to the address space. We also copy
the open file descriptors, but this needs more work than just copying the information in
the TCB; we will explain that in the filesystem chapter where we provide the code chunk
⟨u_fork: copy the file descriptors 425a⟩. e new process is set to state TSTATE_FORKa; it
will only change to TSTATE_READYa when the fork operation is complete.

[210b] ⟨u_fork: fill new TCB 210b⟩≡ (209c)
TCB *t_old = &thread_table[old_tid]; // prefer to use pointers
TCB *t_new = &thread_table[new_tid];
*t_new = *t_old; // copy the complete TCB
t_new->state = TSTATE_FORK;
t_new->tid = new_tid;
t_new->addr_space = new_as;
t_new->pid = t_new->tid; // new process; pid = tid
t_new->ppid = old_tid; // set parent process ID

// copy current registers to new thread, except EBX (= return value)
t_new->regs = *r;

// copy current ESP, EBP
asm volatile ("mov %%esp, %0" : "=r"(t_new->esp0)); // get current ESP
asm volatile ("mov %%ebp, %0" : "=r"(t_new->ebp)); // get current EBP

⟨u_fork: copy the file descriptors 425a⟩ // see filesystem chapter
Uses t_new 276c, t_old 276c, TCB 175, thread_table 176b, and TSTATE_FORK 180a.
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6.5.3 The Child’s Kernel Stack
e child needs a fresh kernel stack, and that also requires a new page table in which we
can enter the mappings of the kernel stack pages to physical page frames.

[211a]⟨u_fork: create new kernel stack and copy the old one 211a⟩≡ (209c) 211b ▷
page_table *stackpgtable = request_new_page ();
address_spaces[new_as].kstack_pt = (memaddress)stackpgtable;
memset (stackpgtable, 0, sizeof (page_table));
page_directory *tmp_pd = address_spaces[new_as].pd;
KMAPD ( &tmp_pd->ptds[767], mmu (0, (uint)stackpgtable) );

int i, j; // counters
for (i = 0; i < KERNEL_STACK_PAGES; i++)

as_map_page_to_frame (new_as, 0xbffff - i, request_new_frame () );
Uses address_spaces 162b, as_map_page_to_frame 165b, KERNEL_STACK_PAGES 169b, KMAPD 103c,

memaddress 46c, memset 596c, mmu 172a, page_directory 103d, page_table 101b, request_new_frame 118b,
and request_new_page 120a.

We use the phys_memcpyb macro for copying the frames of the parent’s kernel stack to
the child’s kernel stack, we get those physical addresses from the mmua function, using
new_as for the new page table and old_as for the old table. It is not possible to simply start
with an empty stack (like we did when we created the first process) because the child
process, once it is fully created, will be in the middle of executing the fork system call, so
the stack must be there and have the same contents as in the parent.

[211b]⟨u_fork: create new kernel stack and copy the old one 211a⟩+≡ (209c) ◁ 211a
// copy the physical frames
memaddress base = TOP_OF_KERNEL_MODE_STACK - KERNEL_STACK_SIZE;
for (i = 0; i < KERNEL_STACK_PAGES; i++)

phys_memcpy ( mmu (new_as, base + i*PAGE_SIZE),
mmu (old_as, base + i*PAGE_SIZE), PAGE_SIZE );

Uses KERNEL_STACK_PAGES 169b, KERNEL_STACK_SIZE 169b, memaddress 46c, mmu 172a, PAGE_SIZE 112a,
phys_memcpy 209b, and TOP_OF_KERNEL_MODE_STACK 159c.

Note that the frames that we request here (both via request_new_pagea for the page ta-
ble and request_new_frameb for the kernel stack pages) will be released when the process
exits.

6.5.4 Copying the Process’ User Mode Memory
Copying the user mode memory means copying the first 3 GByte except the kernel stack
which we’ve done already. is requires a nested loop since for each present page direc-
tory entry we look at each present page table entry and then make a copy. We have to
look at the first 767 page tables (the th table holds the entries for the kernel stack).

[211c]⟨u_fork: copy user mode memory 211c⟩≡ (209c)
// clone first 3 GB (minus last directory entry) of address space
page_directory *old_pd = address_spaces[old_as].pd;
page_directory *new_pd = address_spaces[new_as].pd;
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page_table *old_pt, *new_pt;
for (i = 0; i < 767; i++) { // only 0..766, not 767 (= kstack)

if (old_pd->ptds[i].present) { // page table present?
// walk through the entries of the page table
old_pt = (page_table*)PHYSICAL (old_pd->ptds[i].frame_addr << 12);
new_pt = (page_table*)PHYSICAL (new_pd->ptds[i].frame_addr << 12);
for (j = 0; j < 1024; j++)

if (old_pt->pds[j].present) // page present?
copy_frame ( new_pt->pds[j].frame_addr, old_pt->pds[j].frame_addr );

};
};

Uses address_spaces 162b, copy_frame 209b, kstack, page_directory 103d, page_table 101b, and PHYSICAL 116a.

6.5.5 A Child Is Born
All the code you have seen so far is only executed in the original (parent) process. But at
some point in time there will be both the parent and the child, and the question is where
the child shall start execution. Wemake the branch right here, as the last step in u_forkc.

We start with querying the current instruction pointer (EIP) via the get_eipb function.
is function returns the address of the instruction aer the get_eipb call (because it
retrieves the return address from the stack, and that address is not the address of the
call, but of the instruction where the u_forkc function continues aer returning from
get_eipb). at next line of code is the first line that we want to be executed by both
processes, thus we store the value in the eip field of the new process’ TCB. at’s the
whole trick behind geing the new process to start running at the correct instruction.

e rest is administrative work: In the parent process we add the new process to the
ready queue, re-enable the interrupts and return the new process’ thread ID. In the child
process we simply return 0. We can check whether we’re in the parent or child by com-
paring current_taskc with the ppid variable: e laer is identical in both processes, but
the comparison only evaluates to true in the parent process.

[212] ⟨u_fork: branch parent and child 212⟩≡ (209c)
memaddress eip = get_eip (); // get current EIP
// new process begins to live right here!
if (current_task == ppid) {

// parent tasks
t_new->eip = eip;
add_to_ready_queue (new_tid);
⟨end critical section in kernel 380b⟩ // must be done in parent
return new_tid; // in parent, fork returns child's PID

} else {
// child tasks
return 0; // in child, fork returns 0

}
Uses add_to_ready_queue 184b, current_task 192c, get_eip 213b, memaddress 46c, and t_new 276c.
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Since
[213a]⟨function prototypes 45a⟩+≡ (44a) ◁ 209a 216c ▷

extern memaddress get_eip ();

performs its trick by looking at the stack, it must be implemented in the assembler file.
We simply pop the return address from the stack (storing it in EAX ) and push it back so
that the stack is as before. e contents of EAX are always used as functions’ return values,
so we’re done:

[213b]⟨start.asm 87⟩+≡ ◁ 202c
global get_eip

get_eip: pop eax ; top of stack contains return address
push eax ; write it back
ret

Defines:
get_eip, used in chunk 212.

6.5.6 The fork System Call
We can now add the fork system call: As usual, syscall_forkd calls u_forkc and stores
the return value in EAX using eax_returna:

[213c]⟨syscall prototypes 173b⟩+≡ (202a) ◁ 206c 216a ▷
void syscall_fork (context_t *r);

[213d]⟨syscall functions 174b⟩+≡ (202b) ◁ 206d 216b ▷
void syscall_fork (context_t *r) { eax_return ((unsigned int) u_fork (r)); }

Defines:
syscall_fork, used in chunk 213.

Uses context_t 142a, eax_return 174a, and u_fork 209c.

We add the system call handler to the list:
[213e]⟨initialize syscalls 173d⟩+≡ (44b) ◁ 206f 217c ▷

install_syscall_handler (__NR_fork, syscall_fork);
Uses __NR_fork 204c, install_syscall_handler 201b, and syscall_fork 213d.

And here is the user mode library function:
[213f]⟨ulixlib function prototypes 174c⟩+≡ (48a) ◁ 203a 217d ▷

int fork ();

[213g]⟨ulixlib function implementations 174d⟩+≡ (48b) ◁ 203c 218a ▷
int fork () { return syscall1 (__NR_fork); }

Defines:
fork, used in chunks 213f and 214.

Uses __NR_fork 204c and syscall1 203c.
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6.5.7 Testing fork
e following test program creates a process tree by calling forkg four times:

[214] ⟨lib-build/tools/fork2.c 214⟩≡
#include "../ulixlib.h"
int main () {

printf ("Press Return to end.\n");
int f1 = fork (); int f2 = fork (); int f3 = fork (); int f4 = fork ();
int pid = getpid (); int ppid = getppid (); int tid = gettid ();
printf ("[%2d]: pid = %2d, tid = %2d, ppid = %2d, forkrets = [%2d %2d %2d %2d]\n",

pid, pid, tid, ppid, f1, f2, f3, f4);

long long int j; for (j = 0; j < 9999999ul; j++) ; // wait
if (f1!=0 && f2!=0 && f3!=0 && f4!=0) {

char s[80]; ureadline ((char*)s, 79, false);
}
exit (0);

}
Uses exit 218a, fork 213g, getpid 223b, getppid 223b, gettid 223b, main 44b, printf 601a, and ureadline 431.

When running it, we get the following output. Figure 6.10 shows the process tree that is
created by the program.

esser@ulix[8]:/home/esser$ fork2
Press Return to end.
[11]: pid = 11, tid = 11, ppid = 10, forkrets = [ 0 13 14 15]
[13]: pid = 13, tid = 13, ppid = 11, forkrets = [ 0 0 17 18]
[14]: pid = 14, tid = 14, ppid = 11, forkrets = [ 0 13 0 19]
[15]: pid = 15, tid = 15, ppid = 11, forkrets = [ 0 13 14 0]
[16]: pid = 16, tid = 16, ppid = 12, forkrets = [11 0 0 20]
[17]: pid = 17, tid = 17, ppid = 13, forkrets = [ 0 0 0 21]
[18]: pid = 18, tid = 18, ppid = 13, forkrets = [ 0 0 17 0]
[19]: pid = 19, tid = 19, ppid = 14, forkrets = [ 0 13 0 0]
[20]: pid = 20, tid = 20, ppid = 16, forkrets = [11 0 0 0]
[21]: pid = 21, tid = 21, ppid = 17, forkrets = [ 0 0 0 0]
[10]: pid = 10, tid = 10, ppid = 8, forkrets = [11 12 22 23]
[12]: pid = 12, tid = 12, ppid = 10, forkrets = [11 0 16 24]
[22]: pid = 22, tid = 22, ppid = 10, forkrets = [11 12 0 25]
[23]: pid = 23, tid = 23, ppid = 10, forkrets = [11 12 22 0]
[24]: pid = 24, tid = 24, ppid = 12, forkrets = [11 0 16 0]
[25]: pid = 25, tid = 25, ppid = 22, forkrets = [11 12 0 0]
esser@ulix[4]:/home/esser$

You will see similar code when you reach Chapter 7 where we discuss the creation
of threads. Some operating systems use one kernel function that can create both new
processes and threads, for example the Linux kernel has a clone function that handles both
types. We decided against that approach because it makes the function more complex as
it oen has to check what type of task it is creating.
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Figure 6.10: Calling fork four times creates this tree structure.

6.6 Exiting from a Process
In standard Unix implementations there are five ways to end the life of a process:

• e process calls exit() explicitly which makes it terminate immediately.
• e process executes return in the main() function or it reaches the end of that func-

tion. at will lead to an implicit call of exit() with the same result.
• eprocess receives a signal (from another process or from the kernel, see Chapter 14).

If it has not installed a handler for this signal (or the signal cannot be intercepted),
this causes the termination of the process (it aborts). In that case it cannot provide
an exit value, instead there’s an error code.

• Some kind of error occurs that causes a signal to be sent to the process (by the kernel).
at is a special case of the one above.

• e process calls abort() abortwhich makes it send a SIGABRTa signal to itself. e result
is the same as when that signal is sent by a different process or by the kernel.

In all of these cases the parent process can read the exit status exit statusand find out whether the
process terminated normally or was aborted. e argument to exit() or return can also
be used to tell the parent process whether the process finished successfully; traditionally
an exit code of 0 means success, and any other value represents a problem that caused
the process to (autonomously) terminate. It is not standard practice to use the exit code
as some kind of return value; mainly because the exit code is typically restricted to the
integer range of 0–255.
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6.6.1 The exit System Call
U provides an exit system call which terminates the process and stores the exit code
(which is the single argument and available via EBX ) in the TCB of the process.

[216a] ⟨syscall prototypes 173b⟩+≡ (202a) ◁ 213c 219b ▷
void syscall_exit (context_t *r);

It starts with disabling the interrupts and closing all open files of the process (this will
only make sense aer you’ve read the chapter about filesystems). en it modifies the
thread table: It removes the process from the ready queue and sets the process state to
TSTATE_EXITa. We cannot get rid of the TCB entry right now because the parent process
must get a chance to read the exit code that we store in the exitcode field of the leaving
process’ TCB.

Finally, it wakes a waiting parent process, asks for destroyal of the address space (not
all of that can happen at once, as we’ve already seen in Section 6.1.3), and updates the
TCBs of any children it might have:

[216b] ⟨syscall functions 174b⟩+≡ (202b) ◁ 213d 219c ▷
void syscall_exit (context_t *r) {

// exit code is in ebx register:
⟨begin critical section in kernel 380a⟩ // access the thread table
// close open files
thread_id pid = thread_table[current_task].pid;
int gfd;
for (int pfd = 0; pfd < MAX_PFD; pfd++) {

if ((gfd = thread_table[pid].files[pfd]) != -1) u_close (gfd);
}

// modify thread table
thread_table[current_task].exitcode = r->ebx; // store exit code
thread_table[current_task].state = TSTATE_EXIT; // mark process as finished
remove_from_ready_queue (current_task); // remove it from ready queue
wake_waiting_parent_process (current_task); // wake parent
destroy_address_space (current_as); // return the memory
⟨remove childrens link to parent 217b⟩ // notify children

// finally: call scheduler to pick a different task
⟨end critical section in kernel 380b⟩
scheduler (r, SCHED_SRC_RESIGN);

};
Defines:

syscall_exit, used in chunks 152b, 166c, 216a, 217c, and 260a.
Uses context_t 142a, current_as 170b, current_task 192c, destroy_address_space 166c, MAX_PFD 424b,

remove_from_ready_queue 184c, SCHED_SRC_RESIGN 343a, scheduler 276d, thread_id 178a, thread_table 176b,
TSTATE_EXIT 180a, u_close 418a, and wake_waiting_parent_process 217a.

We implement a function
[216c] ⟨function prototypes 45a⟩+≡ (44a) ◁ 213a 228a ▷

void wake_waiting_parent_process (int pid);
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that checks whether the parent process is waiting for the current process to finish; we
do not provide the code as a code chunk because it will also be used by the u_killb
function which can terminate arbitrary processes.

If the parent is waiting, then it will be on the waitpid_queueb queue. We can then
transfer it to the ready queue by calling deblockb. If it is not waiting, we turn this
process into a zombie zombie: at means that the process will remain in the thread table. at
way we give the parent process a chance to read the exit code, since once the TCB is gone,
so is the exit code.

[217a]⟨function implementations 100b⟩+≡ (44a) ◁ 209c 228b ▷
void wake_waiting_parent_process (int pid) {

// check if we need to wake up parent process
int ppid = thread_table[pid].ppid;
if ( (thread_table[ppid].state == TSTATE_WAITFOR) &&

(thread_table[ppid].waitfor == pid) ) {
// wake up parent process
deblock (ppid, &waitpid_queue);
thread_table[pid].state = TSTATE_EXIT;

} else {
// parent is not waiting, make this process a zombie
thread_table[pid].state = TSTATE_ZOMBIE;

}
}

Defines:
wake_waiting_parent_process, used in chunks 216 and 564a.

Uses deblock 186b, thread_table 176b, TSTATE_EXIT 180a, TSTATE_WAITFOR 180a, TSTATE_ZOMBIE 180a,
and waitpid_queue 218b.

Wewill remove zombie processes in the scheduler: It checks whether a zombie’s parent
has disappeared and (if so) deletes the zombie’s TCB. You can see the code in the chunk
⟨scheduler: check for zombies 281⟩.

We also need to inform children processes that their parent is gone. In that case we
set their parent process ID PPID to 1 (the ID of the init process which becomes the idle
process).

[217b]⟨remove childrens link to parent 217b⟩≡ (216b)
for (int pid = 0; pid < MAX_THREADS; pid++)

if (thread_table[pid].ppid == current_task)
thread_table[pid].ppid = 1; // set parent to idle process

Uses current_task 192c, MAX_THREADS 176a, and thread_table 176b.

As usual, we need to enter the system call handler in the table and provide a user mode
exita function that makes the right system call:

[217c]⟨initialize syscalls 173d⟩+≡ (44b) ◁ 213e 220b ▷
install_syscall_handler (__NR_exit, syscall_exit);

Uses __NR_exit 204c, install_syscall_handler 201b, and syscall_exit 216b.

[217d]⟨ulixlib function prototypes 174c⟩+≡ (48a) ◁ 213f 220c ▷
void exit (int exitcode);
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[218a] ⟨ulixlib function implementations 174d⟩+≡ (48b) ◁ 213g 220d ▷
void exit (int exitcode) { syscall2 (__NR_exit, exitcode); }

Defines:
exit, used in chunks 214, 217d, and 513e.

Uses __NR_exit 204c and syscall2 203c.

6.6.2 The waitpid System Call
Oen a process wants to wait for the completion of a child process, a typical example is
a shell which starts an external program by forkging, executing the program inside the
child process and waiting in the parent process.

Here we implement the waitpidd system call which waits for completion of a given
child, the standard definition, taken from the Linux man pages, is the following:

pid_t waitpid (pid_t pid, int *status, int options);

In that prototype

• pid is the process ID of a child process (waitpidd cannot be used to wait for termi-
nation of arbitrary, non-child processes),

• *status is the address of a status value which will be used to store the exit code of the
child process (or an error value if the child was aborted),

• and options can be used to modify waitpidd’s behavior; our implementation will
ignore any given options.

We need a blocked queue for processes that called waitpidd since they must not be
picked by the scheduler.

[218b] ⟨global variables 92b⟩+≡ (44a) ◁ 205c 276c ▷
blocked_queue waitpid_queue;

Defines:
waitpid_queue, used in chunks 217–19, 281, 564c, and 606.

Uses blocked_queue 183a.

[218c] ⟨initialize system 45b⟩+≡ (44b) ◁ 116b 323e ▷
initialize_blocked_queue (&waitpid_queue);

Uses initialize_blocked_queue 183c and waitpid_queue 218b.

Several things must be implemented for waitpidd to work properly:

• We need the system call handler which moves the current (calling) process from the
ready queue to the new waitpid_queueb and calls resignf (so that the scheduler
picks a new process—the resignf code will be shown right aer waitpidd).

• When a process exits, it must store the exit argument in the thread control block—
this TCB must remain intact until the parent process has had a chance to look up the
value. (We’ve already shown you that part.)

• If the parent of an exiting process is in the waitpid_queueb we move it back to the
ready queue. (at is handled by wake_waiting_parent_processa, see above.)
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• Once the parent process is picked by the scheduler, it will continue its execution of
waitpidd and has to read the child’s exit code. Aer that waitpidd it can delete
the TCB entry.

As long as the parent process could not be reactivated, the child’s TCBwill remain intact.
Note that it is not necessary for the parent process to actually look at the exitcode.

First we add exitcode and waitfor entries to the TCB structure:
[219a]⟨more TCB entries 158c⟩+≡ (175) ◁ 205b 235b ▷

int exitcode;
int waitfor; // pid of the child that this process waits for

e system call handler
[219b]⟨syscall prototypes 173b⟩+≡ (202a) ◁ 216a 220e ▷

void syscall_waitpid (context_t *r);

works as follows:
[219c]⟨syscall functions 174b⟩+≡ (202b) ◁ 216b 220a ▷

void syscall_waitpid (context_t *r) {
// ebx: pid of child to wait for
// ecx: pointer to status
// edx: options (ignored)
⟨begin critical section in kernel 380a⟩
int chpid = r->ebx; // child we shall wait for

// check errors
if (chpid < 1 || chpid ≥ MAX_THREADS || thread_table[chpid].state == 0) {
⟨end critical section in kernel 380b⟩
eax_return (-1); // error

}
if (!thread_table[chpid].used) {
⟨end critical section in kernel 380b⟩
eax_return (-1); // no such process

}
if (thread_table[chpid].ppid != current_task) {
⟨end critical section in kernel 380b⟩
eax_return (-1); // not a child of mine

}

int *status = (int*)r->ecx; // address for the status
thread_table[current_task].waitfor = chpid;
block (&waitpid_queue, TSTATE_WAITFOR);
⟨end critical section in kernel 380b⟩
syscall_resign (r); // here we resign

Defines:
syscall_waitpid, used in chunks 219b and 220b.

Uses context_t 142a, current_task 192c, eax_return 174a, MAX_THREADS 176a, syscall_resign 221a,
thread_table 176b, TSTATE_WAITFOR 180a, and waitpid_queue 218b.
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Calling block onlymoves the process to a different queue, but it does not stop its execution;
for that purpose we must also call syscall_resigna.

When we return from syscall_resigna, the child must have finished. Unblocking this
process happens in syscall_exitb(), here we expect to be woken up automatically.

e return value of waitpidd is the process ID of the terminated child (chpid) or −
in case of an error. Since syscall_exitb() has updated the exitcode field of the child’s
TCB, we can just read it.

[220a] ⟨syscall functions 174b⟩+≡ (202b) ◁ 219c 221a ▷
*status = thread_table[chpid].exitcode;
thread_table[chpid].used = false; // finally remove child process
eax_return (chpid); // set the return value

}
Defines:

syscall_waitpid, used in chunks 219b and 220b.
Uses eax_return 174a and thread_table 176b.

As usual, we register the new system call:
[220b] ⟨initialize syscalls 173d⟩+≡ (44b) ◁ 217c 221c ▷

install_syscall_handler (__NR_waitpid, syscall_waitpid);
Uses __NR_waitpid 204c, install_syscall_handler 201b, and syscall_waitpid 219c 220a.

Here is the user mode function:
[220c] ⟨ulixlib function prototypes 174c⟩+≡ (48a) ◁ 217d 221e ▷

int waitpid (int pid, int *status, int options);

[220d] ⟨ulixlib function implementations 174d⟩+≡ (48b) ◁ 218a 221f ▷
int waitpid (int pid, int *status, int options) {

return syscall4 (__NR_waitpid, pid, (uint)status, options);
}

Defines:
waitpid, used in chunks 180a, 220c, and 606.

Uses __NR_waitpid 204c and syscall4 203b.

6.6.3 Giving Up the CPU: The resign System Call
e resign system call allows a process to give up the CPU, so that the scheduler picks
another process immediately.

We call the scheduler with a special argument SCHED_SRC_RESIGNa which tells it that it
was called from syscall_resigna because we want to be able to detect how it was called.
is will be explained in more detail in Chapter 8.

[220e] ⟨syscall prototypes 173b⟩+≡ (202a) ◁ 219b 222a ▷
void syscall_resign (context_t *r);
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[221a]⟨syscall functions 174b⟩+≡ (202b) ◁ 220a 222b ▷
void syscall_resign (context_t *r) {
⟨begin critical section in kernel 380a⟩
scheduler (r, SCHED_SRC_RESIGN);
⟨end critical section in kernel 380b⟩

}
Defines:

syscall_resign, used in chunks 219–21.
Uses context_t 142a, SCHED_SRC_RESIGN 343a, and scheduler 276d.

We declare a syscall number for the resign system call
[221b]⟨ulix system calls 206e⟩+≡ (205a) ◁ 206e 222d ▷

#define __NR_resign 66
Defines:

__NR_resign, used in chunk 221.

and initialize the handler:
[221c]⟨initialize syscalls 173d⟩+≡ (44b) ◁ 220b 222e ▷

install_syscall_handler (__NR_resign, syscall_resign);
Uses __NR_resign 221b, install_syscall_handler 201b, and syscall_resign 221a.

Whenwewant to resign from inside kernel code, we simply use the following ⟨resign 221d⟩
code chunk which explicitly makes the system call:

[221d]⟨resign 221d⟩≡ (260a 361c 366a 391 392 416b 521b 531a 545b 563–65)
asm {

mov eax, 66; // System Call no. 66
int 0x80; // Make the System Call

}

and user mode processes can do the same by calling this resignf() function that we
supply as part of the library:

[221e]⟨ulixlib function prototypes 174c⟩+≡ (48a) ◁ 220c 223a ▷
inline void resign ();

[221f]⟨ulixlib function implementations 174d⟩+≡ (48b) ◁ 220d 223b ▷
inline void resign () { syscall1 (__NR_resign); }

Defines:
resign, used in chunk 221e.

Uses __NR_resign 221b and syscall1 203c.

6.7 Information about Processes
In this section we implement a few library functions which enable processes and threads
to query their process and thread IDs, the parent process ID and information about the
overall list of tasks (so that we can write a user mode ps program).
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6.7.1 The gettid, getpid and getppid System Calls
Each TCB contains two IDs which describe a task: a thread ID tid (which is what the
global variable current_taskc uses to point to the currently executing thread and which
is identical to the index into the thread table) and also a process ID pid. Until now, thread
and process IDs have always been identical, but when we introduce threads (as parts of
a process) in the next chapter, we will arrive at a situation where these IDs differ. So we
will provide three functions that retrieve the thread and process IDs (and also the parent
process ID):

[222a] ⟨syscall prototypes 173b⟩+≡ (202a) ◁ 220e 223d ▷
void syscall_gettid (context_t *r); // get thread ID
void syscall_getpid (context_t *r); // get process ID
void syscall_getppid (context_t *r); // get parent process ID

Geing the thread ID is simple, because the executing thread always has the thread ID
stored in current_taskc. For the process ID and the the parent process ID we need to
access the TCB and fetch its pid or ppid entries, respectively.

[222b] ⟨syscall functions 174b⟩+≡ (202b) ◁ 221a 223e ▷
void syscall_gettid (context_t *r) { eax_return (current_task); }
void syscall_getpid (context_t *r) { eax_return (current_pid); }
void syscall_getppid (context_t *r) { eax_return (current_ppid); }

Defines:
syscall_getpid, used in chunk 222e.
syscall_getppid, used in chunk 222e.

Uses context_t 142a, current_pid 222c, current_ppid 222c, current_task 192c, eax_return 174a,
and syscall_gettid.

ey use these two macros:
[222c] ⟨macro definitions 35a⟩+≡ (44a) ◁ 209b 279a ▷

#define current_pid (thread_table[current_task].pid)
#define current_ppid (thread_table[current_task].ppid)

Defines:
current_pid, used in chunk 222b.
current_ppid, used in chunk 222b.

Uses current_task 192c and thread_table 176b.

e system call numbers __NR_getpidc and __NR_getppidc have been defined earlier,
they are standard numbers that you can also find on Linux systems. For gettid we need
to define a number since that is no standard system call.

[222d] ⟨ulix system calls 206e⟩+≡ (205a) ◁ 221b 223c ▷
#define __NR_gettid 21

Uses __NR_gettid.

[222e] ⟨initialize syscalls 173d⟩+≡ (44b) ◁ 221c 224a ▷
install_syscall_handler (__NR_gettid, syscall_gettid);
install_syscall_handler (__NR_getpid, syscall_getpid);
install_syscall_handler (__NR_getppid, syscall_getppid);

Uses __NR_getpid 204c, __NR_getppid 204c, __NR_gettid, install_syscall_handler 201b, syscall_getpid 222b,
syscall_getppid 222b, and syscall_gettid.
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e user mode getpidb, getppidb and gettidb functions
[223a]⟨ulixlib function prototypes 174c⟩+≡ (48a) ◁ 221e 235d ▷

int gettid ();
int getpid ();
int getppid ();

simply make the appropriate system calls:
[223b]⟨ulixlib function implementations 174d⟩+≡ (48b) ◁ 221f 224f ▷

int gettid () { return syscall1 (__NR_gettid); }
int getpid () { return syscall1 (__NR_getpid); }
int getppid () { return syscall1 (__NR_getppid); }

Defines:
getpid, used in chunks 214, 311b, 513e, and 568b.
getppid, used in chunk 214.
gettid, used in chunks 214 and 223a.

Uses __NR_getpid 204c, __NR_getppid 204c, __NR_gettid, and syscall1 203c.

Note that we have not implemented corresponding u_getpid, u_gettid and u_getppid
functions in the kernel as we normally do; querying the current thread’s IDs is too simple
to justify extra functions for that purpose; if we need this information inside a kernel
function, we can just use the macros current_pidc and current_ppidc.

6.7.2 The getpsinfo and setpsname System Calls
e getpsinfo system call lets a process read its thread control block (the TCB structure).
at way, a non-privileged ps program can show the process list. It is not possible to
modify a TCB, but the TCB may contain information that should be kept private. In a
security-aware operating system the information must be filtered if some of the data are
considered confidential.

[223c]⟨ulix system calls 206e⟩+≡ (205a) ◁ 222d 224d ▷
#define __NR_getpsinfo 503

Defines:
__NR_getpsinfo, used in chunk 224.

[223d]⟨syscall prototypes 173b⟩+≡ (202a) ◁ 222a 224b ▷
void syscall_getpsinfo (context_t *r);

[223e]⟨syscall functions 174b⟩+≡ (202b) ◁ 222b 224c ▷
void syscall_getpsinfo (context_t *r) {

unsigned int retval, pid;
// ebx: thread ID
// ecx: address of TCB block
pid = r->ebx;
if (pid > MAX_THREADS || pid < 1) { // legal argument?

retval = 0; goto end;
}
if (thread_table[pid].used == false) { // do we have this thread?

retval = 0; goto end;
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}

// found a process: copy its TCB
memcpy ((char*)r->ecx, &thread_table[pid], sizeof (TCB));
retval = r->ecx;

end: eax_return (retval);
};

Defines:
syscall_getpsinfo, used in chunks 223d and 224a.

Uses context_t 142a, eax_return 174a, MAX_THREADS 176a, memcpy 596c, TCB 175, and thread_table 176b.

[224a] ⟨initialize syscalls 173d⟩+≡ (44b) ◁ 222e 224e ▷
install_syscall_handler (__NR_getpsinfo, syscall_getpsinfo);

Uses __NR_getpsinfo 223c, install_syscall_handler 201b, and syscall_getpsinfo 223e.

We also allow processes to set their own name via the setpsname system call. In most
cases this happens automatically (because u_execvb writes the name into the appropri-
ate field of the TCB entry, see below), but for some cases like the swapper daemon, we
want to change the default name.

[224b] ⟨syscall prototypes 173b⟩+≡ (202a) ◁ 223d 234a ▷
void syscall_setpsname (context_t *r);

[224c] ⟨syscall functions 174b⟩+≡ (202b) ◁ 223e 234b ▷
void syscall_setpsname (context_t *r) {

strncpy (thread_table[current_task].cmdline, (char*)r->ebx, CMDLINE_LENGTH-1);
};

Defines:
syscall_setpsname, used in chunk 224.

Uses CMDLINE_LENGTH 235a, context_t 142a, current_task 192c, strncpy 594b, and thread_table 176b.

[224d] ⟨ulix system calls 206e⟩+≡ (205a) ◁ 223c 258c ▷
#define __NR_setpsname 504

Defines:
__NR_setpsname, used in chunk 224.

[224e] ⟨initialize syscalls 173d⟩+≡ (44b) ◁ 224a 235c ▷
install_syscall_handler (__NR_setpsname, syscall_setpsname);

Uses __NR_setpsname 224d, install_syscall_handler 201b, and syscall_setpsname 224c.

ese functions let user mode programs access the process list:
[224f] ⟨ulixlib function implementations 174d⟩+≡ (48b) ◁ 223b 235e ▷

uint getpsinfo (int pid, TCB* tcb) {
return syscall3 (__NR_getpsinfo, pid, (uint)tcb);

}

uint setpsname (char *psname) {
return syscall2 (__NR_setpsname, (uint)psname);

}
Uses __NR_getpsinfo 223c, __NR_setpsname 224d, syscall2 203c, syscall3 203c, and TCB 175.
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6.8 ELF Loader
In this section we look at U’s execve function which is able to load ELF binaries (Ex-
ecutable and Linking Format) [TIS95] from disk.² Classically, Unix systems provide sev-
eral variants of exec functions (execl, execle, execlp, execve, execvp, execvpe and execve)
which differ in the way that arguments for the new program are provided. For the kernel
one of these functions is sufficient, all other variants can be supplied by library functions
which convert between the various syntaxes.

e standard procedure for launching an application on a Unix machine is to first
forkg() the current process and then load a new program binary in the child process.
at way, the parent process remains intact. (Note that non-Unix systems typically pro-
vide a different mechanism, for example Windows has a CreateProcess function which
combines the creation of a new process and the loading of the program; it does not sup-
port forkg.)

6.8.1 ELF File Format
Let’s look at a simple ELF binary that we create on a Linux machine. We use assembler
code since that allows us to create a very compact binary:

[225]⟨example elf program test.asm 225⟩≡
bits 32
global main

main:
mov eax, 1
mov ebx, 42
int 0x80

Uses main 44b.

e equivalent C code would only contain exita(42): these assembler commands
make a system call (with system call number 1 which is __NR_exitc) and the argument
42.

We can assemble this program with nasm -f elf32 test.asm which creates test.o; then
we link it with gcc test.o -nostdlib -e mainb -o test, creating the binary test.

Let’s check that this program works as expected and see what kind of information we
can gather about it:

linux$ ./test ; echo $?
42
linux$ file test
test: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), statically linked,
BuildID[sha1]=0xa45ecc892186bae9977605e0c3d6757bdef2861b, not stripped

² Note that there is an alternative implementation of the U ELF loader by Frank Kohlmann that he devel-
oped as part of his Bachelor’s thesis [Koh13] which was supervised by Hans-Georg Eßer. It is available
on the U website and shows more details, however the language is German.
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linux$ stat -c "%s" test # filesize?
631
linux$ readelf -e test
ELF Header:

Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00
Class: ELF32
Data: 2's complement, little endian
Version: 1 (current)
OS/ABI: UNIX - System V
ABI Version: 0
Type: EXEC (Executable file)
Machine: Intel 80386
Version: 0x1
Entry point address: 0x80480a0
Start of program headers: 52 (bytes into file)
Start of section headers: 224 (bytes into file)
Flags: 0x0
Size of this header: 52 (bytes)
Size of program headers: 32 (bytes)
Number of program headers: 2
Size of section headers: 40 (bytes)
Number of section headers: 6
Section header string table index: 3

Section Headers:
[Nr] Name Type Addr Off Size ES Flg Lk Inf Al
[ 0] NULL 00000000 000000 000000 00 0 0 0
[ 1] .note.gnu.build-i NOTE 08048074 000074 000024 00 A 0 0 4
[ 2] .text PROGBITS 080480a0 0000a0 00000c 00 AX 0 0 16
[ 3] .shstrtab STRTAB 00000000 0000ac 000034 00 0 0 1
[ 4] .symtab SYMTAB 00000000 0001d0 000080 10 5 4 4
[ 5] .strtab STRTAB 00000000 000250 000027 00 0 0 1

Key to Flags:
W (write), A (alloc), X (execute), M (merge), S (strings)
I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)
O (extra OS processing required) o (OS specific), p (processor specific)

Program Headers:
Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
LOAD 0x000000 0x08048000 0x08048000 0x000ac 0x000ac R E 0x1000
NOTE 0x000074 0x08048074 0x08048074 0x00024 0x00024 R 0x4

Section to Segment mapping:
Segment Sections...
00 .note.gnu.build-id .text
01 .note.gnu.build-id
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e ELF format and the readelf readelftool (which is available via the binutils package on
Linux distributions) are discussed in detail in the book “Professional Linux Kernel Archi-
tecture” [Mau08, p. 1241 ff.].

In order to read ELF files we need to understand the two kinds of headers which they
contain, the ELF header ELF headers(Elf32_Ehdr) and the ELF program header (Elf32_Phdr). We
have copied the following type definitions from the Linux header file /usr/include/elf.h.

[227]⟨type definitions 91⟩+≡ (44a) ◁ 194b 292a ▷
typedef uint16_t Elf32_Half;
typedef uint32_t Elf32_Word;
typedef uint32_t Elf32_Addr;
typedef uint32_t Elf32_Off;

typedef struct {
byte e_ident[16]; // Magic number and other info
Elf32_Half e_type; // Object file type
Elf32_Half e_machine; // Architecture
Elf32_Word e_version; // Object file version
Elf32_Addr e_entry; // Entry point virtual address
Elf32_Off e_phoff; // Program header table file offset
Elf32_Off e_shoff; // Section header table file offset
Elf32_Word e_flags; // Processor-specific flags
Elf32_Half e_ehsize; // ELF header size in bytes
Elf32_Half e_phentsize; // Program header table entry size
Elf32_Half e_phnum; // Program header table entry count
Elf32_Half e_shentsize; // Section header table entry size
Elf32_Half e_shnum; // Section header table entry count
Elf32_Half e_shstrndx; // Section header string table index

} Elf32_Ehdr;

typedef struct {
Elf32_Word p_type; // Segment type
Elf32_Off p_offset; // Segment file offset
Elf32_Addr p_vaddr; // Segment virtual address
Elf32_Addr p_paddr; // Segment physical address
Elf32_Word p_filesz; // Segment size in file
Elf32_Word p_memsz; // Segment size in memory
Elf32_Word p_flags; // Segment flags
Elf32_Word p_align; // Segment alignment

} Elf32_Phdr;
Defines:

Elf32_Ehdr, used in chunk 228b.
Elf32_Phdr, used in chunk 228b.
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6.8.2 Implementation of the ELF Loader
e default functions which can launch programs on Unix systems are named exec*, and
typically there is a variety of them. ey differ in the way that users can provide ar-
guments. For example, on a Linux machine the man pages for exec and execve list the
following seven functions:

int execl (const char *path, const char *arg, ...);
int execlp (const char *file, const char *arg, ...);
int execle (const char *path, const char *arg, ..., char *const envp[]);
int execve (const char *file, char *const argv[], char *const envp[]);
int execv (const char *path, char *const argv[]);
int execvp (const char *file, char *const argv[]);
int execvpe (const char *file, char *const argv[], char *const envp[]);

e functions with an envp[] argument allow the caller to supply a modifiedenvironment environment
(a list of exported variables) which we do not support on U: neither the shell nor other
application programs can set or query such environment variables.

e functions execlp, execvp and execvpe need not be called with the absolute path of the
program but can also accept a simple program name. In that case they will scan the $PATH

$PATH variable and search all the listed directories that can contain binaries for the program file.
Again, since U does not support environment variables, there is also no $PATH variable.

at leaves only the two basic functions execl and execve. ese two differ in how
arguments for the program can be supplied: execl takes as many arguments as needed
(behind the program path), whereas execve takes only two arguments and the second
argument points to a list of arguments. For U we have deviced to provide the execve
variant, both in the kernel (as u_execvb) and in the user mode library (as execve):

[228a] ⟨function prototypes 45a⟩+≡ (44a) ◁ 216c 254b ▷
int u_execv (char *filename, char *const argv[], memaddress *newstack);

Our kernel function takes a third argument newstack that will be filled with the address of
the new process’ user mode stack. It also always returns (and provides the entry address
of the newly loaded program if loading it was successful). Note that the user mode library
function execve has a different semantics: it only returns if loading the program failed,
otherwise the old program is gone and the loaded program starts.

[228b] ⟨function implementations 100b⟩+≡ (44a) ◁ 217a 255a ▷
int u_execv (char *filename, char *const argv[], memaddress *newstack) {

// returns start address of the loaded binary; or -1 if exec fails
Elf32_Ehdr elf_header; Elf32_Phdr program_header;
⟨u_execv: check that the executable exists 229a⟩
⟨u_execv: check permissions 580a⟩ // see chapter on Users and Groups
⟨u_execv: prepare arguments on stack 231⟩
⟨u_execv: zero out the memory 232c⟩
⟨u_execv: load executable, return entry address 233b⟩

}
Defines:

u_execv, used in chunks 228a and 234b.
Uses Elf32_Ehdr 227, Elf32_Phdr 227, and memaddress 46c.
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6.8.2.1 Step 1: Checking the Executable File

It takes four steps to load and run the program inside the current process. We start with
checking that the file we shall load actually is an ELF binary: We open it, read the ELF
header which should be right at the beginning of the file and then check whether it con-
tains the magic string that is used to recognize ELF files.

[229a]⟨u_execv: check that the executable exists 229a⟩≡ (228b)
int fd = u_open (filename, 0, 0);
if (fd == -1) return -1; // error
int sz = u_read (fd, &elf_header, sizeof (elf_header));
// check for ELF header
if (sz != sizeof (elf_header) || strncmp (elf_header.e_ident, "\x7f" "ELF", 4) != 0) {

u_close (fd);
return -1;

}
Uses strncmp 594a, u_close 418a, u_open 412c, and u_read 414b.

6.8.2.2 Step 2: Preparing the Stack

e next step is to prepare the stack: Since programs can be called with arguments, we
need to push them onto the stack so that when the program initializes, it can find the
arguments where they are expected. We allow up to 512 bytes for such arguments, and
the user mode stack always starts at the fixed address TOP_OF_USER_MODE_STACKb. If the
total length of the arguments is too long, the surplus arguments are lost.

Remember that the main() function of every program has this prototype:
[229b]⟨main prototype 229b⟩≡

int main (int argc, char** argv);

When this function starts it expects to access its arguments on the stack like every other
function does. e stack contents have to start with the return address, and then the
arguments follow. Since we launch a new program we can start with an empty stack. e
first address which can be used is 0xafffffff (as we’ve set TOP_OF_USER_MODE_STACKb to
0xb0000000). We want to reserve 512 bytes for the argument strings.

Let’s assume that you start a program from the shell by issuing the command

esser@ulix[6]:/home/esser$ args This is an example 1 2 3 verylongstring

(args is a U program that displays the list of all supplied arguments with their ad-
dresses.) is would mean that at the start of args, the argc parameter is set to 9, and
argv points to an array of strings (i. e., an array of character pointers). What kind of data
do we need to store?

• First of all, we need all the strings (argv[0] to argv[8]) which contain the characters
that the arguments consist of, plus a null terminator for each argument.

• en we need the list of addresses of these strings.
• Finally we need a pointer to the start of this list and the number of arguments.
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Each address needs four bytes of storage, so in this example we need  ·  =  bytes
for the addresses, and the address of the list itself needs another four bytes.

We start with the result and show the output of args:

esser@ulix[6]:/home/esser$ args This is an example 1 2 3 verylongstring
argc: 9, &argc: 0xaffffdf8, argv: 0xaffffe00, &argv: 0xaffffdfc
len(argv[0]) = 4, &(argv[0]) = affffe24, argv[0] = args
len(argv[1]) = 4, &(argv[1]) = affffe29, argv[1] = This
len(argv[2]) = 2, &(argv[2]) = affffe2e, argv[2] = is
len(argv[3]) = 2, &(argv[3]) = affffe31, argv[3] = an
len(argv[4]) = 7, &(argv[4]) = affffe34, argv[4] = example
len(argv[5]) = 1, &(argv[5]) = affffe3c, argv[5] = 1
len(argv[6]) = 1, &(argv[6]) = affffe3e, argv[6] = 2
len(argv[7]) = 1, &(argv[7]) = affffe40, argv[7] = 3
len(argv[8]) = 14, &(argv[8]) = affffe42, argv[8] = verylongstring
esser@ulix[6]:/home/esser$

We can also request a hex dump of the memory area (thanks to the hexdump command
in the kernel mode shell, see Chapter 17):

affffdf8 09 00 00 00 00 fe ff af 24 fe ff af 29 fe ff af ........$...)...
affffe08 2e fe ff af 31 fe ff af 34 fe ff af 3c fe ff af ....1...4...<...
affffe18 3e fe ff af 40 fe ff af 42 fe ff af 61 72 67 73 >...@...B...args
affffe28 00 54 68 69 73 00 69 73 00 61 6e 00 65 78 61 6d .This.is.an.exam
affffe38 70 6c 65 00 31 00 32 00 33 00 76 65 72 79 6c 6f ple.1.2.3.verylo
affffe48 6e 67 73 74 72 69 6e 67 00 00 00 00 00 00 00 00 ngstring........

Note that the byte order is lile-endianlile-endian which means that an integer is stored in RAMwith
the lower bytes coming first. So, for example, the first four bytes of the second line of that
hex dump, 2e fe ff af, store the address 0xaffffe2e (and not 0x2efeffaf).

From there we can understand the stack layout andwork backwards to arrange the stack
that way. Table 6.1 shows a detailed analysis of the stack’s contents. We work with a tem-
porary variable stackwhich is a pointer to unsigned int; we set it to TOP_OF_USER_MODE_STACK
-512 (which is 0xaffffe00) so that it points to the beginning of the reserved area. at way
we can use pointer arithmetic (stack--;) to move to the next address when we want to
write (four-byte) addresses to the stack. e statement *(--stack) = address; is a push op-
eration: it substracts 4 from the stack address (pointer arithmetic) and then writes address
to the new location. e number of arguments (argc) is not known yet, because execve
accepts a null-terminated array of strings—in the example that is

[ "args", "This", "is", "an", "example", "1", "2", "3", "verylongstring", 0 ]

—so we need to walk through the list to find the number:



6.8 ELF Loader 231

Address Type Contents Interpretation
0xaffffdf8 – 0xaffffdfb int 0x00000009 argc
0xaffffdfc – 0xaffffdff int 0xfafffe00 &argv
0xaffffe00 – 0xaffffe03 int 0xfafffe24 &argv[0]
0xaffffe04 – 0xaffffe07 int 0xfafffe29 &argv[1]
0xaffffe08 – 0xaffffe0b int 0xfafffe2e &argv[2]
0xaffffe0c – 0xaffffe0f int 0xfafffe31 &argv[3]
0xaffffe10 – 0xaffffe13 int 0xfafffe34 &argv[4]
0xaffffe14 – 0xaffffe17 int 0xfafffe3c &argv[5]
0xaffffe18 – 0xaffffe1b int 0xfafffe3e &argv[6]
0xaffffe1c – 0xaffffe1f int 0xfafffe40 &argv[7]
0xaffffe20 – 0xaffffe23 int 0xfafffe42 &argv[8]
0xaffffe24 – 0xaffffe28 String "args\0" argv[0]
0xaffffe29 – 0xaffffe2d String "This\0" argv[1]
0xaffffe2e – 0xaffffe30 String "is\0" argv[2]
0xaffffe31 – 0xaffffe33 String "an\0" argv[3]
0xaffffe34 – 0xaffffe3b String "example\0" argv[4]
0xaffffe3c – 0xaffffe3d String "1\0" argv[5]
0xaffffe3e – 0xaffffe3f String "2\0" argv[6]
0xaffffe40 – 0xaffffe41 String "3\0" argv[7]
0xaffffe42 – 0xaffffe50 String "verylongstring\0" argv[8]
0xaffffe51 – 0xafffffff — — (unused)

Table 6.1: Analysis of the initial stack of a process aer calling exec().

[231]⟨u_execv: prepare arguments on stack 231⟩≡ (228b) 232a ▷
uint *stack = (uint*) (TOP_OF_USER_MODE_STACK - 512);
// find number of arguments
word argc = 0;
while ( (memaddress)(argv+argc) < TOP_OF_USER_MODE_STACK && argv[argc] != 0 )

argc++;
Uses memaddress 46c and TOP_OF_USER_MODE_STACK 159b.

Now that we know the number of arguments, we can reserve space for their addresses.
We use two variables in the following loop:

• target always points to the memory location where the next argument (string) is to
be stored. Aer each step we add the last argument’s length to it.

• stack still points to the start of the reserved 512 bytes. In each step i we write the ar-
gument address into the location stack + i. Note again that due to pointer arithmetic,
stack + i is (int)stack + 4*i.



232 6 Implementation of Processes

[232a] ⟨u_execv: prepare arguments on stack 231⟩+≡ (228b) ◁ 231 232b ▷
// copy arguments into the reserved 512 bytes
memaddress target = (memaddress)stack;
memaddress args_start = target;
target += argc*4;
for (int i = 0; i < argc; i++) {

int size = strlen (argv[i])+1; // string length plus terminator
memcpy ((void*)target, argv[i], size); // copy i-th argument
*(stack + i) = target; // store its address
target += size;

}
Uses memaddress 46c, memcpy 596c, and strlen 594a.

Finally, we push the arguments for main(int argc, char **argv) and the null return
address onto the stack. ese will be stored just below the reserved area.

[232b] ⟨u_execv: prepare arguments on stack 231⟩+≡ (228b) ◁ 232a
// finish stack preparation
*(--stack) = args_start; // push pointer to argument list
*(--stack) = argc; // push number of arguments
*(--stack) = 0; // push return address (set to 0)
*newstack = (memaddress)stack;

Uses memaddress 46c.

If the main() function of a program simply returns (and does not call exita) the normal
behavior would be an implicit execution of exita. We do not provide this feature. How-
ever, we have to store some value on the stack that tells where to return to. e start
address of exita would be a candidate, but in our U implementation we do not know
that address, so we just write 0. If you write an application program that leaves main() via
return you will see that it just starts over (or jumps into whatever function was compiled
to address 0). us, U programs must leave via an explicit exita call.

6.8.2.3 Step 3: Clearing the Memory

e process memory will still contain data that was stored there before the process called
execve. We do not want the new program to be able to read its predecessor’s data, so
we delete that data by seing the whole user mode memory to zero:

[232c] ⟨u_execv: zero out the memory 232c⟩≡ (228b)
memset ((void*)address_spaces[current_as].memstart, 0,

address_spaces[current_as].memend - address_spaces[current_as].memstart);
Uses address_spaces 162b, current_as 170b, and memset 596c.

6.8.2.4 Step 4: Load the Program

Now everything is prepared for loading the program. We walk through the program head-
ers of the ELF file and load the program code. e ELF header may point us to several ELF
program headers, so we perform a loop: elf_header.e_phnum tells us how many ELF pro-
gram headers there are.
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Each such ELF program header must be read in separately, and then we have to check
its type program_header.p_type: If it is ELF_PT_LOADa,

[233a]⟨constants 112a⟩+≡ (44a) ◁ 200a 292b ▷
#define ELF_PT_LOAD 1

Defines:
ELF_PT_LOAD, used in chunk 233b.

then we read program code from the file, otherwise we ignore it.
[233b]⟨u_execv: load executable, return entry address 233b⟩≡ (228b)

int phoffset = elf_header.e_phoff;
for (int i = 0; i < elf_header.e_phnum; i++) {

u_lseek (fd, phoffset + i * elf_header.e_phentsize, SEEK_SET);
u_read (fd, &program_header, sizeof (program_header));
if (program_header.p_type == ELF_PT_LOAD) {
⟨u_execv: reserve sufficient memory 233c⟩
u_lseek (fd, program_header.p_offset, SEEK_SET);
u_read (fd, (char*)program_header.p_vaddr, program_header.p_filesz);

}
}
u_close (fd);
return elf_header.e_entry; // success. when coming back, set EIP to entry address

Uses ELF_PT_LOAD 233a, phoffset, SEEK_SET 469b, u_close 418a, u_lseek 418a, and u_read 414b.

For each chunk that we need to load we find all the relevant information in the ELF
program header:

• program_header.p_offset tells us the offset in the ELF file, so we can u_lseeka to the
right file location,

• program_header.p_vaddr contains the virtual address where the chunk is to be placed
in memory, and

• program_header.p_filesz is the size of the chunk.

With these three values we can directly u_lseeka and u_readb the chunkwithout using
an intermediate location.

If the loaded program is too big for the currently reserved memory or has a big BSS
area (for zero-initialized variables), the loader must acquire more virtual memory via the
u_sbrka function. It finds the total amount of required memory in the p_memsz element
of the program header:

[233c]⟨u_execv: reserve sufficient memory 233c⟩≡ (233b)
int needed_memsize = program_header.p_memsz;
int current_memsize = address_spaces[current_as].memend

- address_spaces[current_as].memstart;
if (needed_memsize > current_memsize) {

u_sbrk (needed_memsize-current_memsize);
}

Uses address_spaces 162b, current_as 170b, and u_sbrk 173a.
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6.8.2.5 System Call Handler for execv

e system call handler is a lile more complicated than usual because it has to deal with
two possible situations: loading the program may succeed or fail.

• If it fails, no changes should be made to the current process, and it should receive a
return value of − from calling execv.

• If it succeeds we need to update the process context so that it will (re-)start execution
at the start address of the new program. Normally, that is 0. We also update the
cmdline entry of the TCB.

us the function
[234a] ⟨syscall prototypes 173b⟩+≡ (202a) ◁ 224b 258a ▷

void syscall_execv (context_t *r);

has the following implementation:
[234b] ⟨syscall functions 174b⟩+≡ (202b) ◁ 224c 258b ▷

void syscall_execv (context_t *r) {
// generate command line in one string
char *path = (char*)r->ebx; // path argument of execv ()
char **argv = (char**)r->ecx; // argv argument of execv ()
int i = 0; char cmdline[CMDLINE_LENGTH] = "";
while (argv[i] != 0) {

strncpy (cmdline + strlen(cmdline), argv[i], CMDLINE_LENGTH-strlen(cmdline)-1);
strncpy (cmdline + strlen(cmdline), " ", CMDLINE_LENGTH-strlen(cmdline)-1);
i++;

}
if (cmdline[strlen(cmdline)-1] == ' ')

cmdline[strlen(cmdline)-1] = '\0'; // remove trailing blank

// call u_execv()
memaddress stack;
memaddress startaddr = (memaddress) u_execv (path, argv, &stack); // sets stack
if (startaddr == -1) eax_return (-1); // error

// update context and process commandline
r->eip = startaddr; // start running at address e_entry
r->useresp = (memaddress)stack; // from ELF header
r->ebp = (memaddress)stack;
strncpy (thread_table[current_task].cmdline, cmdline, CMDLINE_LENGTH);

};
Defines:

syscall_execv, used in chunks 234a and 235c.
Uses CMDLINE_LENGTH 235a, context_t 142a, current_task 192c, eax_return 174a, memaddress 46c, strlen 594a,

strncpy 594b, thread_table 176b, and u_execv 228b.

We have not yet defined the cmdline entry in the thread control block; we’ll add it now:
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[235a]⟨public constants 46a⟩+≡ (44a 48a) ◁ 207a 282b ▷
#define CMDLINE_LENGTH 50 // how long can a process name be?

Defines:
CMDLINE_LENGTH, used in chunks 224c, 234b, and 235b.

[235b]⟨more TCB entries 158c⟩+≡ (175) ◁ 219a 255d ▷
char cmdline[CMDLINE_LENGTH];

Uses CMDLINE_LENGTH 235a.

Finally we register the system call handler and provide a user mode function execve
that makes the system call:

[235c]⟨initialize syscalls 173d⟩+≡ (44b) ◁ 224e 259a ▷
install_syscall_handler (__NR_execve, syscall_execv);

Uses __NR_execve 204c, install_syscall_handler 201b, and syscall_execv 234b.

[235d]⟨ulixlib function prototypes 174c⟩+≡ (48a) ◁ 223a 259b ▷
int execv (const char *path, char *const argv[]);

[235e]⟨ulixlib function implementations 174d⟩+≡ (48b) ◁ 224f 259c ▷
int execv (const char *path, char *const argv[]) {

return syscall3 (__NR_execve, (uint)path, (uint)argv);
}

Defines:
execv, used in chunks 191a and 235d.

Uses __NR_execve 204c and syscall3 203c.

6.8.3 User Mode Binaries
We use a linker configuration linker

configuration
file process.ld to build our user mode applications and make

the compiler use it via the command line option -T process.ld. Here’s the configuration
file:

[235f]⟨Application Linker Config File 235f⟩≡
OUTPUT_FORMAT("elf32-i386")
ENTRY(main)
virt = 0x00000000;
SECTIONS {

. = virt;

.setup : AT(virt) {
*(.setup)

}

.text : AT(code) {
code = .;
*(.text)
*(.rodata*)
. = ALIGN(4096);

}

.data : AT(data) {
data = .;
*(.data)
. = ALIGN(4096);

}

.bss : AT(bss) {
bss = .;
*(COMMON*)
*(.bss*)
. = ALIGN(4096);

}
end = .;

}
Uses main 44b.
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efile tells the compiler to create ELF binaries with virtual addresses starting at address 0.
We store the C source code files for our applications in a separate folder (lib-build/tools/)
and use the following makefile to automatically compile the binaries and copy them to a
folder which will be put onto the data disk image:

[236] ⟨lib-build/tools/Makefile 236⟩≡
LD=ld
CC=/usr/bin/gcc-4.4
OBJDUMP=objdump
CCOPTIONS=-nostdlib -ffreestanding -fforce-addr -fomit-frame-pointer \

-fno-function-cse -nostartfiles -mtune=i386 -momit-leaf-frame-pointer
LDOPTIONS=-Tprocess.ld -static -s --pie
OBJECTS = $(patsubst %.c, %, $(wildcard *.c))

all: $(OBJECTS) copy

%: %.c
$(CC) $(CCOPTIONS) -g $(LDOPTIONS) $^ ../ulixlib.o -o $@
$(OBJDUMP) -M intel -D $@ > $@.dump

clean:
rm $(OBJECTS)

copy:
cp $(OBJECTS) ../diskfiles/bin/

ere’s some magic in this makefile: the line OBJECTS = $(patsubst %.c, %, $(wildcard
*.c)) searches for all *.c files (with wildcard) and replaces each source filename with the
filename without .c (e. g. hexdump.c with hexdump). en the lines

%: %.c
$(CC) $(CCOPTIONS) $(LDOPTIONS) $^ ../ulixlib.o -o $@

tell make the rule for creating binaries from source code files, and the all target gets a list
of all the binaries that are to be created. $^ always refers to the source file (e. g. hexdump.c),
and $@ refers to the target file (hexdump). us the expanded command for hexdump is

gcc-4.4 -nostdlib -ffreestanding -fforce-addr -fomit-frame-pointer -fno-function-cse \
-nostartfiles -mtune=i386 -momit-leaf-frame-pointer -T process.ld -static -s --pie \
hexdump.c ../ulixlib.o -o hexdump
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6.9 Exercises
In the tutorial// Tutorial 5folder you find a version of the U kernel which contains the new
code for handling system calls and also a sample solution for the keyboard interrupt hand-
ler exercise. It is a literate program (ulix.nw).

In this and the following two exercises you will implement and test some system calls.
While you work on the solution, try to stick to the literate programming paradigm, i. e.,
integrate code and documentation into the document.

20. Writing strings with printf

e printfa() function is available inside the kernel, but processes cannot call it. In
the restricted tutorial version of U there is user mode printfa function. You will
now implement a system call handler which lets processes call the kernel’s printfa
function. To make things easier, the goal is that you can later use a userprint() func-
tionwhich accepts exactly one string as an argument. (printfa takes a format string
and an arbitrary number of further arguments, but that requires more effort and is
not necessary for this exercise.)

a) Start with defining a syscall number for the printf system call in the ⟨constants 112a⟩
code chunk, e. g.
#define __NR_printf 1

b) Next you write a syscall handler with the prototype
void syscall_printf (struct regs *r);

which calls the kernel function printfa. Make sure that you pass the proper ar-
guments: Which of the registers (reachable via r->eax, r->ebx, r->ecx und r->edx)
holds the address of the string?

c) Enter the new syscall handler into the system call table.
d) Write a (user mode) function void userprint (char *s); which takes a string

as argument and then uses one of the four syscall*() functions to perform the
system call.

e) Verify that your code works correctly by adding the line
userprint ("Testausgabe\n");

to your main function.

21. Reading Memory Locations with kpeek

e goal of this exercise is to let processes look at any (existing) memory location,
even those that belong to the kernel. Of course, no proper operating system would
supply such a function since it completely breaks all security mechanisms. Still, it
can be done and shows you how to access data structures which are invisible in user
mode. With some additional code this might be turned into a useful tool that, for
example, lets only the system administrator access the memory.
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You will need a function int kpeek (unsigned int address); which takes an address
as argument, reads the byte that is stored at that address (a value between 0 and 255)
and returns it. If the address is not available, the function shall return − (which is
why its type is int and not unsigned char which would otherwise be the proper type
for a byte).
If this was only about writing a kernel function for the task, you could implement
kpeek like this:
int kpeek (unsigned int address) {

int page = address / 4096;
if (pageno_to_frameno (page) == -1)

return -1;
else

return *(char*)address;
}

But again, this functionwould only be usable by the kernel (which is the same problem
that we had with printf in the previous exercise). Instead you have to implement
kpeek via a system call. e general steps are the same as for printf:

• Assign and #define a system call number.
• Implement a syscall handler which contains a variation of the above kpeek code,

but which performs parameter and return value passing via registers.
• Enter the new handler in the system call table.
• Write a function kpeek that uses the new system call (with the help of one of the

syscall*() functions).

You can check whether your code works properly by adding the following lines to
your main() function:
unsigned int address = 0xc0000000;
*(char*)(address) = 123;
printf ("Testing kpeek: %d\n", kpeek (address));

e middle line writes 123 into the memory location address, and the last line should
write “Testing kpeek: 123” to the screen. Try the same with an invalid address, e. g.
printf ("Testing kpeek/fail: %d\n", kpeek (0x90000000));

(is time you should get a “Testing kpeek/fail: -1” output.)

22. Writing to Memory Locations with kpoke

Reading is one side of the coin, writing is the other. Now you’ll add a kpoke func-
tion that your processes can use to modify the contents of arbitrary kernel memory
locations. It has the following prototype:

void kpoke (unsigned int address, unsigned char value);
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If address is a valid address, the value byte shall be wrien to that memory location,
otherwise the function shall simply return. Again, if this was only about adding
functionality to the kernel, the implementation would be as simple as

void kpoke (unsigned int address, unsigned char value) {
if ( ... ) // check for availability

*(char*)(address) = value;
return;

}

But again, that does not help a process. Implement kpoke by writing a system call
handler and test the code with the following lines:

unsigned int address = 0xc0000000;
kpoke (address, 123);
printf ("Testing kpoke: %d\n", kpeek (address));

is is the same test as in the last exercise, but this time you use kpoke. e implemen-
tation details are very similar to those of kpeek, so this time we don’t provide detailed
steps.

Note that for proper testing of the new printf, kpeek and kpoke functions we would need
user mode which is not available in this tutorial’s version of the kernel. But you’ll add
that feature in the following exercises.

e tutorial// Tutorial 6folder contains a version of the U kernel which implements the switch
to user mode. Again, it is a literate program (ulix.nw).

23. User Mode Applications

With this exercise you will create the first user mode application and make it run. As
usual: try to write a literate program.

a) Test program: First you will write a simple test program for U so that you can
see where all of this leads. Your program file test.c should only contain a main()
routine as follows:
int main () {

printf ("Hello - User Mode!\n");
for (;;) ; // infinite loop

}

You must add the implementation of printf: Add one of the syscall* functions
(syscall1c, syscall2c etc.) to the file. Our simple printf implementation
accepts only one string argument, it works just like userprint (from Exercise 20).
You must also #define the constant __NR_printf (1).
Note: In the user mode program source files you must always place the main
function at the very top. All other functions that you might want to call from
main must be declared above the main function (by writing down the prototype),
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but implemented below main. If you do not follow that rule, program execution
will start in the wrong function (the one whose implementation comes first). e
real U does not suffer from this limitation because it has an ELF binary file
loader, and ELF binaries contain the start address in the header; for this exercise
we’re keeping things simple.
e Makefile already contains the necessary gcc invocation, you need not change
it:
$(CC) -nostdlib -ffreestanding -fforce-addr -fomit-frame-pointer \
-fno-function-cse -nostartfiles -mtune=i386 -momit-leaf-frame-pointer \
-T process.ld -static -o test test.c

By running make you generate the executable binary file test from the source
code.

b) Install the disassembler : You will need a disassembler which translates a binary
file back to readable assembler code. Install the disassembler package x86diswith
the following command:
sudo apt-get install x86dis

c) en disassemble the generated binary file test by running
x86dis -e 0 -s intel < test | sort -u

e output should begin as follows:
00000000 8D 4C 24 04 lea ecx, [esp+0x4]
00000004 83 E4 F0 and esp, 0xF0
00000007 FF 71 FC push [ecx-0x4]
0000000A 51 push ecx
0000000B 83 EC 08 sub esp, 0x08
0000000E 83 EC 0C sub esp, 0x0C
00000011 68 A2 00 00 00 push 0x000000A2
00000016 E8 77 00 00 00 call 0x00000092
...

is is the start of the translated main() function; the call instruction calls the
printf function.

d) Since we have no filesystem in the current miniature U kernel, we cannot load
the program from disk. Instead we use a trick: We write the binary file directly
into the kernel and later copy it into user mode memory. If you remember the
start_program_from_disk function from Section 6.3, you will soon see a similar
function start_program_from_ram that replaces it in the absence of disk access.
For copying the binary into the kernel we use the tool hexdump whose output
format you can set via a format string:
hexdump -e '8/1 "0x%02X, "' -e '8/1 """\n"' test

creates an output of the following form:
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0x8D, 0x4C, 0x24, 0x04, 0x83, 0xE4, 0xF0, 0xFF,
0x71, 0xFC, 0x51, 0x83, 0xEC, 0x08, 0x83, 0xEC,
0x0C, 0x68, 0xA2, 0x00, 0x00, 0x00, 0xE8, 0x77,
[...]
0x6F, 0x64, 0x65, 0x21, 0x0A, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
*

(Compare these hexadecimal numbers with the numbers that the disassembler
has shown: they are identical.)
You can copy the output directly to the kernel source (and add it to the ⟨global
variables 92b⟩ chunk). Declare and initialize a variable usermodeprog like this:
unsigned char usermodeprog[] = {

0x8D, 0x4C, 0x24, 0x04, 0x83, 0xE4, 0xF0, 0xFF,
0x71, 0xFC, 0x51, 0x83, 0xEC, 0x08, 0x83, 0xEC,
0x0C, 0x68, 0xA2, 0x00, 0x00, 0x00, 0xE8, 0x77,
[...]

};

You only have to add the first and last line to the hexdump output and remove the
line with the single asterisk. If there is a line at the end that has only zeroes
(0x00), you can delete it.
Now it’s time to write the function which loads the program.

e) Locate the chunk ⟨kernel main: user-defined tests ⟩ in the source code and add
start_program_from_ram ((unsigned int)usermodeprog, sizeof(usermodeprog));

as its new last line (before the terminating @ line).
e function start_program_from_ram (which you’re going to implement) will load
and start the program which involves a switch from kernel mode (ring 0) to user
mode (ring 3).

24. User Mode Activation

Now you will implement some of the functions required for loading and starting a
program. You have already seen how this works in this chapter, but here you can
create your own implementation of a program loader (that loads from memory, not
disk). Many code parts from the regular U kernel are already present in the source
code file.

a) e central function is start_program_from_ram(): As already mentioned, it takes
the place of start_program_from_disk() from the real kernel. A further differ-
ence between U and this version is that there is no scheduler; we start one
single process and have no multi-tasking.
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void start_program_from_ram (unsigned int address, int size) {
addr_space_id as;
thread_id tid;
<<start program from ram: prepare address space and TCB entry>>
<<start program from ram: load binary>>
<<start program from ram: create kernel stack>>
current_task = tid; // make this the current task
cpu_usermode (BINARY_LOAD_ADDRESS,

TOP_OF_USER_MODE_STACK); // jump to user mode
};

You need not type in this code, it is already included in ulix.nw.
b) In order to implement the missing chunks, follow these steps:

In ⟨start program from ram: prepare address space and TCB entry ⟩write appropri-
ate values into the two variables as, tid by calling create_new_address_spacec()
and register_new_tcbd(). ese function are similar to the ones in the real ker-
nel, they’re already contained in the ulix.nw file for this exercise. Note that the
order in which you call these two functions is important: register_new_tcbd()
takes the address space ID as an argument. Give the new process 64 KByte of
memory and a 4 KByte user mode stack.
As a further task for the first code chunk you need to assign some values to the
TCB elements. Give the new process a PPID (parent process ID) of 0.
e chunk ⟨start program from ram: create kernel stack ⟩ is almost identical to
⟨start program from disk: create kernel stack 192a⟩ and is also included in ulix.nw
already.
What’s missing is the code chunk ⟨start program from ram: load binary ⟩: Here
you can use memcpy() to copy the usermodeprog array (whose start address and
length you have provided via the address and size parameters) to address 0.
cpu_usermode() is an assembler function that you can find in start.asm.

c) Test your code (calling make and make run)—aer the old “Hello World” mes-
sage U should also print the line from the user mode program (“Hello – User
Mode!”).

25. More Features for User Mode

In the final exercise of this chapter you add an input mechanism so that your user
mode programs can interact with the user. e goal is to let the application read text
from the keyboard with readline(). is requires several additions:

a) Write a syscall handler which calls the kernel function kreadline(). Like all
syscall handlers it has the prototype
void syscall_readline (struct regs *r);
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When it is called, r->eax contains the syscall number (which you can ignore), and
r->ebx holds the address of a string (that was declared in the user mode program).
In the application source file test.c declare a string variable which can hold 256
characters. We do not provide the string length; when calling kreadline you can
ask that the returned string be no longer than 256 characters. In the handler you
have to enable interrupts before calling kreadline() because the system deactives
them upon handler entry. Add the following line:
asm volatile ("sti"); // before kreadline() !

Assign a syscall number __NR_readline and register the handler function in the
syscall table.

b) Now add a function void readline (char *s); to test.c that uses one of the
syscall* functions to make the system call. You will have to define the constant
__NR_readline in that file. Remember to put function prototypes in front of main()
and implementations behind it so that process execution starts with the first com-
mand in main().

c) Modify the main() function in test.c so that it continuously reads in text and
prints it on the console, like this:
int main () {

char s[256];
printf ("Hello - User Mode!\n");
for (;;) {

printf ("> "); readline (s);
printf ("Input was: "); printf (s);

}
}

d) Test your program. Aer compiling test.c with make you will again have to
convert the binary file into an array of hexadecimal numbers (as you did in Exer-
cise 23 d–e) and integrate it in the kernel file ulix.nw. en call make once more
to generate the modified kernel.
e output function of this exercise’s kernel is able to scroll so that you can simply
go on printing even aer you’ve reached the boom of the screen. In order to
understand how scrolling was implemented, look at the scroll() function and
the two places from where it gets called.

e) e scroll() function determines the right memory address to write data to by
looking at the VIDEO variable: Search for all the lines in the code that change
VIDEO—the variable takes three different values (0xc00b8000, 0xb8000, 0xd00b8000)
during system initialization—why is that so? As a reminder, the physical ad-
dresses that are used for the text mode framebuffer start at 0xb8000.

) Copy the code from test.c into the literate program ulix.nw and modify the
Makefile so that test.c will be extracted from it. Name the code chunk ⟨test.c ⟩.
You will need an extra invocation of notangle, analogous to
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notangle -Rulix.c ulix.nw >ulix.c

where the option -R is followed by the new chunk name and output redirection
writes to the right file. Note that all commands in the Makefile must be indented
by a tabulator character.
Search for code that appears identically in both ulix.c and test.c and combine
it by creating code chunks which will be wrien to both files. As a result the
literate program will be free of duplicates.



7
Implementation of Threads

In Chapters 3 and 4 we looked into a fundamental abstraction offered by the operating sys-
tem: virtual memory. It abstracts physical memory, one of the main hardware resources.
e second such resource is processor time, i. e., machine cycles or computation power
offered by the CPU. e abstraction which encapsulates processor time in an operating
system was traditionally called a process, in newer systems threads have taken over that
job. We have just discussed the implementation of processes in the previous Chapter 6.

Up “process”
vs. “thread”

to now, we used the more historic term process in parts of this book instead of the
term thread. Briefly spoken, a process is a virtual address space (defined by a page di-
rectory and page tables) plus exactly one thread. us, the term process alludes to the
classical Unix process Unix process. Today, modern operating systems offer multiple threads within
one virtual address space, and so does U.

us, a summary of the differences between classical operating systems that are based
on processes and newer systems with threads can be given as follows:

• In classical systems, process management provides a common abstraction for both
processor time and memory. Switching from one process to another always means
that the used address space changes, too.

• In modern systems, thread management and memory management are decoupled: It
is possible to switch from one thread to another without also changing the address
space. A process is simply a collection of one or more threads which share a common
address space.

Note that some operating systems allow variations of the thread and process concepts
which are something in-between. For example, the Linux kernel provides a clone function
which can create new processes, new threads and other kinds of tasks which are neither.
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7.1 Threads, Teams of Threads and
Virtual Processors

A thread¹ can be regarded quite literally as an execution thread within the operating sys-
tem. reads are abstractions of processing time, virtual processorsvirtual

processor
. ey are implemented

by multiplexing virtual processors (the threads) onto the physical processors (CPUs). A
thread always has an associated program, i. e., a sequence of machine instructions which
it executes. When a thread starts its operation, execution starts at a pre-defined address
in this sequence.

reads and address spaces are two abstractions which are orthogonal but nevertheless
closely tied together. Whenever a virtual address space is created, a first thread is also
created within the address space. is results in what is oen called a process. In most
cases (as in early Unix) this is absolutely sufficient to perform all the classical application
tasks programmed on top of the operating system, and it is what you have seen when we
described the u_forkc implementation of the fork mechanism. However, it sometimes
makes sense to create multiple threads within a single address space, as we now explain.

7.1.1 Teams of Threads
We call multiple threads within a single address space a teamteam of

threads
(or team of threads). Why

does it make sense to create multiple threads within one address space? ere are several
answers to this question.

e first block of answers refers to performance issues:

• If within an application one thread invokes a system call which blocks for an I/O oper-
ation to succeed, then the whole application will block if the application is carried on
just this one single thread. If more than one thread would carry the application, these
other threads could continue to operate, giving the user a beer quality of service.

• Also, if an application runs onmultiple threads, it is possible to distribute the machine
cycles onto physically distinct processors. is (of course) is not an issue in a mono-
processor system. However, in a dual processor system for example an application
which is carried only by a single thread will never be able to bring the power of the
two CPUs into the application.

e second block of answers refers mainly to soware engineering aspects, i. e., the way
we write programs.

• Multiple threads within one address space allow to program those applications which
contain inherent parallel activities in a much more natural way. e result is a concur-
rent model of programming which includes both the fields of distributed and parallel
programming. Concurrent programming refers to programming multiple indepen-
dent threads of execution in general.

¹ e theory Sections 7.1 and 7.2 of this chapter are heavily based on the “reads” chapter of Nehmer and
Sturm’s book [NS01].
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• Parallel programming on the one side refers rather to more dependent threads, e. g.,
threads which operate in strongly synchronized “lock-step” mode.

• Distributed programming on the other side refers to concurrent programming where
the aspect of geographic distribution plays a role (like in the Internet).

7.1.2 Natural Concurrency
Many of today’s operating systems already support multiple threads in one address space
and so it is becoming more and more natural to use them. It is especially natural if the
application which is implemented already contains inherent concurrency inherent

concurrency
. As an example

(taken from Nehmer and Sturm [NS01]) consider a weather reporting application. It con-
sists of a huge database in which new measurements of humidity, temperature etc. are
regularly logged from different sensing stations. From this database the application com-
putes in a continuous manner weather reports for different areas of the country using
complex weather models. Additionally, the application has a graphical interface through
which users can inspect data, query weather reports and visualize measurement data.

Looking at the application from a concurrent programming viewpoint, it has three
rather independent streams of activity:
1. e measurement and logging activity of data into the database.
2. e continuous weather prediction and reporting computation.
3. e graphical user interface.

Note that each stream of activity by itself is sequential.
Let’s make things simple and just look at the last two activities: computation and user

interface. As both are sequential activities, we can program them separately and enclose
each activity within a thread. e pseudocode could look like this:

[247]⟨weather reporting example: thread pseudocode 247⟩≡
void Compute () { // activity 1: computation

while (true) {
// do the actual computation

}
}

void GUI() { // activity 2: graphical user interface
while (true) {

Event e = ReceiveEvent ();
ProcessEvent (e);

}
}

int main () {
start_thread (Compute ()); // Start concurrent threads
start_thread (GUI ());

}
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Note that the sequential activities are encoded within simple sequential functions which
are both started within separate threads in the main routine and thereaer run separately.
Here we assume that the entire application exits when all of its threads have exited.

Howwould we program this application traditionally (i. e., without threads)? We would
have to split the activities into small slices and run them alternately. Assumewe can divide
the function Compute() into small parts called ComputeStep. en aer computing such a
step we would need to check whether user input must be handled. If yes, we handle it, if
not, we compute the next step. e pseudocode could look like this:

[248] ⟨weather reporting example: traditional pseudocode 248⟩≡
int main () {

while (true) {
ComputeStep (); // compute the next step
if (QueryEvent ()) { // do we have to process an event?

e = ReceiveEvent ();
ProcessEvent (e);

}
}

}

is approach should also work, but only under the assumption that we can in fact split
Compute into ComputeStep. In many cases this is not as easy as it seems, sometimes it might
even be impossible. Another disadvantage of the traditional approach is that the compu-
tation is interrupted regularly even if there are no events to be processed. In this case the
code for QueryEvent should be very efficient so that it doesn’t cost too many CPU cycles. It
goes without saying that functions like QueryEvent should not block (e. g., until user input
arrives) because this would block the entire application.

ere are more downsides of the traditional approach. For example, the program struc-
ture without threads determines the reaction time to user input. If ComputeStep may take
up to a couple of seconds of execution time, then reaction to user input can also take this
time. e execution time of ComputeStep should therefore be rather short to guarantee
responsivenessresponsiveness . However, a short execution time implies that the overhead of QueryEvent
increases in relation. So we have a non-trivial tradeoff here. Finally, but this is a maer
of taste, we find the traditional code much harder to read and understand than the code
using threads.

7.1.3 Advantages of Concurrent Programming
reads allow to create an unbounded number of virtual processors, no maer how many
physical processors exist in the system. is lets us distribute applications over as many
virtual processors as are necessary to serve their inherent concurrency. reads therefore
allow to abstract from the actual number of physical processors in the system and to
depart from the traditional sequential programming model. If an application has inherent,
natural concurrency, then it should be expressed in the program.

reads do not only make programs with inherent concurrency easier to read and un-
derstand, they also may make the execution of the application more efficient since only
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concurrent applications can exploit the power of truly concurrent hardware available
in multiprocessor systems. But even on monoprocessor systems a concurrent program
can be more efficient than its sequential counterpart because the periods in which one
thread is blocked (e. g., due to lack of user input) can be used by other threads more effec-
tively.

7.1.4 Virtual vs. Physical Processors
As mentioned above, a thread can be regarded as a virtual processor. erefore, a team
of threads can be regarded as a virtual multiprocessor virtual

multiprocessor
. Ideally, every virtual processor is

backed up from below by exactly one physical processor and the assignment of virtual to
physical processors is fixed. However, the normal case is rather different: Many virtual
processors need to be executed on few physical processors. e task of the operating
system is to distribute the physical processor cycles as effectively as possible between the
virtual processors in a kind of time division multiplex mode of operation. is is depicted
in Figure 7.1.

As an example, consider the case where one physical processor carries two virtual pro-
cessors (threads). In this case the threads would be assigned alternately to the physical
processor by the operating system. e change from one thread to the other is called a con-
text switch context switch. Within the context switch, the execution of the current thread is interrupted,
the processor context (registers, stack pointer etc.) is saved somewhere, the processor con-
text of the next thread is loaded from somewhere onto the processor and the next thread
then continues execution at the point in its program where it was previously interrupted.

In a sense, the operating system pretends that every thread has exclusive access to the
physical processor. During a context switch, the previously running thread is “frozen” and
saved somewhere. e next thread is selected and “unfrozen” by loading its state into the
CPU. During the times in which they are frozen, threads do not operate. In fact, since they
don’t operate, they are not aware that time is passing. Aer unfreezing the new thread,
it continues operation as if it had never been interrupted. is can remotely be compared
with becoming unconscious aer a knock out in boxing.
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Figure 7.1: e assignment of virtual to physical processors can change over time.
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If there is more than one candidate for the next running thread, the operating system
has to make a choice. e operating system component which is responsible for making
this decision is called the schedulerscheduler . As we will see later (in Chapter 8) there exist many
different strategies to make this scheduling decision.

7.2 Thread Requirements and Thread Types
Before we delve into the implementation, let’s take a closer look at why threads are so
useful. ey help the operating system reach a higher degree of concurrency for the
applications it runs.

7.2.1 Thread Requirements
If an operating system supports threads, it must offer at least two types of functionality:
On the one hand, a user should be able to create a new address space with a single thread.
On the other hand, the user should be able to assign a new program to this thread. Oen
these two functionalities are assembled within one single system call offered by the kernel.

To offer more flexibility, it should be possible to create multiple threads within one
address space. Good operating systems therefore offer functionality to create a new thread
within the same address space at runtime and to assign a new program to this thread.

7.2.2 Utility of Threads
Normally, several threads wait for the same processor to become free. Let’s assume that
each thread, once activated, uses k units of time for completion and would run until it is
finished. e first thread starts at once, the second thread aer k units of time, etc. at
leads to an average response time of


n

n∑
i=

(i− ) · k =
n− 


· k

units of time [NS01, p. 101]. However, this ignores that threads typically alternate be-
tween CPU and I/O bursts:

• A CPU burstCPU burst is a time range during which a thread uses the CPU, i. e., it is active and
executes instructions.

• An I/O burstI/O burst is a time range during which a thread waits for the completion of an I/O
operation that it initiated. e burst begins in the moment where the thread is put on
a blocked queue (as a direct result of requesting the I/O operation) and it ends when
the I/O operation completes and the thread is moved to the ready queue.

If there is only one single thread, then the system switches between CPU and I/O bursts
of that thread. With several threads and a scheduler the situation becomes more com-
plicated since the scheduler can interrupt an active thread in the middle of a CPU burst.
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Also, whenever an I/O burst begins, the CPU is reassigned to a different thread (which
continues its CPU burst).

If I/O was handled completely asynchronously (i. e., we ignore the times required to
process I/O requests), the CPU burst times would lead to an average response time of

n− 


· t burst

where t burst is the average length of a CPU burst [NS01, p. 102].
Nehmer and Sturm measured the length of bursts and looked at their statistical distri-

bution which resulted in the image shown in Figure 7.2 [NS01, p. 102]. is shows that
typically CPU bursts are very short—much shorter than I/O bursts. Using the time that
a thread waits for I/O completion for other threads (which continue their CPU bursts)
creates a considerable degree of concurrency, even on a monoprocessor. us, it is im-
portant to pause threads which wait for I/O (which is precisely what we’ve been doing
for processes in Chapter 6), and with threads it improves the behavior of processes by
allowing CPU-burst threads of a process to continue while I/O-burst threads are blocked.
is improves response times for those processes.
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Figure 7.2: Distribution of the CPU burst length: A length of 2 ms occurred most oen (as
measured by Nehmer and Sturm).

However, once the number of threads becomes very large, too many of them will be in
their CPU bursts simultaneously, and then the overall execution speed and responsiveness
will shrink.
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7.2.3 Types of Threads
Two different types of threads are usually distinguished: kernel-level threads and user-
level threads. e “classical” threads (i. e., the threads in Unix processes) are kernel-level
threads. e distinction is based on the mode in which the context switch is performed.
In kernel-level threads the context switch happens in system mode, in user-level threads
it happens in the user mode thread library.

Kernel-level threads can be regarded as virtual processors running directly on physical
processors. User-level threads can be regarded as virtual processors running on kernel-
level threads. In this sense, a team of kernel-level threads running in the same virtual
memory can be regarded as a virtual multiprocessorvirtual

multiprocessor
for user-level threads.

e techniques used to implement and synchronize virtual processors (i. e., kernel-level
threads) on physical processors are the same as those used to implement and synchronize
virtual processors (user-level threads) on virtual processors (kernel-level threads). ere-
fore people sometimes speak of a processor hierarchyprocessor

hierarchy
. Virtual processors run on virtual

processors that run on physical processors. (Note that in principle it is even possible to
run user-level threads on user-level threads, extending the processor hierarchy.) e mul-
tiplexing of higher-level processors to lower-level processors is performed by a soware
layer (see Figure 7.3). In case of kernel-level threads implemented on physical processors
this soware layer is the operating system; in case of user-level threads implemented on
kernel-level threads this soware layer is usually called the user-level threads library.
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Figure 7.3: Schematic view of the processor hierarchy. Arrow colors (on one level) express
the order of allocation of a virtual (top) or physical (boom) processor, but the
top and boom arrows have their own times.
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In the example shown in Figure 7.3 the green and blue arrows describe the order in
which a virtual/physical processor is assigned to a user-level/kernel-level thread. If we
assume that the time slices for user and kernel level threads are identical, then the example
thread might execute as shown in Table 7.1, but in practice switch times for user-level
threads will not be synchronized with switch times for kernel-level threads.

Time KLT ULT
n 1 1
n+  2 3
n+  3 4
n+  1 2
n+  2 4
n+  3 5
n+  1 1
n+  2 3
n+  3 4
n+  1 2
n+  2 4

Table 7.1: Possible order of execution for the threads shown in Figure 7.3.

7.2.3.1 Kernel Level Threads

Kernel-level threads are managed in system mode, i. e., the context switch of one kernel-
level thread to the next requires some action by the operating system’s scheduler. is
is why kernel-level threads are oen called heavy-weight threads heavy-weight

thread
, because entering and

leaving the scheduler incurs a large performance overhead. For example, if the context
switch from one kernel-level thread to the next also causes a switch of one virtual memory
to another (i. e., the process changes), the effect of caching in the TLB or in any other local
cache is destroyed.

7.2.3.2 User-Level Threads

User-level threads run on kernel-level threads. From the point of view of user-level threads,
kernel-level threads are virtual processors that carry the user-level thread library. In con-
trast to kernel-level threads, user-level threads are managed entirely in user mode. is
implies that the context switch of user-level threads does not incur a context switch of
the kernel-level thread that carries it. is in turn implies that there is no switch of vir-
tual memories and no performance penalty. erefore, user-level threads are oen called
light-weight light-weight

thread
threads.

U only implements kernel-level threads. We show the code in the following section.
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7.3 Implementation of Threads in U
So far, we have been talking about threads all the time, e. g., when we discussed the struc-
ture of the thread control block, but all the previous code actually dealt with processes.
at changes now: we are about to introduce true threads which can be created inside
processes.

7.3.1 Creating Threads Instead of Processes
Creating a kernel-level thread (belonging to an already existing process) is very similar to
forking a process. e original idea was to let u_forkc perform its usual tasks, but with
two exceptions—it should not copy the user mode memory, and it should provide two new
stacks (for kernel and user mode) which exist in the same address space. is approach is
used in the Linux kernel’s clone function which can generate both new threads and new
processes [Lov03, pp. 22–27].

However, our first aempts led tomany if-then-else constructions in the u_forkc func-
tion which reduced the readability of the code, and we also wanted to describe process
forking and thread creation separately, so we decided against the combined treatment in-
side u_forkc. Instead we explain thread creation in this section, and we will provide
a separate function u_pthread_createa which is loosely based on the POSIX user mode
function pthread_create.

We’re going to implement (parts o) the POSIX thread API [IEE95] inside the kernel,
and the user mode library functions will simply access these kernel functions via system
calls.

POSIX threads need a thread identifier of some type pthread_ta. We define this public
type as a pointer to a kernel-internal data structure whose definition we will not export
to user land, so we declare:

[254a] ⟨public type definitions 142a⟩+≡ (44a 48a) ◁ 175 369a ▷
typedef void *pthread_t;
typedef void pthread_attr_t; // attributes not implemented

Defines:
pthread_attr_t, used in chunks 255a and 259c.
pthread_t, used in chunks 255a and 259.

As already mentioned, a new thread differs from a new process by sharing its creator’s
address space, but it still needs its own kernel and user mode stacks—in the same address
space which the calling process currently uses.

Our implementation of the kernel’s
[254b] ⟨function prototypes 45a⟩+≡ (44a) ◁ 228a 259d ▷

int u_pthread_create (pthread_t *restrict thread, const pthread_attr_t *restrict attr,
memaddress start_address, void *restrict arg);

function looks similar to u_forkc:
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[255a]⟨function implementations 100b⟩+≡ (44a) ◁ 228b 260a ▷
int u_pthread_create (pthread_t *restrict thread, const pthread_attr_t *restrict attr,

memaddress start_address, void *restrict arg) {
⟨begin critical section in kernel 380a⟩ // access the thread table

thread_id old_tid = current_task;
⟨u_pthread_create: create new TCB 255b⟩
⟨u_pthread_create: fill new TCB 255c⟩
⟨u_pthread_create: create new stacks 257c⟩

⟨end critical section in kernel 380b⟩
return 0;

}
Defines:

u_pthread_create, used in chunks 254b and 258b.
Uses current_task 192c, memaddress 46c, pthread_attr_t 254a, pthread_t 254a, and thread_id 178a.

Where u_forkc starts with creating a fresh address space and reserving a TCB, the
thread only needs a TCB:

[255b]⟨u_pthread_create: create new TCB 255b⟩≡ (255a)
thread_id new_tid = register_new_tcb (current_as);
address_spaces[current_as].refcount++;
address_spaces[current_as].extra_kstacks++; // see below

Uses address_spaces 162b, current_as 170b, register_new_tcb 188d, and thread_id 178a.

We increase the refcount and extra_kstacks elements of the address space which lets us
keep track of how oen this address space is in use: As long as refcount is non-zero,
we must not reuse the address space. extra_kstacks has a similar but slightly different
function that we will explain further below.

Entering data in the TCB is similar to the respective step in u_forkc:
[255c]⟨u_pthread_create: fill new TCB 255c⟩≡ (255a)

TCB *t_old = &thread_table[old_tid];
TCB *t_new = &thread_table[new_tid];
*t_new = *t_old; // copy the complete TCB

// note: this destroys data set in register_new_tcb ()
memset (&t_new->regs, 0, sizeof (context_t));
t_new->state = TSTATE_FORK;
t_new->tid = new_tid;
t_new->addr_space = current_as;
t_new->new = true; // mark new thread as new
t_new->pid = old_tid; // thread; pid != tid
t_new->ppid = t_old->ppid; // new thread has same parent as caller

Uses context_t 142a, current_as 170b, memset 596c, t_new 276c, t_old 276c, TCB 175, thread_table 176b,
and TSTATE_FORK 180a.

We need two new TCB entries to mark a thread as new and to store its kernel stack
address:

[255d]⟨more TCB entries 158c⟩+≡ (175) ◁ 235b 326d ▷
boolean new; // is this thread new?
void *top_of_thread_kstack; // extra kernel stack for this thread
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We will give only one page of kernel stack memory to each new thread, and we put
those just under the regular kernel stack.

Remember that we’ve defined TOP_OF_KERNEL_MODE_STACKc and KERNEL_STACK_PAGESb.
We can now calculate TOP_OF_KERNEL_MODE_STACKc - KERNEL_STACK_PAGESb * PAGE_SIZEa
to find the lowest possible address that may be used by the kernel stack. In principle we
could have our first thread’s kernel stack start just below, but we want to provide aprotective

buffer
pro-

tective buffer of unmapped memory: at way, whenever one of the threads exceeds its
kernel stack it will generate a page fault (and in turn the process will be stopped).

We will provide each thread with just one page of kernel stack memory whereas the
initial process always gets four pages of them—this is just intended to simplify the clean-
up of a process with several threads (Figure 7.4).

C0000000 Top of (regular) kernel mode stack

BFFFC000 End of (regular) kernel mode stack
Protective buffer (unmapped)

BFFFB000 Top of thread 1's (extra) kernel stack

Protective buffer (unmapped)

BFFF9000 Top of thread 2's (extra) kernel stack

Regular 
kernel 
stack

Protective buffer (unmapped)

Thread stack

Thread stack

Figure 7.4: Each new thread gets a single page for its kernel stack—just below the regular
kernel stack butwith one-page buffers of non-mapped virtualmemory between
the stacks.
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is leads to the address calculation

TOP_OF_KERNEL_MODE_STACKc - (KERNEL_STACK_PAGESb + 2 * thread) * PAGE_SIZEa

where thread is 1, 2, etc. for the first, second, etc. new thread (and it is 0 for the original
kernel thread of the process). For example, for the first new thread (and assuming that
TOP_OF_KERNEL_MODE_STACKc = 0xc0000000, KERNEL_STACK_PAGESb = 4) we get 0xc0000000
−(+  · ) ·  = 0xc0000000 − ·  = 0xbfffa000 which is the start address for the
new stack.

We could use the address space’s refcount element in our formula (but would need to
subtract 1 since it starts counting with the initial, thread-less process). However, this only
works if we assume that a process will create several new threads and then enters a stage
in which threads will only terminate until none is le.

If thread creation is more dynamic, with new threads coming and old threads going
away, we cannot use this approach because a leaving thread will decrease refcount. So we
introduce a new address_space entry extra_kstacks:

[257a]⟨more address_space entries 257a⟩≡ (161)
byte extra_kstacks;

which counts the number of extra kernel stacks. In a pure process (without extra threads)
its value will always be 0. We will update refcount by increasing and decreasing it as
threads come and go, but we will only increase extra_kstacks when we add a new thread.
at way, for every new thread we can get a fresh kernel stack.

(As a side effect all extra kernel stacks will continue to exist until the process finally
terminates; more about that at the end of this chapter.)

is finally lets us calculate the boom of the new kernel stack:
[257b]⟨boom of new kernel stack 257b⟩≡ (257c)

TOP_OF_KERNEL_MODE_STACK
- ( KERNEL_STACK_PAGES + 2 * (address_spaces[current_as].extra_kstacks) )

* PAGE_SIZE
Uses address_spaces 162b, current_as 170b, KERNEL_STACK_PAGES 169b, PAGE_SIZE 112a,

and TOP_OF_KERNEL_MODE_STACK 159c.

Now we have everything that we need for stack creation. For the new user mode stack
we simply increase the process’ heap (via u_sbrka), and for the kernel stack we reserve
a frame and update the address space.

[257c]⟨u_pthread_create: create new stacks 257c⟩≡ (255a)
// create user stack
void *ustack = u_sbrk (PAGE_SIZE);
memset (ustack, 0, PAGE_SIZE);

// create kernel stack
int kstack_frame = request_new_frame (); // get a frame
uint kstack_start = ⟨boom of new kernel stack 257b⟩;
as_map_page_to_frame (current_as, kstack_start >> 12, kstack_frame); // map it
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uint *STACK = (uint*) (kstack_start+PAGE_SIZE); // top of new stack
t_new->top_of_thread_kstack = STACK;

*(--STACK) = 0x20 | 0x03; // push ss (selector 0x20 | RPL3: 0x03)
*(--STACK) = (uint)ustack + PAGE_SIZE; // push esp (for user mode)
*(--STACK) = t_old->regs.eflags; // push eflags
*(--STACK) = 0x18 | 0x03; // push cs (selector 0x18 | RPL3: 0x03)
*(--STACK) = start_address; // push eip (for user mode)

t_new->esp0 = (memaddress)STACK;
add_to_ready_queue (new_tid);

Uses add_to_ready_queue 184b, as_map_page_to_frame 165b, current_as 170b, kstack_frame, memaddress 46c,
memset 596c, PAGE_SIZE 112a, request_new_frame 118b, t_new 276c, t_old 276c, top_of_thread_kstack,
u_sbrk 173a, and ustack.

Compare the values that we push on the stack to the values we push in the assembler
function cpu_usermode that is invoked when the very first process starts: ese are the
same data, except for the start address which is 0 for the initial process and the address
of the thread function in case of a new thread. e reason why we need this stack setup
is the same in both cases: When the iret instruction is executed, the stack has to contain
the information that lets the system go back to user mode and continue execution at the
right address.

7.3.2 System Call for Thread Creation
Weprovide a simplified usermode implementation of thread creationwhich ignores thread
IDs and simply provides the start address of the thread function. is is possible because
we will not provide a pthread_join function (that lets a thread wait for the termination of
a specific other thread). e system call handler

[258a] ⟨syscall prototypes 173b⟩+≡ (202a) ◁ 234a 282a ▷
void syscall_pthread_create (context_t *r);

just calls u_pthread_createa with the start address in the right place and all other argu-
ments set to NULLa.

[258b] ⟨syscall functions 174b⟩+≡ (202b) ◁ 234b 282c ▷
void syscall_pthread_create (context_t *r) {

// ebx: address of thread function
memaddress address = r->ebx;
u_pthread_create (NULL, NULL, address, NULL);

};
Uses context_t 142a, memaddress 46c, NULL 46a, syscall_pthread_create, and u_pthread_create 255a.

e next free system call number is
[258c] ⟨ulix system calls 206e⟩+≡ (205a) ◁ 224d 260b ▷

#define __NR_pthread_create 506
Defines:

__NR_pthread_create, used in chunk 259.

and we add a syscall table entry:
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[259a]⟨initialize syscalls 173d⟩+≡ (44b) ◁ 235c 260c ▷
install_syscall_handler (__NR_pthread_create, syscall_pthread_create);

Uses __NR_pthread_create 258c, install_syscall_handler 201b, and syscall_pthread_create.

For the user mode library we stick with the POSIX prototype
[259b]⟨ulixlib function prototypes 174c⟩+≡ (48a) ◁ 235d 260d ▷

int pthread_create (pthread_t *thread, const pthread_attr_t *attr,
void *address, void *arg);

but as mentioned above, the only thing we pass along is the start address:
[259c]⟨ulixlib function implementations 174d⟩+≡ (48b) ◁ 235e 260e ▷

int pthread_create (pthread_t *thread, const pthread_attr_t *attr,
void *address, void *arg) {

return syscall2 (__NR_pthread_create, (memaddress)address);
}

Uses __NR_pthread_create 258c, memaddress 46c, pthread_attr_t 254a, pthread_t 254a, and syscall2 203c.

7.3.3 Terminating Threads
In a complete POSIX thread implementation a thread can call pthread_exite to termi-
nate, and another thread may call pthread_join to wait for that specific thread to finish.
Describing pthread_join in this book would be a repetition of the code that we’ve shown
when we discussed the process mechanisms provided by waitpidd and exita: We
would add another blocked queue to the system and move a thread that calls pthread_join
to that queue; then the pthread_exite function would check whether there is a thread
that waits for this thread and wake it up.

Since no deeper understanding is gained by this repetition, we only provide the
[259d]⟨function prototypes 45a⟩+≡ (44a) ◁ 254b 275 ▷

void syscall_pthread_exit (context_t *r);

function. Note that this means that many multi-threaded code examples will not work
with U, but from our explanation it should be clear how you could extend the U
code so that it supports threads properly.

ere is a special case we need to consider: e last thread last thread
leaving

of a multi-threaded process
has two options for terminating.

• It can call the regular process exit function exita. is will typically be the case if
it was the “master process” that executes the main() function. In that case all other
threads have already le via pthread_exite.

• It can alternatively call pthread_exite. e man page for pthread_exite states:
“Aer the last thread in a process terminates, the process terminates as by calling
exit(3) with an exit status of zero; thus, process-shared resources are released and
functions registered using atexit(3) are called.” [Lin12b]
So in this special case (which we can detect by checking refcount == 1 in the current
address space) we simply call syscall_exitb and let it do the work.
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[260a] ⟨function implementations 100b⟩+≡ (44a) ◁ 255a 276d ▷
void syscall_pthread_exit (context_t *r) {

if (address_spaces[current_as].refcount == 1) {
// last thread leaves: use normal exit mechanism
r->ebx = 0; // set process exit code to 0
syscall_exit (r); return; // and leave

}

⟨begin critical section in kernel 380a⟩ // access the thread table
thread_table[current_task].state = TSTATE_EXIT;
remove_from_ready_queue (current_task);
address_spaces[current_as].refcount--;
thread_table[current_task].used = false; // release TCB
⟨end critical section in kernel 380b⟩
⟨resign 221d⟩

}
Defines:

syscall_pthread_exit, used in chunks 259d and 260c.
Uses address_spaces 162b, context_t 142a, current_as 170b, current_task 192c, remove_from_ready_queue 184c,

syscall_exit 216b, TCB 175, thread_table 176b, and TSTATE_EXIT 180a.

Againwe register a system call and provide a usermode functionwhich needs no further
explanation since it simply makes the system call (and need not provide any arguments).

[260b] ⟨ulix system calls 206e⟩+≡ (205a) ◁ 258c 310b ▷
#define __NR_pthread_exit 507

Uses __NR_pthread_exit.

[260c] ⟨initialize syscalls 173d⟩+≡ (44b) ◁ 259a 282d ▷
install_syscall_handler (__NR_pthread_exit, syscall_pthread_exit);

Uses __NR_pthread_exit, install_syscall_handler 201b, and syscall_pthread_exit 260a.

[260d] ⟨ulixlib function prototypes 174c⟩+≡ (48a) ◁ 259b 282e ▷
void pthread_exit ();

[260e] ⟨ulixlib function implementations 174d⟩+≡ (48b) ◁ 259c 282f ▷
void pthread_exit () { syscall1 (__NR_pthread_exit); }

Defines:
pthread_exit, used in chunk 260.

Uses __NR_pthread_exit and syscall1 203c.

Note that the POSIX prototype for pthread_exite provides an exit value argument
which we omit because in our implementation there is no way for another thread to ac-
cess it.

[260f] ⟨POSIX pthread_exit prototype 260f⟩≡
void pthread_exit (void *value_ptr);



7.3 Implementation of Threads in U 261

7.3.3.1 Geing Rid of the Extra Kernel Stacks

In ⟨scheduler: free old kernel stacks 169a⟩ we had included a code chunk named ⟨remove
extra thread kernel stacks 261⟩ and given no further explanation (because at that time we
only dealt with processes). Now the time has come to explain how to get rid of the extra
kernel stacks.

In the overall kernel stack deletion chunk, we’re in the middle of a loop (over the el-
ements of the kstack_delete_list), and id is the ID of the current address space that we
need to delete. In a regular process address_spacesb[id].extra_kstacks will be 0, we
don’t want to touch such an address space any further. But if the value is larger than 0,
we remove the extra pages:

[261]⟨remove extra thread kernel stacks 261⟩≡ (169a)
if (address_spaces[id].extra_kstacks > 0)
while (address_spaces[id].extra_kstacks > 0) {

uint stack = TOP_OF_KERNEL_MODE_STACK -
(KERNEL_STACK_PAGES + 2 * (address_spaces[id].extra_kstacks)) * PAGE_SIZE;

int frameno = mmu_p (id, stack/PAGE_SIZE);
if (frameno != -1) release_frame (frameno);
address_spaces[id].extra_kstacks--;

}
Uses address_spaces 162b, KERNEL_STACK_PAGES 169b, mmu_p 171c, PAGE_SIZE 112a, release_frame 119b,

and TOP_OF_KERNEL_MODE_STACK 159c.

(Note that we cannot use release_paged because the address space is not active; the
current page table does not point to the frames we want to free.)

For determining the start of each kernel stack we use the same formula that we used
when we created the stack (see ⟨boom of new kernel stack 257b⟩).

7.3.4 Thread Synchronization
We will also provide pthread_mutex_* functions for thread synchronization. You can find
the code in Chapter 11.5 (which is part of the Synchronization chapter).





8
Scheduling

Every multi-tasking operating system needs a scheduler: It is the primary OS component
that allows the quasi-parallel execution of several programs. Scheduling actually encom-
passes two separate tasks:

• deciding when to switch from one process or thread to another and picking that new
task

• and actually performing the task switch (also called context witch).

e first problem is what scheduling strategies are about, and this is where researchers
regularly develop new schedulers. In the introductory theory part (Sections 8.1 and 8.2)
we look at some classical strategies.

For U we will implement the Round Robin Round Robinscheduling strategy, but picking the next
process or thread according to this strategy is rather simple, so the implementation part
(Section 8.3) of this chapter focuses on the context switch: Switching from one task to the
other without breaking the system is complex.

8.1 Monoprocessor Scheduling
For this book we focus on scheduling strategies that work on systems with exactly one
CPU: U does not support more than one processor. With several CPUs or cores (and
even with hyperthreading) things get more interesting, and multiprocessor machines can
profit from specialized scheduling strategies (even though most standard schedulers can
be adapted to use more than one CPU, as well).
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8.1.1 ality Metrics
Scheduling is one of the best understood parts of operating systems because it has such
an important impact on system performance. However, it is not so easy to say what the
“best scheduler” is because it depends very much on the definition of quality used in a
particular situation. Here are several common quality metrics for scheduling algorithms,
the more historical ones are listed first:
• e metric of CPU usageCPU usage is one of the simplest notions of quality in the literature. It

basically gives the percentage of time in which the CPU actually executed application
instructions (in contrast to operating system instructions or being idle). e CPU
usage is important if CPUs are very expensive (as it was in earlier times). Today, the
CPU usage of common desktop computers is usually very low, since they are idle
most of the time.

• e throughputthroughput of a system usually counts the number of tasks that the system exe-
cuted per time unit. is metric depends on the definition of “task”. It comes from a
time in which computers did batch processing: A number of computation jobs were
ready in a physical entry queue (for example in the form of punched cards). e com-
puter then started the processing of these jobs. e throughput counted the number
of such jobs that the system could execute per hour (for example).

• e turnaround timeturnaround
time

of a thread is the time it takes for the thread to be scheduled
again. In other words, it is the time between two successive selections of the thread
by the scheduler. e turnaround time of the entire system is the average turnaround
time of all threads. It can be regarded as a refined throughput metric.

• e waiting timewaiting time of a thread is the average time it has to wait in the ready queue
before it is scheduled. is is not the same as throughput since times when the thread
is blocked do not count in the waiting time.

• e response timeresponse time of a thread is the time it takes for the thread to respond to user
input. is is similar to the turnaround and waiting time, only that responses to user
inputs are counted instead of being scheduled again.

• Finally, a scheduler is real timereal time if it manages to satisfy real time constraints. ere is
a further differentiation into hard real time and so real time which is basically about
the question whether it is acceptable to occasionally miss a deadline.

8.1.2 Preemptive vs. Non-preemptive Scheduling
ere are two main classes of scheduling algorithms: preemptive ones and non-preemptive
ones. Roughly speaking, preemptive scheduling algorithms allow that a thread is thrown
off the processor even if that thread does not want to be thrown off. In practice, all schedul-
ing algorithms are usually preemptive in order to prevent that threads (accidentally or
willingly) monopolize the system.

e precise definition is as follows: A scheduling algorithm is preemptive if an asyn-
chronous interrupt can cause a thread to be taken off from the processor.
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8.1.3 First-Come First-Served
e most simple approach to scheduling processes is to have a single queue for all ready
processes. Whenever the CPU is not busy, the scheduler picks the first process in the
queue and lets it compute until it either terminates or blocks. Aer a process becomes
unblocked, it is appended to the end of the queue.

is is a non-preemptive strategy that is called First Come, First Served (FCFS) and that
can be used on old machines which do not support timer interrupts. e most important
problem with this approach is that it requires cooperation of all the running processes: If
one process never freely gives up the CPU, it can go on forever.

A further analysis shows that the order in which processes enter the queue influences
the average service time service time(the time between entering the CPU and finishing the calcula-
tion) heavily. For example, let’s assume that there are three processes P1, P2 and P3 that
simultaneously come into existence. P1 needs 15 units of time, P2 and P3 need four and
three units, respectively. Figure 8.1 shows three of the six possible ordering in which the
processes can enter the queue (and thus start computing).

P1 P2 P3

P1P2P3

P1 P2P3

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 time

Figure 8.1: e FCFS scheduler’s service time statistics depend heavily on the processes’
order of system entry.

In the first execution sequence, P1, P2 and P3 finish aer 15, 19 and 22 units of time,
respectively. at means an average service time of (+ + )/ ≈ . units of time.
In the second sequence, the times are 3, 7, 22, leading to ( +  + )/ ≈ . units of
time, and in the last sequence, times 3, 18, 22 result in ( +  + )/ ≈ . units of
time. Instead of the service time we could also look at the wait time (which would be the
service time minus the burst time of the process) which gives a similar result.

So, if our goal was to minimize the average service time (or wait time), it would make
sense to pick the ordering in the middle which sorts processes by their runtime.

8.1.4 Shortest Job First
ere is a hypothetical strategy that does just that: e Shortest Job First (SJF ) strategy
always picks the job that has the shortest runtime. us, of all the possible orderings it
will always choose the one in the middle of Figure 8.1.
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Why did we call it hypothetical? e problem is that in almost every case the system has
no way to find out how long the next CPU burst of some process is going to be. In some
rare cases where a system only executes specially prepared applications which announce
their next burst length in advance, this strategy might actually be implemented, but for
multi-purpose operating systems which run arbitrary programs, it is not possible. Still, it
is possible to approximate this strategy. For example the operating system could collect
statistical data about each process by monitoring the length of each CPU burst. en
it could calculate averages for all the bursts of a process and order the processes by their
average burst times. Programsmight change their behavior over time; consider a program
that performs heavy calculations on a large set of data: It would start by reading in a big
chunk of data (resulting in very short CPU bursts). Once the data are there, it would start
the calculation (with very long bursts). Aerwards it might write them back, returning to
short bursts. So in order to cater for that variability, it would make sense to discard older
statistical burst data and only use the last N burst times for calculating the average.

Also, once a process terminates, the system could store the collected statistical data
about it in the filesystem: When starting the program again, it can make a beer guess at
what is about to happen.

Like FCFS, SJF is a non-preemptive strategy which does not interrupt processes. Both
strategies are acceptable in non-interactive systems. But if a machine has a live user siing
in front of the machine who expects that several programs work seemingly in parallel, this
is not good enough.

8.1.5 Round Robin
e idea behind the Round Robin (RR) scheduler is the same as that for FCFS—but with
interrupts which force a process off the CPU once a time limit has been reached. e
maximum time that a process is allowed to execute is called a time slicetime slice , and its length is
an adjustable parameter of the RR strategy.

Figure 8.2 shows how an RR scheduler would treat the three sample processes from
above. At the top you see the order of execution with the time slice set to four units of
time, the lower part shows the sequence for a time slice of two units.

P3P1 P2

P3

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 time

P1P1 P1

P1 P1P2 P2 P3 P1 P1 P1 P1 P1 P1

Figure 8.2: e Round Robin scheduler works with configurable time slices. Here it uses
slices of four (top) and two units of time.
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If a system already has an FCFS scheduler, it can easily be upgraded to an RR system:
Just add a timer handler that checks how long a process has been active; if it exceeds the
time slice, call the scheduler.

An open question is: What should the time slice (also called the time slot or the quantumquantum)
be? ere are two adverse properties which make it non-trivial to make a decision:

• On the one hand, we would like the time slice as small as possible because that guar-
antees that each process in the ready queuewill wait only a short amount of time until
it can start running. at is an important property for interactive systems that want
to give their users the feeling that “things happen instantaneously”. So this should
lead to the rule: Make it short.

• On the other hand, aer each time slice a context switch to the next process in the
ready queue occurs (which is what we want). e downside is that this switch costs
time. Let’s assume that the context switch takes n units of time and that we have
chosen the time slice to be the same n units of time. As a consequence the CPU time
would be equally distributed between all the processes and the scheduler, resulting in
a setup that runs with only half the possible speed because the other half is wasted
by the scheduler. Obviously that is bad, so the time slice should be much larger than
the context switch time. Here we get the rule: Make it long.

e answer must be some kind of compromise between the two. For interactive systems
there is one property that we might be able to observe and that helps us pick the right
amount: it is the typical time required to service a user interaction (like a pressed key or
mouse buon).

We define the average interaction time average inter-
action time

as follows: Assume that a process is currently
blocked because it waits for an I/O event (such as a key being pressed). Once the key
is actually pressed, the keyboard handler will move the process to the ready queue. e
next time this process runs it will evaluate the character that was read in, and will act
on that information somehow. e consequence of the pressed key will become visible,
for example, an editor will display the character and move the cursor position, another
program might open a menu or perform some other action. Once this observable reaction
has occurred we stop the clock: e time between the reactivation of the process and now
is the interaction time for this specific interaction. Now make a collection of several rep-
resentative programs (those that are typically run on the operating system) and for each
such program a collection of the typical interactions. For all those interactions measure
the interaction time and then calculate the average. Add a few percent to that value to be
on the safe side and use that final value as the length of the RR time slice.

Figure 8.3 visualizes why this approach is helpful: It shows the treatment of one inter-
action by the RR scheduler; once with a time slice that was set as described above, once
with a time slice that is just a bit too small. e yellow and green boxes represent the
interactive process and a second process, and the striped black box shows the rest of a
time slice which remained unused because the interactive process finished handling the
interaction and blocked (waiting for the next key stroke). In the top part you can see the
behavior that we want: e time slice is slightly larger than the interaction time which
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time

different process

Interaction finished

different process

different process

Interaction finishedProcess interrupted

Unused rest
of time slice

Figure 8.3: Picking a time slice that is too small has a bad influence on interactive processes
(boom). With the right choice handling an interaction can complete in one
time slice.

means that the process can finish treatment of the interaction in that single slice. e
boom shows the alternative with a time slice that is just a bit too small: e process is
interrupted before finishing its work on the interaction, then another process executes.
We have created a benign example because there are only two processes; normally you
would have to expect that there are several more so the picture would be spread much
wider with all of the other process using their time slices before the interactive process
gets its next chance to finish the task.

8.1.6 Virtual Round Robin
ere is one problem with the RR strategy: It is unfair toI/O-bound I/O-bound processes. (We define
a process to be I/O-bound if it performs I/O very oen and thusly uses only small parts
of each of its time slices, quickly blocking again. e opposite is aCPU-bound CPU-bound process
which typically uses up its time slice completely. Obviously there is a gray are between
I/O-bound and CPU-bound where is process can be called neither.)

Back to the point: RR treats I/O-bound processes unfairly because they typically use just
a tiny fraction of their time slice and then block. Whatever I/O activity they perform, we
can assume it to take quite some time (for example, disk access is prey slow in comparison
to CPU instructions, and waiting for a key stroke takes an indefinite amount of time).
Once the I/O has completed, RR adds the process to the end of the ready queue. en it
has to wait until all other processes that stand before it in the queue have either used up
their time slices or blocked. If you compare the ratio between the needed CPU time (the
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a) Several queues for priority classes Schedulervery important

important

standard

b) Scheduler searches for process with highest priority (here: lowest value)

30 120 130 120 140 5 130 120 120 110

fnd the minimum

Figure 8.4: Priority-based schedulers have several possible implementations to pick from.

time that the process actually executes instructions on the CPU) with the wait time, then
I/O-bound processes get a much smaller value than CPU-bound ones.

ere is a modification of RR that alleviates this effect, and it is called Virtual Round
Robin (VRR). It adds a second, privileged ready queue to the scheduler that only contains
processes which had not fully used up their time slices when they ran the last time. If
that queue is non-empty, a VRR scheduler will always pick a process from that priority
queue when the current process’ time slice runs out. However, it will not grant the newly
chosen process a full time slice but only the rest that was not used up the last time.

8.1.7 Priority-Based Scheduling
We’ve already used the word “priority” when we discussed the extra queue of the VRR
scheduler. Priority-based scheduling allows each process to be treated differently by mak-
ing it more or less important than a process with default seings. is can be implemented
in several ways. A priority-based scheduler might give an important process a longer time
slice or it might pick it more oen than other processes. Depending on how fine-grained
priorities can be assigned to processes, there are several choices for handling the processes
(see Figure 8.4):

• If the number of different priorities is low, we could manage a separate queue for each
priority. In that case the scheduler would always start looking for the next process
in the queue with the highest priority. Only if such a queue is empty it would look
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down to the next queue. is can lead to starvationstarvation when one of the higher queues
never empties, and there are mechanisms to solve that problem, such as increasing
the priority of processes which have been waiting too long.

• Alternatively, if there are too many different priorities and we don’t want the over-
head of a corresponding queue collection, we can just store the priority as a numerical
value in the process control block. en the scheduler must search through the whole
process table in order to find the (or one) process with the highest priority, and the
queue is no longer a proper queue because the ordering in the queue is ignored by the
scheduler (or only recognized if there are several processes with the highest priority).
Again, such a system can lead to starvation and needs to provide a mechanism that
prevents this.

Furthermore, priorities can be static or dynamic: A scheduler withstatic
priorities

static priorities as-
signs a fixed priority to each process when it is created. It may be changed by a system
call, but otherwise it remains constant throughout the lifetime of the process. When the
scheduler usesdynamic

priorities
dynamic priorities it regularly recalculates the priorities based on a set of

rules. For example, such a scheduler may punish or reward a process for some specific
observed behavior. Increasing the priority of processes which have been waiting for a
long time (in order to avoid starvation) is an example for the use of dynamic priorities.

On Unix systems priorities are oen expressed with anice value nice value. is does sometimes
lead to confusion, because the “nicer” a process is, the lower is its priority. Unix provides a
nice system call that can set an integer value that is roughly in the interval− … 20. We
write “roughly” because the exact values can differ from one Unix system to another; for
example on a Linux machine the values − to 19 are valid, on OS X the range goes from
− to 20. e nice value is used by each Unix system to calculate an internal priority,
and oen it is not possible to set a process to the highest internal priority by changing its
nice value.

U does not support priorities, but in Exercise 29 you can add that feature to the
kernel.

8.1.8 Multi-Level Scheduling
Multi-level schedulers combine the characteristics of two or more other scheduling strate-
gies. An example is a priority scheduler that uses three queues for standard, important
and urgent processes (like the one in Figure 8.4, top) and then handles each of the queues
like a Round Robin scheduler does.

A Multi-Level Feedback Scheduler for U has been implemented by Markus Felsner
as part of his Bachelor’s thesis [Fel13] which is available online (in German). e code is
based on Chapter 8 of the textbook by Remzi H. and Andrea C. Arpaci-Dusseau [ADAD14].
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8.2 Multiprocessor Scheduling
If a machine has more than one CPU (or the processor has several cores, even virtual
ones via hyperthreading), then things get more complicated for the scheduler. e first
question is: Where should it run?

It is possible to restrict the whole kernel to run on a single, dedicated CPU that performs
all the tasks which require ring 0 permissions. at would include the scheduler which
would be activated regularly (via a timer, as on monoprocessor systems), and it could look
at the processes running on all the CPUs and decide which processor needs a context
switch to a different process. Models like these are also called master-slave-

scheduling
Master-Slave-Scheduling

because the dedicated (master) processor controls all the the other CPUs and distributes
the workload. Such systems are useful for high-performance computing where machines
sometimes have a large number of processors and applications require a specific numbers
of CPUs to execute program threads simultaneously. In that case a scheduler will let
the whole application (which needs to announce its processor requirements beforehand)
wait until a sufficient number of slave processors becomes available and then create the
requested number of threads and let them execute exclusively on the assigned CPUs. is
is called Gang Scheduling. gang scheduling

e alternative is that all processors are equals. In that case the operating system will
still boot from a single processor, but during initialization it will start copies of the sched-
uler on each CPU. ose copies could all use the same strategy to find a new process for
their local CPU, but special care must be taken so that the process queues remain consis-
tent. For example, if two copies of the scheduler simultaneously look at the front of the
ready queue, pick the same process and activate it, that process would execute twice.

Locking and other synchronization tasks become more complex when several CPUs are
involved, and there’s also the problem of cache coherencecache coherence : In short, all CPUs have their
own local cache and if those caches contain copies of the same memory region, then the
system must make sure that changing the memory contents on one CPU invalidates the
corresponding cache entries on all other processors.

Another important point that a multiprocessor scheduler must consider is the fact that
moving a process from one processor to another one is costly because the old processor
may still have parts of the process’ memory in its cache (which would speed up memory
access for that process) whereas the new processor’s cache does not contain that memory.
Modern operating systems provide the property CPU affinity CPU affinitythat tells the scheduler to
keep a process assigned to a CPU. However, the more constraints are added to a system
(such as: process A must always run on CPU X), the harder it becomes to generate an
equal load on all processors, and a load balancing algorithm is needed that may decide to
move a process to a different CPU (with low load) even though this has some cost.

e short introduction to scheduling on multiprocessors shall suffice for this book since
we focus on monoprocessors and U uses only one CPU as well.
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8.3 Implementation of the U Scheduler
anks to the forking mechanism of Section 6.5, we can already have more than one
process in U—but we still have to write code which lets U switch between several
tasks. is section is mainly about the task switch; the scheduling strategy that we use is
Round Robin.

Understanding the switch basically means looking at the functions and stacks. When
switching from process A to process B, we expect the following to happen:

1. Process A is executing, it runs in user mode, using its user mode stack.
2. A timer interrupt (IRQ 0) occurs. e CPU switches to kernel mode; this also switches

the stack to the kernel stack. (Its address is stored in the TSS structure.) e CPU then
jumps to the interrupt handler registered for interrupt 0 which does the following:

irq0:
push byte 0
push byte 32
jmp irq_common_stub

irq_common_stub:
pusha
push ds
push es
push fs
push gs
push esp

call irq_handler

pop esp
pop gs
pop fs
pop es
pop ds
popa
add esp, 8
iret

So aer pushing 0 (an empty error code) and 32 (that is 32+0, where 0 is the IRQ
number) onto the stack, it saves all relevant registers on the stack and then calls
irq_handlera which is a C function:

void irq_handler (context_t *r) {
...
handler = interrupt_handlers[r->int_no - 32];
if (handler != NULL) handler (r);

}

e generic irq_handlera looks up the correct interrupt service routine for the
timer (it calculates r->int_no-32 which in this case is  −  = , finds the entry
in interrupt_handlersb (that is timer_handlerb) and then calls it.

3. Next, the timer_handlerb checks whether it is time to call the scheduler and (if so)
calls it:

if (system_ticks % 5 == 0) {
...
scheduler (r, SCHED_SRC_TIMER);
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...
}

e extra argument SCHED_SRC_TIMERa tells the scheduler that is was called from the
timer (which is the standard case).

4. So if it decides to call the scheduler, it enters

void scheduler (context_t *r, int source) {
...

}

which is the function that we have to implement.

e sequence is similar if the interrupted process was not in user mode but in kernel
mode (in most cases because it was executing a system call), but in that case there is no
switch from ring 3 to ring 0 since the system is already running in kernel mode. at
is reflected by slightly different stack contents since an iret (interrupt return) from the
timer handler must restore the mode that the process was operating in.

8.3.1 Stack Usage
We need to keep track of which stacks are in use and what contents are stored on these
stacks. Every process has a private user mode stack and a private kernel mode stack.

1. When the current process runs (in user mode) and a timer interrupt occurs at time
t = , the CPU checks the Task State Segment (TSS) to find the current top of the
stack for kernel mode: it is stored in the ESP0 entry. (It also retrieves the new value
for the SS register; remember that we have different code/data segment descriptors
for user and kernel mode.) It switches to the new stack (by changing the ESP and SS
registers) and pushes the old values of SS and ESP as well as the contents of EFLAGS, CS
and EIP onto the new stack. EIP is already set to the address of the next instruction
of the process: the one that will be executed once we return to the process. en it
starts executing the interrupt handler code.
e kernel stack now looks like in Figure 8.5.

SS:ESP from TSS

EFLAGS

CS

EIP

ESP

SS

31                             0

(t=0, return address)

Figure 8.5: At t =  the kernel stack contains these values.
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2. en, at time t = , the interrupt handler entry function irq0 (for IRQ 0) pushes
0 and 32 onto the stack and jumps to irq_common_stub which pushes EAX , ECX , EDX ,
EBX , ESP (t = ), EBP, ESI, EDI, DS, ES, FS and GS.
Finally, at time t = , it pushes the current ESP which is now properly set up as the
address of the context_ta structure holding all the registers (see Figure 8.6, also
compare this to Figure 5.5 on page 143).

SS:ESP from TSS

Old EFLAGS
Old CS

Old EIP

New SS:ESP

Direction of 
Stack Growth

Old ESP
Old SS

31                             0

err_code: 0

int_no:  32

EAX

ECX

EDX

EBX

ESP

EBP

EDX

EBX

ESI

EDI

DS

ES

FS

GS

context 

context_t

Stack (t=2)

Stack (t=0)

(from t=1)

(t=0, return address)

Figure 8.6: ese are the stack contents just before executing call irq_handler.

At t = , the instruction call irq_handlera pushes the return address and jumps to
the entry address of the C function’s code.

3. When irq_handlera starts, it expects to find two values on the stack: the return
address and one argument. It takes a context_ta * as argument and we have just
prepared the stack so that it exactly fits this structure:

typedef struct {
uint gs, fs, es, ds;
uint edi, esi, ebp, esp, ebx, edx, ecx, eax;
uint int_no, err_code;
uint eip, cs, eflags, useresp, ss;

} context_t;
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e function can then access the elements of the context_ta structure.
4. irq_handlera calls the C function timer_handlerb and passes the pointer to our

context_ta structure as its single argument.
5. Lastly, timer_handlerb calls schedulerd (passing that pointer once more).
6. Now, schedulerd is executing and it can access the register values which we’ve set

up on the stack early in the assembler code and passed down all the way to the sched-
uler. Since we’ve only passed a pointer all the time (call by reference), the scheduler
can modify the register values. Aer the whole call stack unwinds later and we’re
back in irq_common_stub, the pop instructions will write the modified values into the
appropriate registers. Note however that somewhere inside schedulerd an address
space change will occur that will also exchange the current kernel stack with the kernel
stack that exists in the new address space which needs to be prepared so that the whole
stack unwinding works as if no switch had occurred. at is why we took special care
to create the stack properly in the implementation of the forking mechanism.

Let’s first assume that we do not enter the scheduler (because system_ticksa % 5 ̸= ).
In that case we just return and do not modify anything relevant to scheduling—we expect
the current process to continue running, as it does aer other interrupt treatments.

If we’ve just entered the schedulerd, what does the stack look like right now? In
comparison to Figure 8.6, there will be further return addresses and references to the
context_ta structure on the stack, since each function passes it, but we don’t really
have to care because all the important information is available via the pointer r to the
context_ta.

Note again that at the beginning of the interrupt handling we stored the contents of all
registers on the stack, in just the order which conveniently fits the context_ta structure
definition. We also pass the pointer to this structure to all further functions which get
called (when calling handler(r) and then schedulerd(r)). So within the schedulerd
we can look at r to see the state as it was before the timer interrupt occurred.

Whether we’ve come from user mode or from kernel mode (e. g. from a process that was
executing a system call when the timer interrupt fired) does not maer since all relevant
registers have been saved and will be restored.

8.3.2 The Implementation
When we schedule, we select the new process and then store all registers (the data that
r points to) in the old TCB. en we switch the address space (the CPU’s pointer to the
page directory), and then we load the new TCB contents in the registers. Aer that we
can return.

Our scheduler has the protoype
[275]⟨function prototypes 45a⟩+≡ (44a) ◁ 259d 288 ▷

void scheduler (context_t *r, int source);

which—as expected—takes a context_ta pointer as its first argument. We introduce the
second argument source because we also call the scheduler from within other kernel func-
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tions. (Right now we only discuss how it is called from the timer handler, but you have al-
ready seen us calling it from syscall_resigna which was needed by syscall_waitpidc.)

e following two macros will allow the system to temporarily disable (and reenable)
scheduling. During system initialization we’ve set scheduler_is_activee to false; it is
changed to true in the start_program_from_disk function which creates the first process.

[276a] ⟨enable scheduler 276a⟩≡ (192d 564a 608b 610a)
scheduler_is_active = true; _set_statusline ("SCH:ON ", 16);

Uses _set_statusline 337b and scheduler_is_active 276e.

[276b] ⟨disable scheduler 276b⟩≡ (151c 290b 321a 608b)
scheduler_is_active = false; _set_statusline ("SCH:OFF", 16);

Uses _set_statusline 337b and scheduler_is_active 276e.

We declare two global variables in the kernel address space which will later come in
handy when we have to remember information about the current and next process:

[276c] ⟨global variables 92b⟩+≡ (44a) ◁ 218b 276e ▷
TCB *t_old, *t_new;

Defines:
t_new, used in chunks 210b, 212, 255c, 257c, 277–80, 425a, and 567.
t_old, used in chunks 210b, 255c, 257c, 277–79, and 425a.

Uses TCB 175.

ese are not affected by changing the address space because they are in the region above
0xc0000000 which is identical in all address spaces. is is important! If those variables
were defined locally in the schedulerd function, they would reside in the kernel stack
and get lost when the address space changes. Note that the scheduling code is a critical
section, and there are two further exit points in the function at which we explicitly leave
the critical section.

[276d] ⟨function implementations 100b⟩+≡ (44a) ◁ 260a 289a ▷
void scheduler (context_t *r, int source) {
⟨begin critical section in kernel 380a⟩
⟨scheduler implementation 277a⟩
⟨end critical section in kernel 380b⟩
return;

}
Defines:

scheduler, used in chunks 216b, 221a, 275, and 342d.
Uses context_t 142a.

Our implementation starts with checking whether there are any zombie processes and
tries to get rid of them (see further down). en it looks at the global variable

[276e] ⟨global variables 92b⟩+≡ (44a) ◁ 276c 292c ▷
int scheduler_is_active = false;

Defines:
scheduler_is_active, used in chunks 206b, 276, 277a, 306d, 311a, 321, 329b, 334b, 335b, 412c, 416b, 509d,

510b, 512c, 518d, 521, 522, 531a, 532d, 545b, 588b, and 589a.

to determine whether it shall try to actually aempt a context switch.
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[277a]⟨scheduler implementation 277a⟩≡ (276d) 277b ▷
⟨scheduler: check for zombies 281⟩ // deal with zombies if we have any
if (!scheduler_is_active) { // check if we want to run the scheduler
⟨end critical section in kernel 380b⟩
return;

}
Uses scheduler_is_active 276e.

With all obstacles removed, the real scheduling process can begin. e scheduler lets
t_oldc point to the current process and then finds out which process it should switch to,
storing the result in t_newc. en it performs the context switch, and before returning
to the new current process it checks whether that process has any pending signals and
whether there is some clean-up to be done for terminated processes. (is last step could
be handled elsewhere, for example via one of the ⟨timer tasks 306d⟩.)

[277b]⟨scheduler implementation 277a⟩+≡ (276d) ◁ 277a
t_old = &thread_table[current_task];
debug_printf ("SCHED: enter find next\n");
⟨scheduler: find next process and set t_new 278a⟩
debug_printf ("SCHED: leave find next\n");
if (t_new != t_old) {
⟨scheduler: context switch 279c⟩

}
⟨scheduler: check pending signals 567b⟩ // see chapter on signals
⟨scheduler: free old kernel stacks 169a⟩ // if there are any

Uses current_task 192c, debug_printf 601d, t_new 276c, t_old 276c, and thread_table 176b.

We will implement the code chunk ⟨scheduler: check pending signals 567b⟩ in Chapter 14
where we introduce signals. Note that the ⟨scheduler: find next process and set t_new 278a⟩
chunk implements the scheduling logic, whereas all the other code is about technical de-
tails of the context switch.

8.3.2.1 A Simple Round-Robin Strategy

U does not aempt any sophisticated scheduling strategy; we will just use a simple
Round Robin system. e search for the next process will normally use the next pointer
in the current TCB since it will point to the next TCB in the ready queue. However
there’s a special case when the scheduler was activated because the current process called
waitpidd; in that case the former current process has already been moved to a blocked
queue and we need to start over. We can recognize that case by evaluating the source
argument and looking at the state of the current process. If it is not TSTATE_READYa then
we must start over (with the first element of the ready queue which is stored in tid =
thread_tableb[1].next).

We also might come across the idle process (which has the thread ID 1); if so we skip
it in the search of “real” processes that need some work done. (We could have le that
process completely out of any queues since it will never block but always be ready.)
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[278a] ⟨scheduler: find next process and set t_new 278a⟩≡ (277b) 278b ▷
thread_id tid;
search: // goto label
if (source == SCHED_SRC_RESIGN && t_old->state != TSTATE_READY) {

// we cannot use the ->next pointer
tid = thread_table[0].next;

} else {
tid = t_old->next;

}
if (tid == 1) tid = thread_table[1].next; // ignore idle process

Uses SCHED_SRC_RESIGN 343a, t_old 276c, thread_id 178a, thread_table 176b, and TSTATE_READY 180a.

If tid is 0, we have reached the end of the queue—or the queue may be completely empty
(in which case we activate the idlef process):

[278b] ⟨scheduler: find next process and set t_new 278a⟩+≡ (277b) ◁ 278a
if (tid == 0) // end of queue reached

tid = thread_table[1].next;
if (tid == 0) // still 0? run idle task

tid = 1; // idle
t_new = &thread_table[tid];
if (tid > 1 && (t_new->addr_space == 0 || t_new->state != TSTATE_READY)) {

goto search; // continue searching
}
// found it

Uses t_new 276c, thread_table 176b, and TSTATE_READY 180a.

8.3.2.2 The Context Switch

Before implementing the actual context switch, let’s first observe the following facts:

• We only enter the scheduler (and thus also the context switcher) via timer interrupts
or when a functions resigns (i. e., freely gives up the CPU by calling resignf ) or calls
waitpidd.

• Once we’re running inside the scheduler, we know that the kernel stack has been
set up in a way that will allow the system to continue operation of the interrupted
process—whether it was running in user mode or kernel mode before the interrupt
occurred.

• When we switch the address space, we also switch the kernel stack. However, the
stack pointer register ESP will still point to the top of the old process’ kernel stack.
We need to remedy that and have it point to the top of the new process’ kernel stack.

• If we switch between threads (within one process) we need not change the address
space.

To make the code more readable, we provide some macros which copy values between
variables and the ESP, EBP and CR3 registers. ey require the use of inline assembler code
(see Appendix B.4).
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[279a]⟨macro definitions 35a⟩+≡ (44a) ◁ 222c 340a ▷
#define COPY_VAR_TO_ESP(x) asm volatile ("mov %0, %%esp" : : "r"(x) )
#define COPY_VAR_TO_EBP(x) asm volatile ("mov %0, %%ebp" : : "r"(x) )
#define COPY_ESP_TO_VAR(x) asm volatile ("mov %%esp, %0" : "=r"(x) )
#define COPY_EBP_TO_VAR(x) asm volatile ("mov %%ebp, %0" : "=r"(x) )
#define WRITE_CR3(x) asm volatile ("mov %0, %%cr3" : : "r"(x) )

Defines:
COPY_EBP_TO_VAR, used in chunk 279c.
COPY_ESP_TO_VAR, used in chunk 279c.
COPY_VAR_TO_EBP, used in chunk 279c.
COPY_VAR_TO_ESP, used in chunk 279c.
WRITE_CR3, used in chunk 279.

Now we can present the code that handles the actual context switch. It is only executed
if we truly switch, i. e., if t_newc ̸= t_oldc. In principle, we would expect something
along the lines of

[279b]⟨scheduler: context switch (simplified version) 279b⟩≡
t_old->regs = *r; // store old: registers
COPY_ESP_TO_VAR (t_old->esp0); // esp (kernel)
COPY_EBP_TO_VAR (t_old->ebp); // ebp

current_task = t_new->tid; // update values of current_{task,as,pd}
current_as = t_new->addr_space;
current_pd = address_spaces[t_new->addr_space].pd;
WRITE_CR3 ( mmu (0, current_pd) ); // activate address space

COPY_VAR_TO_ESP (t_new->esp0); // restore new: esp
COPY_VAR_TO_EBP (t_new->ebp); // ebp
*r = t_new->regs; // registers

but it is a lile more complicated since we also have to check whether we do want to
change the address space (if not, then we can save some CPU time by omiing that step),
and we also need to change the TSS’s esp0 entry and handle some special cases for newly
created processes or threads. So the actual code is a bit more complex:

[279c]⟨scheduler: context switch 279c⟩≡ (277b) 280a ▷
t_old->regs = *r; // store old: registers
COPY_ESP_TO_VAR (t_old->esp0); // esp (kernel)
COPY_EBP_TO_VAR (t_old->ebp); // ebp
current_task = t_new->tid;
if (current_as != t_new->addr_space) {

// we need to change the address space (switching process, not thread)
current_as = t_new->addr_space;
current_pd = address_spaces[t_new->addr_space].pd;
WRITE_CR3 ( mmu (0, (memaddress)current_pd) ); // activate address space

}
COPY_VAR_TO_ESP (t_new->esp0); // restore new: esp
COPY_VAR_TO_EBP (t_new->ebp); // ebp chunk continues ->

Uses address_spaces 162b, COPY_EBP_TO_VAR 279a, COPY_ESP_TO_VAR 279a, COPY_VAR_TO_EBP 279a,
COPY_VAR_TO_ESP 279a, current_as 170b, current_pd 105a, current_task 192c, memaddress 46c, mmu 172a,
t_new 276c, t_old 276c, and WRITE_CR3 279a.
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We must update the TSS structure and enter the address of the kernel stack; that is
either TOP_OF_KERNEL_MODE_STACKc (for a pure process or the primary thread of a multi-
threaded process, i. e., one with pid == tid) or it is t_newc->top_of_thread_kstack for a
non-primary thread (pid != tid):

[280a] ⟨scheduler: context switch 279c⟩+≡ (277b) ◁ 279c
// set TSS entry esp0 to top of current kernel stack and flush TSS
if (t_new->pid != t_new->tid) {

// thread kstack information is stored in the TCB
write_tss (5, 0x10, t_new->top_of_thread_kstack); // non-primary thread

} else {
// process kstack is a fixed value
write_tss (5, 0x10, (void*)TOP_OF_KERNEL_MODE_STACK); // primary thread

}
tss_flush ();

// show thread ID in status line
if (t_new->tid != 1) { // ignore switch to idle

char msg[4]; sprintf (msg, "%03x", t_new->tid);
_set_statusline (msg, 20);

}

⟨scheduler: switching to a fresh thread? 280b⟩ // check special case
*r = t_new->regs; // restore new: registers

Uses _set_statusline 337b, kstack, sprintf 601a, t_new 276c, TCB 175, TOP_OF_KERNEL_MODE_STACK 159c,
top_of_thread_kstack, tss_flush 197c, and write_tss 197a.

Remember: write_tssa sets the ESP0 element of the TSS structure. It is only used when
the CPU switches from ring 3 to ring 0 (in general: whenever it switches from ring 1–3
to ring 0, but U does not use rings 1 and 2), and that means we can always start with
an empty kernel stack in those situations: us we can always write the address of the
stack’s top into that element.

Finally, we need to consider the special case of switching to a freshly created thread:
On page 258 we have prepared the new thread so that we can immediately leave with the
iret instruction.

[280b] ⟨scheduler: switching to a fresh thread? 280b⟩≡ (280a)
if (t_new->new && t_new->tid != t_new->pid) {

// new thread
t_new->new = false;
⟨end critical section in kernel 380b⟩
asm ("iret"); // return from interrupt handler, do not update r

}
Uses t_new 276c.

In this case the rest of the schedulerd function (the code chunks ⟨scheduler: check
pending signals 567b⟩ and ⟨scheduler: free old kernel stacks 169a⟩) is not executed, but that
is no problem; we can handle that with the next invocation of the scheduler.
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8.3.2.3 Treating Zombie Processes

We still need to check for zombies: A zombie is a terminated process whose parent process
has not yet been able to retrieve the return value (supplied via exita). ere are two
possible cases:

1. e parent is waiting. is means that it has called waitpidd aer this process
turned into a zombie, because otherwise it would not exist anymore. In that case we
deblock the parent process and delete the zombie’s entry in the thread table.

2. e ppid ID of the zombie process was set to 1. at means that its true parent exited
without calling waitfor. Here, we can also remove the zombie, and there is nothing
else to do: No process is waiting (or will ever be) for that process.

[281]⟨scheduler: check for zombies 281⟩≡ (277a)
for (thread_id pid = 0; pid < MAX_THREADS; pid++) {

if (thread_table[pid].state == TSTATE_ZOMBIE) {
thread_id ppid = thread_table[pid].ppid;

// case 1: parent is waiting
if ( (thread_table[ppid].state == TSTATE_WAITFOR) &&

(thread_table[ppid].waitfor == pid) ) {
deblock (ppid, &waitpid_queue);
thread_table[pid].state = TSTATE_EXIT;
thread_table[pid].used = false;

}

// case 2: parent ID was set to 1 (idle_)
if ( ppid == 1 ) {

thread_table[pid].state = TSTATE_EXIT;
thread_table[pid].used = false;

}
}

}
Uses deblock 186b, MAX_THREADS 176a, thread_id 178a, thread_table 176b, TSTATE_EXIT 180a, TSTATE_WAITFOR 180a,

TSTATE_ZOMBIE 180a, and waitpid_queue 218b.

8.3.3 Leing the init Process Idle
As a last topic for this chapter we discuss the idle process with process ID 1. It starts as
the init init → idleprocess, but once it has spawned some other processes, it will turn into the idle
process. If it becomes active it shall do nothing. However, if we interpret “nothing” as
an empty infinite loop (for(;;);) then the system will always actively spin in this loop
whenever no other process is ready—that uses processor power.

ere is a beer way: e assembler instruction hlt (halt) can stop the CPU until the
next interrupt occurs. We provide a system call that executes this instruction and use it
in the idle process:
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[282a] ⟨syscall prototypes 173b⟩+≡ (202a) ◁ 258a 298c ▷
void syscall_idle (context_t *r);

[282b] ⟨public constants 46a⟩+≡ (44a 48a) ◁ 235a 298b ▷
#define __NR_idle 505

Defines:
__NR_idle, used in chunk 282.

[282c] ⟨syscall functions 174b⟩+≡ (202b) ◁ 258b 299a ▷
void syscall_idle (context_t *r) {
⟨enable interrupts 47b⟩
asm ("hlt");
⟨disable interrupts 47a⟩

}
Defines:

syscall_idle, used in chunk 282.
Uses context_t 142a.

[282d] ⟨initialize syscalls 173d⟩+≡ (44b) ◁ 260c 299b ▷
install_syscall_handler (__NR_idle, syscall_idle);

Uses __NR_idle 282b, install_syscall_handler 201b, and syscall_idle 282c.

In the user mode library we add an idlef function:
[282e] ⟨ulixlib function prototypes 174c⟩+≡ (48a) ◁ 260d 299c ▷

inline void idle ();

[282f] ⟨ulixlib function implementations 174d⟩+≡ (48b) ◁ 260e 299d ▷
inline void idle () { syscall1 (__NR_idle); }

Defines:
idle, used in chunk 282.

Uses __NR_idle 282b and syscall1 203c.

When the system starts, start_program_from_disk loads the /init program from disk
whose source code we have already shown on page 191. It starts the program /bin/login
(via execve) which in turn launches some new processes (/bin/swapper, see page 311,
and a few login processes that let users log in on the virtual consoles). When that is done
it becomes the idle process via

[282g] ⟨init to idle transformation 282g⟩≡
setpsname ("[idle]");
for (;;) {

idle (); // if we don't call idle, we will have 100% CPU usage
}

Uses idle 282f.
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8.4 Exercises
26. Seduling with the [Esc] Key

e tutorial// Tutorial 7folder contains a new version of themini U kernel which includes
the fork() and schedule() functions. Again, it is a literate program (ulix.nw). However
the scheduler is never called: Normally the timer handler would have to do that, but it
is not part of that kernel version. In this exercise you introduce a manual scheduling
that can be initiated by pressing the [Esc] key.
a) Look at the user mode program test.c whose machine code version is already

part of the kernel sources. Its main() function creates a new process via fork(),
aerwards parent and child write “P” (for parent) or “C” (child) on the screen in
infinite loops:
int main () {

printf ("Hello - User Mode!\n");
int pid = fork ();
for (;;) {

if (pid == 0) printf ("C"); // child
else printf ("P"); // parent

}
}

Start the U version (using make and make run). You will see that the system
displays only “V”s, the child process does not run. (If you compile the same
program for Linux and run it, you see alternating sequences of “P”s and “C”s.)

b) e scheduler is implemented in the scheduler() function, just like it is in the
real U kernel. You can test it by adding a check for a pressed [Esc] key to
the keyboard handler. at key has scan code 1. Locate the keyboard_handler()
function and add the following test for scan code 1 right aer it was read with
inportb():

if (s == 1) {
scheduler (r, 0);
return;

}

When you recompile and start the kernel, you will see “P”s again. But pressing
[Esc] will switch to the child process, so that the output sequence changes to
“C”s. Every further time you press [Esc], the process will switch again.

27. Calling the Seduler from the Timer Handler

Now you add a timer handler which will regularly call the scheduler and thus autom-
atize the multi-tasking.
a) Start with removing the scheduler call from the keyboard handler that you added

in the previous exercise; you can simply turn it into a comment.
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b) We also need the timer handler to update a global ticks variable so that we can
see how long the system has been running. Define it like this:
unsigned long int ticks

and initialize it to 0. (Which code chunk to you have to append to in order to
declare and initialize variables?) Don’t add this code in earlier definitions of the
chunks but create your own section at the end of the document where you put
additions to the earlier chunk definitions.
Implement a function timer_handler with the same prototype that all the other
interrupt handlers have, e. g., the keyboard handler. Its first task is to increment
the ticks variable. Aerwards call the scheduler:
scheduler (r, 0);

With these changes the timer is already functional, but you still have to register it
and enable the timer interrupt. Write an addition to the code chunk ⟨kernel main:
initialize system ⟩ where you put appropriate function calls. (You can check how
U does that for the keyboard handler.) e interrupt number for the timer is
defined as IRQ_TIMER (and has the value 0).
Compile and start the modified kernel. Now the output of “V”s und “S”s should
switch automatically: Every time the hardware generates a timer interrupt, U
will switch between the two processes.

c) As we discussed in this chapter, task switches cost time. It makes sense to let a
process run for a longer time before the scheduler takes away the CPU and gives
it to another process. You can achieve this behavior by only calling the scheduler
if ticks is some multiple of a given number, e. g. 5. With
(ticks % 5 == 0)

you can check whether ticks is a multiple of 5. Call the scheduler only when that
condition evaluates to true. at reduces the amount of scheduler invocations
(per time) to a fih of what it was before. You can also test how different values
(e. g. 25, 100) change the overall behavior.

d) e current code in scheduler() supports exactly two processes which use the
TCBs 1 and 2. at makes it rather simple to determine which process comes
next. How would you have to modify the function so that it supports exactly
four processes instead of two?

UntilTutorial 8 now all exercises used a stripped-down version of the U kernel which evolved
from exercise to exercise, mimicking the progress throughout the book. For the following
two tasks you will work with real kernel sources. is is not the version that is presented
in the book (because the exercises were developed before the U implementation was
complete), but it is a usable system with full user mode and filesystem support. You will
now add new capabilities to the system.

Use the code that you find in the /home/ulix/ulix/ folder for the following two exercises.
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28. Boost: Run Only is Process

e scheduler which is called by timer_handler every five ticks chooses the next pro-
cess in the ready queue. In this exercise you give a process a chance to prevent this
switch (so that it can go on longer). By using the function

void boost (int n);

it shall be able to set a global variable (global in the U kernel). e timer handler
shall then use one of the ⟨timer tasks 306d⟩) to check whether this value is 0. If not, it
decrements the variable and performs no context switch.

a) Declare a global variable int boost_count and initialize it to 0. As in the last
exercise you need to find the appropriate code chunks for these two actions.

b) Move the ⟨timer tasks 306d⟩ code chunk that calls scheduler() into your own sec-
tion of the literate program file so that you can document the changes to the
chunk. It is this chunk:
<<timer tasks>≥
// Every 5 clocks call the scheduler
if (system_ticks % 5 == 0) {

[...]
scheduler (r, SCHED_SRC_TIMER); // defined in the process chapter
[...]

c) Modify the if clause; the extra condition boost_count == 0 must also be fulfilled.
You will also need to add an else case which decrements boost_count.

d) Write a syscall handler
void syscall_boost (context_t *r);

that reads the right processor register (which one is that?) and copies its value to
boost_count (if it is positive or 0). Define a syscall number constant __NR_boost (us-
ing a syscall number that is not yet in use) and add an install_syscall_handlerb()
call to the right code chunk.

e) Write a user mode library function
void boost (int n);

that uses syscall2c() to make the system call. You can look at the implemen-
tation of open() to see how that can be done.

) Finally, write a small user mode application that lets you test the effect of calling
boost().

(Note that you need not implement a corresponding u_boost function which gets
called by syscall_boost: It would just contain the one line

void u_boost (int n) { boost_count = n; }

so there is no point in writing an extra function for that task.)
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29. Process Prioritization
All U processes (or threads) receive equal treatment by the U scheduler because
the system does not know priorities. In this exercise you add the classical priority
mechanism present in all Unix systems.

a) Add a nice value (int nice) to the thread control block that will hold values
between− and 19, the default value is 0. If a process forks, it will pass the nice
value on to the child process.

b) Implement a function int u_setpriority (int nice) that can be used for changing
the current process’ nice value to the supplied value. You will also need corre-
sponding functions syscall_setpriority in the kernel and int setpriority (int
nice) in the user mode library. (e return value of u_setpriority or setpriority
is the new nice value.) e prototype differs from the setpriority() function on
Linux systems, but looking at the man page on a Linux box can still be helpful.

c) In the ⟨timer tasks 306d⟩ chunk, modify the code block
if (system_ticks % 5 == 0) {

[...]
scheduler (r, SCHED_SRC_TIMER); // defined in the process chapter
[...]

so that the decision whether the scheduler is called depends on the current pro-
cess’ nice value (that you can find in thread_tableb[current_taskc].nice).
You have several options for doing this, but the result should be that a process
with a lower nice value receives a longer time slice than a process with a larger
nice value.

d) Write a test program that lets you check whether changing the nice values really
changes the behavior of the process. You will need at least two processes (one
that calls setpriority and one that does not) in order to observe any effect.



9
Handling Page Faults

Recall what happens every time the machine accesses a memory address, either for re-
ceiving the next instruction or for reading or storing data: the address that the processor
asks for is a virtual address, and it must first be translated to a physical address by the
MMU. Special register CR3 tells the MMU what page directory to use, and that directory
reveals the location of a page table which is in turn accessed to (finally) find the physical
frame number and calculate the complete physical address by adding the offset (within
the page).

In many cases this procedure will fail at some point, typically because either the page
directory or the page table contains an entry which tells the MMU that the page does not
exist in memory. is means that address translation cannot continue, and the CPU raises
a page fault page fault.

Every operating system needs to handle such page faults, the minimum action that is
required is either killing a process (which has tried to access an illegal address) or halting
the operating system (if the faulting instruction occurred inside code which was not exe-
cuted on behalf of some process). But we expect our fault handler to be beer than that
and also handle the following situations:

• User mode sta grows: When a user mode program uses recursion or makes exten-
sive use of the stack for other reasons, it will soon cross into a memory range just
below the reserved stack space and cause a page fault. In that case the process can
rightly expect the stack to grow automatically automatic

stack growth
. us, U will check whether a mem-

ory area just below the current end of the stack was accessed—and if so, increase the
stack by one page. Aerwards, execution of the process can resume.
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• Access to page whi was paged out: In Sections 9.2 ff. we will introduce a swap
file¹ and show code for moving pages of memory to disk and back. at will become
necessary when the whole physical memory is in use and there are no further free
page frames.

9.1 The U Page Fault Handler
In this section we present the page fault handler that we implemented for U. e
handler function has the prototype of all other fault handlers:

[288] ⟨function prototypes 45a⟩+≡ (44a) ◁ 275 293c ▷
void page_fault_handler (context_t *regs);

and we originally started by taking code from James Molloy’s kernel tutorial [Mol08, Ch.
6.4.5] (which just gives some information about the faulting reason and address) and then
added some features which make it usable in U.

e CR2CR2, err_code register holds the virtual address which caused the page fault, and the err_code
element of the context tells us more about why the access to this address failed, so this is
the first information we need to gather. Individual bits of err_code describe whether the
page that was accessed is present, read-only or only accessible in kernel mode.

en we check the possible reasons for a page fault and handle them as well as we can:

• First, if the page was paged out to disk (see next section), we bring the page back
in. In that case we can simply leave the fault handler with return, and the running
process will resume its operation, repeating the instruction that caused the fault at the
first aempt. (Actually return jumps back into the generic fault_handlerc function
which then returns to fault_common_stubb in start.asm, and the transition back to
the process occurs in the assembler code via the iret instruction.)

• en we check whether the process tried to access an address directly below the user
mode stack. at will oen occur when a function calls itself recursively. In that case
we increase the stack and also return.

ese two conditions are recoverable, but there are other situations in which we either
have to kill the faulting process or—worst case—permanently disable user mode and jump
to a safe kernel function such as the kernel shell that we have included for debugging
purposes.
• If a process tried to access an invalid address, and we can neither bring it back by pag-

ing in a paged-out page nor can we help the situation by increasing the user mode
stack, then it was likely caused by a programming error and we need to kill the pro-
cess. We check that condition by testing whether the faulting instruction’s address

¹ Note that we use the term “swap file” and not “page file”. U does not implement swapping which is an
older technique where whole processes are removed from memory. Instead we move single pages to disk
and back, but historically a file or a partition used for swapping was called swap file/swap partition, and
that name lives on in paging systems, e. g. in Linux and other Unix-like systems.
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is below the kernel’s memory address range (r->eip < 0xc0000000). In that case the
system can continue running, minus the killed process.

• Last, we must assume that an error in the kernel caused the page fault. en there’s
nothing to do since the failed instruction is part of the kernel code and there is no
simple way to resume aer such a problem. We might try to write a memory dump
to disk or provide some other means that might help debugging the code, but here we
just jump to the kernel shell (from which we cannot return to user mode anymore).
If that kernel shell was not available, we would simply halt the machine completely.

Our implementation of the page fault handler
[289a]⟨function implementations 100b⟩+≡ (44a) ◁ 276d 293d ▷

void page_fault_handler (context_t *r) {
⟨page fault handler implementation 289b⟩

}
Defines:

page_fault_handler, used in chunks 151c and 288.
Uses context_t 142a.

starts with gathering all the available information:
[289b]⟨page fault handler implementation 289b⟩≡ (289a) 289c ▷

memaddress faulting_address;
asm volatile ("mov %%cr2, %0" : "=r" (faulting_address)); // read address
int present = !(r->err_code & 0x1); // page present?
int rw = r->err_code & 0x2; // attempted to write_?
int us = r->err_code & 0x4; // CPU in user-mode (ring 3)?
int reserved = r->err_code & 0x8; // overwritten CPU-reserved bits of

// page entry?
int id = r->err_code & 0x10; // caused by an instruction fetch?

⟨page fault handler: check if page was paged out 298a⟩ // see next section
Uses memaddress 46c.

In the last line from above it checks whether the page was paged out to disk; we will
describe that in the following section where we introduce the swap file.

e second benign case of a page fault occurs when the user mode stack needs to grow.
We can check that condition by looking at the current end of the user mode stack and
calculating whether adding one extra page would solve to problem—if so, we give the
process that extra page. Otherwise (if the address is too far away from the stack) we
cannot help this process:

[289c]⟨page fault handler implementation 289b⟩+≡ (289a) ◁ 289b 290a ▷
if (faulting_address ≤ TOP_OF_USER_MODE_STACK &&

faulting_address ≥
TOP_OF_USER_MODE_STACK-address_spaces[current_as].stacksize - PAGE_SIZE) {

⟨page fault handler: enlarge user mode stack 291⟩ // user mode, stack
return;

}
Uses address_spaces 162b, current_as 170b, PAGE_SIZE 112a, and TOP_OF_USER_MODE_STACK 159b.
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Note that this restricts user mode processes in the way they use the stack. For example,
you cannot write a function that takes so many (or so large) arguments that its invocation
would increase the stack bymore than one page. So depending on the kinds of applications
you want to run on U, you might want to modify the above code chunk.

If neither of the first two cases is applicable, then there’s a real problem. With the rest of
the codewe try to determine how big that problem is: It may be sufficient to kill the current
process, or we may have to halt the system. First we write an error message to the screen.
Here, we also use the old code chunk ⟨fault handler: display status information 152a⟩ from
the generic fault handler that we implemented earlier in Chapter 5.3.

e same chapter also contains the ⟨fault handler: terminate process 152b⟩ chunk that
we recycle when we decide to kill the current process. We do that if the faulting address
is in the user space of virtual memory, i. e., below 0xc0000000. e old code chunk simply
removes the process from the ready queue and calls syscall_exitb. e exit system call
handler will then return the process’ resources and launch the scheduler which finally
picks another process.

[290a] ⟨page fault handler implementation 289b⟩+≡ (289a) ◁ 289c 290b ▷
printf ("Page fault! ( "); // write error message.
if (present) printf ("present "); if (rw) printf ("re" "ad-only ");
if (us) printf ("user-mode "); if (id) printf ("instruction-fetch ");
printf (")\n");
⟨fault handler: display status information 152a⟩
printf ("address = 0x%08x. current_task = %d. current_as = %d.\n",

faulting_address, current_task, current_as);
hexdump (r->eip & 0xFFFFFFF0, (r->eip & 0xFFFFFFF0)+128 );

if ((memaddress)(r->eip) < 0xc0000000) { ⟨fault handler: terminate process 152b⟩ }
Uses current_as 170b, current_task 192c, hexdump 612c, memaddress 46c, and printf 601a.

(If you are curious why the string "read-only" is split into "re" "ad-only" in the above
chunk, read the footnote.²)

Finally, if the page fault was not caused by a process that tried to access an illegal address,
then we must assume we’ve come across a kernel bug. ere’s no way to recover, because
where should the system continue execution? Our last remaining option is to stop the
system. U provides a kernel mode shell that can be used for debugging, instead of a
real full stop we jump into that function, but the user mode is gone for good.

[290b] ⟨page fault handler implementation 289b⟩+≡ (289a) ◁ 290a
// error inside the kernel; cannot fix, leave user mode
⟨disable scheduler 276b⟩
⟨enable interrupts 47b⟩
printf ("\n"); asm ("jmp kernel_shell"); // jump to the kernel shell

Uses kernel_shell 610a and printf 601a.

² Sometimes we need to outwit the automatic cross-referencer of the literate programming soware. For
example, it would detect read and misinterpret it as a reference to the readb function and thus add an
entry to the “Uses:” block. We avoid this by either spliing strings or, in case of comments, adding an
underscore: read_ will not be (mis-)detected as readb.
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9.1.1 Enlarging the Stack
When we notice that the stack’s size is causing the problem, we can grow it. In the above
code detection of necessary stack growth uses the fact that the stack grows linearly; we
assume that an illegal access to the stack (i. e., to a page that has not been mapped to a
frame yet) always occurs directly below the last valid stack page. So, the address has to
be below the top of the stack, but above the lowest valid address minus PAGE_SIZEa.

We can then simply grow the stack by mapping the next page (remembering that the
stack grows downwards) to a fresh frame:

[291]⟨page fault handler: enlarge user mode stack 291⟩≡ (289c)
memaddress new_stack = TOP_OF_USER_MODE_STACK;
new_stack -= address_spaces[current_as].stacksize;
int pageno = new_stack / PAGE_SIZE - 1;
int frameno;
if ((frameno = request_new_frame ()) < 0) {

printf ("\nERROR: no free frame, cannot grow user mode stack\n"); // error
⟨fault handler: terminate process 152b⟩

};

as_map_page_to_frame (current_as, pageno, frameno); // update page table and
address_spaces[current_as].stacksize += PAGE_SIZE; // TCB stack size entry

Uses address_spaces 162b, as_map_page_to_frame 165b, current_as 170b, memaddress 46c, PAGE_SIZE 112a,
printf 601a, request_new_frame 118b, TCB 175, and TOP_OF_USER_MODE_STACK 159b.

Note that this code only works for a thread-less process. If a process consists of several
threads, and one of the non-primary threads exceeds its user mode stack, this code will
not be executed because it only checks for problems with the primary thread’s stack. Our
design does not allow growable stacks for the extra stacks because we have placed those
stacks close to each other in virtual memory. We could increase the free spaces between
thread stacks to make the problem a lile smaller, but in the end there must always be a
limit to the threads’ stack sizes—aer all we do not know beforehand how many threads
a process is going to create.

e U disk provides
• a fault-mem application which accesses an illegal address (and will subsequently be

killed) and
• a recurse program that recursively calls a function (and thus forces stack growth): In

early versions of the U kernel it would eventually run out of memory and then be
killed; with the final U code it can go on rather long because the kernel will start
paging out memory in order to free frames.

• ere is also a tp program that explicitly pages out a page of its memory and then
accesses it (so that it will be brought back in; see the next sections).
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9.2 The Swap File
U uses a 64 MByte swap file which is stored on the hard disk. is is also just a lile
less than the maximum file size that our Minix filesystem implementation supports (see
Chapter 12): With six direct block addresses, one single indirect block (leading to 256
blocks) and one double indirect block (leading to ×  blocks) as well as a block size
of 1 KByte, files can be no larger than 65798 KByte ≈ 64.26 MByte.

e swap file stores only the contents of pages, all administrative data is kept inmemory.
64 MByte allow U to double the available RAM (since it works with a fixed amount of
64 MByte of RAM as well), providing up to 128 MByte of virtual memory to the system
and processes.

Internally we will store information about pages which have been wrien to disk. For
each such page we need to know the address space ID and the page number, thus an
internal paging record has the following form:

[292a] ⟨type definitions 91⟩+≡ (44a) ◁ 227 295c ▷
struct paging_entry {

int as : 10; // 10 bits for address space, values from [0..1023]
int pageno : 20; // 20 bits for the page number
int used : 1; // 2 bits for two flags
int reserved : 1;

} __attribute__((packed));
Defines:

paging_entry, used in chunk 292c.

is is just small enough to fit in a 32-bit integer. As the page size is 4 KByte, we need 64
MByte / 4 KByte = 16 384 such entries:

[292b] ⟨constants 112a⟩+≡ (44a) ◁ 233a 306a ▷
#define MAX_SWAP_FRAMES 16384

Defines:
MAX_SWAP_FRAMES, used in chunks 292–94.

[292c] ⟨global variables 92b⟩+≡ (44a) ◁ 276e 293a ▷
struct paging_entry paging[MAX_SWAP_FRAMES] = { { 0 } };

Defines:
paging, used in chunks 293d, 294, and 306c.

Uses MAX_SWAP_FRAMES 292b and paging_entry 292a.

If pagingc[i].used is 0 (false), the corresponding swap file entry i is free which fits
our initialization of the data structure.

We assume that a swap file /tmp/swap of size 64 MByte already exists.

root@ulix[7]:/root# ls -l /tmp
[...]
5 -rw------- 1 0 0 67108864 3 May 11:53 swap
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During the system initialization we open this file and keep it open throughout the whole
system runtime.

[293a]⟨global variables 92b⟩+≡ (44a) ◁ 292c 306b ▷
int swap_fd;

Defines:
swap_fd, used in chunks 293 and 294.

[293b]⟨initialize swap 293b⟩≡ (44b)
swap_fd = u_open ("/tmp/swap", O_RDWR, 0);
if (swap_fd != -1) {

int size = u_lseek (swap_fd, 0, SEEK_END);
printf ("swapon: enabling /tmp/swap (%d MByte)\n", size/1024/1024);
u_lseek (swap_fd, 0, SEEK_SET);

} else
printf ("swapon: error opening /tmp/swap!\n");

Uses O_RDWR 460b, printf 601a, SEEK_END 469b, SEEK_SET 469b, swap_fd 293a, u_lseek 418a, and u_open 412c.

We provide two simple functions which write a page to the file and read it back in. Both
need to walk through (parts o) the paging array in order to find out whether the page is
(already) on the disk and which free entry can be used if that is not the case.

[293c]⟨function prototypes 45a⟩+≡ (44a) ◁ 288 295a ▷
int write_swap_page (int as, int pageno, int frameno);
int read_swap_page (int as, int pageno, int frameno);

We give these functions an extra argument frameno: If we already know the physical ad-
dress where a page is stored in memory, we will provide its frame number so that the func-
tions need not calculate it. (Actually we’re not using the feature where write_swap_paged
or read_swap_page would manually calculate the frame number. However it would be
useful for an enhanced paging mechanism that might page out pages but still keep them
in memory as well or page in pages from the swap file and still keep them on the disk. We
do neither in our implementation.)

We do not expect these functions to alter a page table of the involved process—that
happens in the functions page_out and page_in which we present in the next section.

[293d]⟨function implementations 100b⟩+≡ (44a) ◁ 289a 294 ▷
int write_swap_page (int as, int pageno, int frameno) {

// get frame number, if it was not supplied
if (frameno == -1) frameno = mmu_p (as, pageno);
if (frameno == -1) return -1; // error: page not available

// get index
int index = -1;
int free_index = -1;
for (int i = 0; i < MAX_SWAP_FRAMES; i++) {

if (free_index == -1 && !paging[i].used) free_index = i;
if (paging[i].used && paging[i].as == as && paging[i].pageno == pageno) {

index = i; // already on disk!
break;
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}
}
if (index == -1 && free_index == -1) return -1; // not found + no free space
if (index == -1 && free_index != -1) {

index = free_index; // create new entry
paging[index].used = true;
paging[index].as = as;
paging[index].pageno = pageno;

}
// note: if (index != -1) we do not modify paging[]; this is an update

// write to disk
u_lseek (swap_fd, index*PAGE_SIZE, SEEK_SET);
u_write (swap_fd, (char*)PHYSICAL(frameno*PAGE_SIZE), PAGE_SIZE);
return 0; // success

}
Defines:

write_swap_page, used in chunks 293c and 296.
Uses MAX_SWAP_FRAMES 292b, mmu_p 171c, PAGE_SIZE 112a, paging 292c, PHYSICAL 116a, SEEK_SET 469b, swap_fd 293a,

u_lseek 418a, and u_write 415a.

Note that u_writea will use the buffer cache (see Chapter 13.3), thus calling the function
write_swap_paged may at first only result in copying a page to a different memory area.

Reading a page back in is simpler because we need not distinguish between updates and
initial write operations: When we try to read, the page is either there or it is not. We do
not check the case that a requested page might be missing in the swap file because we
only call this function when we know that the page must be there.

[294] ⟨function implementations 100b⟩+≡ (44a) ◁ 293d 296 ▷
int read_swap_page (int as, int pageno, int frameno) {

// get frame number, if it was not supplied
if (frameno == -1) frameno = mmu_p (as, pageno);
if (frameno == -1) return -1; // error: page not available

int index = -1; // get index
for (int i = 0; i < MAX_SWAP_FRAMES; i++) {

if (paging[i].used && paging[i].as == as && paging[i].pageno == pageno) {
index = i; // found the entry!
break;

}
}

u_lseek (swap_fd, index*PAGE_SIZE, SEEK_SET); // read from disk
u_read (swap_fd, (char*)PHYSICAL(frameno*PAGE_SIZE), PAGE_SIZE);
return 0; // success

}
Defines:

read_swap_page, used in chunk 297.
Uses MAX_SWAP_FRAMES 292b, mmu_p 171c, PAGE_SIZE 112a, paging 292c, PHYSICAL 116a, read 429b, SEEK_SET 469b,

swap_fd 293a, u_lseek 418a, and u_read 414b.
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9.2.1 Paging Out and In
e write_swap_paged and read_swap_page functions simply copy a page frame from
memory to the swap file or vice versa. But real paging requires more than that: we need
to modify a page table whenever we remove or add a page. is is what the two functions

[295a]⟨function prototypes 45a⟩+≡ (44a) ◁ 293c 306e ▷
int page_out (int as, int pageno);
int page_in (int as, int pageno);

are for. Some other kernel function (which we will describe soon) makes the decision to
remove page X of process Y and then calls page_out which in return saves the page (via
write_swap_paged) and updates the relevant process’ page table to indicate that the page
is no longer in RAM (but could be goen from the swap file). When that process tries to
access the page the next time, a page fault will occur which must be handled by the page
fault handler which brings the needed page back in and lets the process reaempt the last
instruction.

Let us first recall the data structure page_desca for the page descriptor:
[295b]⟨page_desc structure definition (repeated) 295b⟩≡

typedef struct {
unsigned int present : 1; // 0
unsigned int writeable : 1; // 1
unsigned int user_accessible : 1; // 2
unsigned int pwt : 1; // 3
unsigned int pcd : 1; // 4
unsigned int accessed : 1; // 5
unsigned int dirty : 1; // 6
unsigned int zeroes : 2; // 8.. 7
unsigned int unused_bits : 3; // 11.. 9
unsigned int frame_addr : 20; // 31..12

} page_desc;

If the present bit is set to 0, any aempt to access the page will lead to a page fault. us,
when we want to page out a page, we can simply reset the page descriptor’s present bit.
But how is the fault handler to know whether a “genuine” page fault has occurred (i. e.,
the page does not exist at all) or whether the kernel paged out the page and is capable of
geing it back? e bits 9–11 of the descriptor, called unused_bits above, are completely
ignored by the MMU.is is our starting point: We use one of these three bits for keeping
the paged out state:

[295c]⟨type definitions 91⟩+≡ (44a) ◁ 292a 318b ▷
typedef struct {

unsigned int present : 1; // 0
unsigned int writeable : 1; // 1
unsigned int user_accessible : 1; // 2
unsigned int pwt : 1; // 3
unsigned int pcd : 1; // 4
unsigned int accessed : 1; // 5
unsigned int dirty : 1; // 6
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unsigned int zeroes : 2; // 8.. 7
unsigned int paged_out : 1; // 9 <- new
unsigned int unused_bits : 2; // 11..10
unsigned int frame_addr : 20; // 31..12

} new_page_desc;
Defines:

new_page_desc, used in chunks 296 and 297.

Since page_desca and new_page_descc have the same layout, we can cast them into one
another without corrupting data. So when we want to find out whether the new paged_out
bit is set, we can check that with if ( ((new_page_desc*)pd)->paged_out ) { ... }.

Now we can present the page_out and page_in functions which perform the same
calculations as the mmu_pc function which we introduced earlier. page_out does four
things:

• it calls write_swap_paged to do the transfer from memory to disk,
• it resets the page descriptor’s present bit and sets its paged_out bit,
• it invalidates the TLB entry with the invlpginvlpg instruction in order to make sure that

the next access to this page will cause a page fault (instead of accessing the old frame
which may no longer hold the page) [Int08, p. 21] (or [Int11, p. 4-56–4.57]),

• and it releases the frame, thus increasing the free physical memory.

[296] ⟨function implementations 100b⟩+≡ (44a) ◁ 294 297 ▷
int page_out (int as, int pageno) {

uint pdindex = pageno/1024; uint ptindex = pageno%1024;
page_directory *pd = address_spaces[as].pd;
if ( ! pd->ptds[pdindex].present ) {

return -1; // fail: page table not found
} else {

page_table *pt = (page_table*) PHYSICAL(pd->ptds[pdindex].frame_addr << 12);
if ( pt->pds[ptindex].present ) { // found the page

new_page_desc *pdesc = (new_page_desc*) &pt->pds[ptindex];
int frameno = pdesc->frame_addr;
write_swap_page (as, pageno, frameno); // write to swap file
pdesc->present = false; // mark page non-present
pdesc->paged_out = true; // mark page paged-out
asm volatile ("invlpg %0" : : "m"(*(char*)(pageno<<12)) );
release_frame (frameno); // mark phys. frame as free
return 0; // success

} else {
return -1; // fail: page not found

};
}

}
Defines:

page_out, used in chunks 295a, 299a, and 308c.
Uses address_spaces 162b, new_page_desc 295c, page_directory 103d, page_table 101b, PHYSICAL 116a,

release_frame 119b, and write_swap_page 293d.
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e page_in function expects that we try to page in a page which was paged out with
page_out earlier. at is, the page descriptor must exist and have its paged_out bit set. It
will then do the following three things:

• it reserves a new physical frame which will soon hold the page and writes its address
to the page descriptor,

• it calls read_swap_page to do the transfer from disk to memory,
• and it resets the page descriptor’s paged_out bit,

[297]⟨function implementations 100b⟩+≡ (44a) ◁ 296 319d ▷
int page_in (int as, int pageno) {

uint pdindex = pageno/1024;
uint ptindex = pageno%1024;
page_directory *pd = address_spaces[as].pd;
if ( ! pd->ptds[pdindex].present ) {

printf ("DEBUG: page_in: page table not present\n");
return -1; // fail: page table not found

} else {
page_table *pt = (page_table*) PHYSICAL(pd->ptds[pdindex].frame_addr << 12);
if ( !pt->pds[ptindex].present ) {

// found the page descriptor
new_page_desc *pdesc = (new_page_desc*) &pt->pds[ptindex];
if (!pdesc->paged_out) {

printf ("DEBUG: page_in: page 0x%0x not marked paged out!\n", pageno);
return -1; // fail: page was not paged out

}
int frameno = request_new_frame (); // reserve a phys. frame
if (frameno == -1) return -1; // fail: no free memory
read_swap_page (as, pageno, frameno); // read from swap file
pdesc->present = true; // mark page present
pdesc->paged_out = false; // mark page not paged-out
pdesc->frame_addr = frameno; // write new phys. frame number
// asm volatile ("invlpg %0" : : "m"(*(char*)(pageno<<12)) ); // not needed
return 0; // success

} else {
printf ("DEBUG: page_in: page not found\n");
return -1; // fail: page not found

};
}

}
Defines:

page_in, used in chunk 298a.
Uses address_spaces 162b, new_page_desc 295c, page_directory 103d, page_table 101b, PHYSICAL 116a,

printf 601a, read_swap_page 294, and request_new_frame 118b.

When we page in, we need not invalidate a TLB entry since it does not store information
about non-present pages [Int08, p. 21] (or [Int11, p. 4-58]):
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If a paging-structure entry is modified to transition the present bit from
0 to 1, no invalidation is necessary. is is because no TLB entry or paging-
structure cache entrywill be createdwith information from a paging-structure
entry that is marked “not present”. (If it is also the case that no invalidation
was performed the last time the present bit was transitioned from 1 to 0, the
processor may use a TLB entry or paging-structure cache entry that was cre-
ated when the present bit had earlier been 1.)

is is all the code we need for paging in and out a page. Now we need to decide when to
page out a page and how to pick that page.

9.2.2 Leing the Page Fault Handler Page In a Page
We can now add the missing code chunk ⟨page fault handler: check if page was paged
out 298a⟩. Recall that the faulting address is stored in faulting_address. All we need to do
here is aempt to page in the corresponding page (faulting_address / PAGE_SIZEa)—if
we are successful we can leave the page fault handler, and the process will re-execute the
last instruction.

[298a] ⟨page fault handler: check if page was paged out 298a⟩≡ (289b)
int pageno = faulting_address / PAGE_SIZE;
if (page_in (current_as, pageno) == 0) {

return; // success, leave fault handler
}

Uses current_as 170b, page_in 297, and PAGE_SIZE 112a.

9.2.3 Testing
At this step of the implementation task we should check whether our code works as in-
tended. For that purpose we will provide a temporary system call with which a process
can force the kernel to page out a page. (Note that in general it is a bad idea to allow
processes to take that kind of control over the memory management.)

A test program will then try to access data in the paged-out page which should in turn
have the page fault handler bring the page back. We know that we’re successful if the
program executes without errors.

[298b] ⟨public constants 46a⟩+≡ (44a 48a) ◁ 282b 315 ▷
#define __NR_page_out 508

Defines:
__NR_page_out, used in chunk 299.

[298c] ⟨syscall prototypes 173b⟩+≡ (202a) ◁ 282a 309 ▷
void syscall_page_out (context_t *r);
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[299a]⟨syscall functions 174b⟩+≡ (202b) ◁ 282c 310a ▷
void syscall_page_out (context_t *r) {

// ebx: page number
eax_return (page_out (current_as, r->ebx) );

}
Defines:

syscall_page_out, used in chunks 298c and 299b.
Uses context_t 142a, current_as 170b, eax_return 174a, and page_out 296.

[299b]⟨initialize syscalls 173d⟩+≡ (44b) ◁ 282d 310c ▷
install_syscall_handler (__NR_page_out, syscall_page_out);

Uses __NR_page_out 298b, install_syscall_handler 201b, and syscall_page_out 299a.

e user mode program will use the following library function
[299c]⟨ulixlib function prototypes 174c⟩+≡ (48a) ◁ 282e 310d ▷

int lib_page_out (int pageno);

which just makes the system call
[299d]⟨ulixlib function implementations 174d⟩+≡ (48b) ◁ 282f 310e ▷

int lib_page_out (int pageno) { return syscall2 (__NR_page_out, pageno); }
Defines:

lib_page_out, used in chunk 299c.
Uses __NR_page_out 298b and syscall2 203c.

Here is the code for a simple test program:
[299e]⟨lib-build/tools/tp.c 299e⟩≡

#include "../ulixlib.h"
char test[4096] __attribute__ ((aligned (4096)));

int main () {
printf ("Testing paging\n");
test[5] = 'X';
unsigned int address = (unsigned int)(&test[5]);
printf ("test[5] = '%c', address = 0x%x\n", test[5], address);
lib_page_out (address >> 12);
printf ("test[5] = '%c', address = 0x%x\n", test[5], address);
exit (0);

}

Now we need to discuss when the operating system should page out a page and which
page it should choose. We enter the realm of page replacement strategies—the topic of the
following section.
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9.3 Page Replacement Strategy
Whenmemory gets full, eventually the systemwill have to move pages to the disk in order
to make room for other processes’ memory demands. Paging out a page (i. e., writing it
to disk and releasing the page frame that held the page) and assigning a different process’
page to this page frame is called page replacement. Paging the information in and out of
main memory is extremely simple because of the fixed size data chunks—as you have seen
in the implementation of page_in and page_out.

Access to secondary storage is very slow, while access to main memory is rather fast. At
time of writing, good hard disks have an average access time of about eight milliseconds,
main memory of about eight nanoseconds. is is a difference of , i. e., six orders
of magnitude. To make this huge difference more evident, assume that access to main
memory needs one second. en the access to secondary storage would have to take 
seconds, which is roughly 11.5 days, to stay in the same relation.

Well-tuned paging systems can achieve a performance which is very close to the speed
of main memory. e decisive parameter is the probability p of not finding the requested
information in RAM (i. e., the probability of a page fault). Given that tmm is the time
necessary to access main memory and tpf the time to handle a page fault, the average time
tvm to access virtual memory using a paging system is:

tvm = (− p) · tmm + p · tpf

Since tpf is dominated by the access time to secondary storage, we need to keep p as low
as possible.

e algorithm that decides which page to page out is called a page replacement algo-
rithm, and it implements a page replacement strategy. e chosen strategy is a part of the
memory management system’s design, and several choices are available.

One possible choice would be a random selection: Whenever there is need for a free
page frame (and none available) just pick any odd page frame and page out its contents.
is strategy would not be much good, but we can think of even worse ones, e. g. always
pick the very first page frame in the RAM.

e selection process has no consequences on the overall functioning of memory man-
agement: Even the worst strategy (and “pick the first page frame” is a good candidate for
that) will lead to a working memory management system. However, the selection process
decides how efficiently the resulting system behaves.

Before going into details, let us note that there is no direct equivalent to page replace-
ment in filesystems—unless you had another layer of the memory hierarchy that is above
disk access, e. g. an automatic tape backup system with a tape robot that can write files
to a tape and delete them on disk when disk space gets low. If you had such a setup, you
would move from a CPU–cache–RAM–disk memory hierarchy to a CPU–cache–RAM–
disk–tape one, and accessing a file currently on tape would cause something that could be
called a file access fault, resulting in the system automatically fetching the file back from
tape (and keeping the requesting process blocked during all the time until the file becomes
available again). Strategies for deciding which files to temporarily transfer from the disk
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to a tape would be called a file replacement strategy and be somewhat similar to the page
replacement strategies. Distributed filesystems (or distributed network filesystems) that
allow files to either exist on a local machine or on a remote host’s disk do something
similar if they make file access transparent, no maer whether things are stored locally
or remotely. We will not look any further into this. A true analog of page replacement
would operate on disk block level, i. e. remove individual blocks from the disk in order
to store them elsewhere, and that is something that does not make much sense since files
are typically accessed fully when they are accessed at all. It might however make sense
to keep the first block of a file on disk when removing the file, because oen only the first
block of a file is read in order to find out its filetype (think of “magic numbers”).

A way of measuring a page replacement strategy is the average number of page faults
that it causes. It is not possible to truly calculate this number, because it depends on so
many things, e. g.:

• e absolute memory demands depend on all the processes currently running on a
system.

• Even if sample situations (test cases) are created that consist of predefined processes
with fixed start times and memory requirements (such as: process will access its page
number n at instruction i) it is not possible to predict when precisely this process
will execute this instruction—scheduling the processes will always result in slightly
different orders of execution each time the test case is run.

So all we can do is think of theoretical properties of replacement strategies and, when im-
plementing a strategy, observe its effects on a number of test cases which are tested several
times in order to calculate an average number of page faults for each test case. Looking
at the design of a strategy will however allow us to make some principle predictions.

9.3.1 Page Locking
Page replacement is a good idea, but some pages must sometimes be protected from being
paged out. For example, certain parts of the operating system are so critical that they
should never be paged out to secondary storage. e most striking example is the code
that contains the interrupt handlers. If a page fault occurs and the code for the page fault
handler is not be present, then we are be in big trouble. Also, most parts of the page tables
for the kernel should always be present, as well as pages that are located in special frames
for memory-mapped I/O. In such cases the pages should be locked into their frames and
page replacement algorithms should ignore these pages.

U does not explicitly support page locking, but it considers the upper 1 GByte of
each address space as locked: kernel memory will never be paged out, so we only have to
deal with the memory of processes which avoids all the problems that otherwise call for
page locking.
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9.3.2 Page Replacement Strategies
Wedescribe a few classical replacement strategies before showing you the implementation
in the U kernel.

9.3.2.1 FIFO Page Replacement

A simple approach to page replacement is using a FIFO (first in, first out) list that keeps
record of pages as they come into memory (either by being newly created, e. g. because
a new process was started, or by being brought back in from disk aer they had been
paged out earlier). For U we could modify the as_map_page_to_frameb and page_in
functions in order to keep track of new pages.

e list can grow up to a size that is determined by the number of available page frames
in the system’s memory. When this limit is reached, the list will be chopped from the top:
e page that is first in the list is removed from the list and also paged out. If the owning
process tries to access this (paged-out) page again, a page fault occurs, and the memory
manager has to page it back in, adding it at the end of the FIFO list.

is approach is simple because administering a FIFO list is simple, and selecting the
next page to be paged out only requires reading the list head and removing it. However
it has the problem of totally ignoring that some pages are accessed much more frequently
than others. All pages travel from the list end to the list head at equal speed as pages
are continuously paged out and back in, and for constantly and frequently used pages
this means they will be paged out and in very oen. It would make sense to be informed
about the access frequency and keep the more frequently used pages in memory all the
time, resulting in a much increased overall performance (with less page faults).

9.3.2.2 Second Chance Algorithm

An aempt to bring the frequency of page access into the FIFO strategy is the introduction
of a “second chance”: e idea is to set an access bitaccess bit for a page each time it is accessed by its
owning process. is is something that the MMUs of most processors do automatically—
which is important because otherwise it would be very hard to detect memory access
manually.

e modification of the FIFO strategy is the following:
• A simple FIFO list of all pages works in principle as in the FIFO case.
• e MMU sets bits for each page access, as described above.
• When a page frame has to be freed, the system looks at the first list entry (as before).

If that page has its access bit set, it is not paged out, but instead moved to the end of
the list, and its access bit is cleared: it gets a second chance.

So the Second Chance algorithm selects the first page in the FIFO list that does not have
its access bit set. “Not using the chance” then means that aer being spared when first
found at the list head, it will travel all the way from the end to the head of the list without
being accessed one single time. en the memory manager will page it out.
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9.3.2.3 Clock

e Clock algorithm does the same as the Second Chance algorithm but does not require
the reordering of the list (by taking away the head element and appending it to the list).
Instead it uses a circular list (where the last element points back to the head) and uses a
“clock hand” which points to the current head of the list.

When the algorithm needs to pick the candidate it starts with the list element that the
clock hand points to. If its access bit is not set, that page is paged-out and removed from
the list; the clock hand turns forward to the next element in the list.

If, however, the access bit is set, the algorithm clears it, moves the clock hand to the
next location and starts over. It may eventually come full circle and arrive at the element
whose access bit it had just reset; then it will pick that page.
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Figure 9.1: e Clock algorithm resets the access bits in the first three entries (pages 26, 4,
72) and picks the fourth entry (page 1) because its access bit is not set.

Figure 9.1 shows an example of the Clock algorithm at work: When it starts, its clock
hand points to page 26 (le part of figure). It sees that the page has its access bit set, so it
resets it and moves on (clock-wise). e same repeats twice for pages 4 and 72, but when
it reaches page 1 which does not have its access bit set, it picks that page as the candidate
for removal.

9.3.2.4 Least-Frequently Used

eSecondHand or Clock strategy suffers from the fact that the only observed property of
a page is whether it has been accessed recently or not. However some pages are usedmuch
more oen than others, and those much-used pages should be avoided when choosing a
candidate for paging because they will be used again soon with high probability.

What we would like to have is an access log for each page so that we can pick a page
which both was not accessed recently and in general was not accessed a lot further ago. A
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true access log (that picks up every single access) is very hard to implement. For example,
one could modify all page descriptors so that they cause a page fault. en every access
would generate a page fault, the page fault handler could temporarily grant access to that
page and resume the process, only to remove the access permissions as soon as possible.
While we would still not register all page accesses (since a process might access the same
page several times in short sequence) it would give a good overview of the actual usage
paerns. But this would be extremely expensive in terms of CPU time as the systemwould
permanently generate page faults.

We can, however, do something that approximates such an access log: e Least-Fre-
quently Used strategy counts page accesses by regularly checking and reseing the access
bit. Every time it notices a set access bit it increments the access counter for that page.
From time to time the counters need to be scaled down so that they don’t exceed the limit
of their datatype. When the time comes to page out a page, the page with the lowest
counter value is chosen.

For U, with its fixed 64 MByte of RAM, this would mean keeping records for up
to 16 384 pages. If we used the maximum possible amount of RAM (4 GByte) and all its
frames were in use, there would be more than a million pages to look aer, and we might
want to grow or shrink the list dynamically (according to the number of existing pages)
so that we don’t waste too much memory for it. Also, the larger the list of pages becomes,
the longer it takes to search for a minimum.

9.4 Page Replacement Implementation in U
We will use access counters, but not for individual (process/page) pairs, but for hashes of
them. is will let us use a fixed-size counter table which need not grow or shrink over
time when new processes are created or old ones removed.

Each page can be identified by an (as, pageno) pair. pageno is a 20 bit number, and as is a
10 bit number (since we only allow up to  =  address spaces).

We map this to an array index by calling
[304a] ⟨pseudo code for calculating the index into the hash table 304a⟩≡

index = hash ((address_space << 20) | pageno)
Uses address_space 161 and hash 306f.

is index number points to entry counter_tableb[index]which stores a used flag and
a counter. We will regularly update the counter table …

[304b] ⟨pseudo code for counter updates 304b⟩≡
for (as in used_address_spaces, pageno in user_page_numbers(as)) {

n = get_and_reset_referenced_bit (as, pageno); // 0 or 1
index = hash ((address_space << 20) | pageno);
if (n==1) {

counter_table[index].used = true;
counter_table[index].count++;

}
}
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…and (less oen) rescale the counters by halving them if the maximum counter is above
some threshold:

[305a]⟨pseudo code for counter rescaling 305a⟩≡
// get maximum count
themax = 0;
for (index in 0..maxindex)

if (counter_table[index].used)
themax = max (themax, counter_table[index].count);

if (themax < THRESHOLD) return; // do nothing

// halve all counters
for (index in 0..maxindex)

if (counter_table[index].used) {
counter_table[index].count /= 2
counter_table[index].count += 1; // add 1 to avoid 0 value

}

is automatically leads to some kind of aging: when the maximum reaches the thresh-
old value, all entries will be halved.

Now, picking a page with minimum counter for replacement goes like this:
[305b]⟨pseudo code for picking a page 305b⟩≡

pick = NULL;
for (as in used_address_spaces, pageno in user_page_numbers(as)) {

index = hash ((address_space << 20) | pageno);
if (pick==NULL && counter_table[index].used) {

// initialize minimum, pick
pick = (as, pageno);
themin = counter_table[index].count;

} else {
if (counter_table[index].count < themin) {

themin = counter_table[index].count
pick = (as, pageno);

}
}

}
if (pick != NULL) page_out (pick.as, pick.pageno);

is algorithm does not check whether a page is dirty dirty page, i. e., modified. In more advanced
paging systems, a page may simultaneously exist in memory and on the disk (for example
when it was paged out and paged back in but the swap file entry was not deleted). In that
case it would make sense to pick a page which is still on disk and has not been changed
in memory since it was brought back in the last time. Since our implementation does not
keep pages both in RAM and on disk, we can ignore the dirty flag (or consider every page
dirty; we always have to write to disk, whatever page we pick).

Note that the algorithm may pick a wrong page if there are pages with the same hash
as the chosen one. In that case we have no way to decide which of those pages had the
fewest accesses, but all of them at least had very few accesses, so this is good enough.
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Here’s the actual implementation. We define the counter table as an array of simple
structures:

[306a] ⟨constants 112a⟩+≡ (44a) ◁ 292b 308b ▷
#define PG_MAX_COUNTERS 1024

Defines:
PG_MAX_COUNTERS, used in chunks 306–8.

[306b] ⟨global variables 92b⟩+≡ (44a) ◁ 293a 310f ▷
struct { boolean used; int count; } counter_table[PG_MAX_COUNTERS] = { { 0 } };
lock paging_lock;

Defines:
counter_table, used in chunks 307 and 308.
paging_lock, used in chunks 306–8.

Uses lock 365a and PG_MAX_COUNTERS 306a.

We also provide a lock to protect access to that table:
[306c] ⟨initialize kernel global variables 184d⟩+≡ (44b) ◁ 184d 310g ▷

paging_lock = get_new_lock ("paging");
Uses get_new_lock 367b, paging 292c, and paging_lock 306b.

And we regularly update the table via timer tasks.
[306d] ⟨timer tasks 306d⟩≡ (342b) 311a ▷

if (scheduler_is_active && ((system_ticks % 10) == 0)) {
⟨page replacement: update counters 307a⟩ // Every 10 ticks (~ 0.1 seconds)

}
if (scheduler_is_active && ((system_ticks % 50) == 5)) {
⟨page replacement: rescale counters 308a⟩ // Every 50 ticks (~ 0.5 seconds)

}
Uses scheduler_is_active 276e and system_ticks 338a.

Asmentioned above, we need a hash functionhash function formapping all the possible (address space,
page number) combinations onto our array. Hashing is a science in its own right, and we
do not aempt to provide a clever or useful hashing algorithm in this book. Instead we
implement our hash function

[306e] ⟨function prototypes 45a⟩+≡ (44a) ◁ 295a 306f ▷
int hash (int val, int maxval);

in a very simple fashion: We assume that the val argument was created from an address
space ID as and a page number pageno by calculating (as << 20) | pageno. Our hash func-
tion can then restore the original values via the formulas as = val >> 20 and pageno = val
& 0b1111111111. We multiply the address space ID with 32 and add the page number. Since
that sum may exceed PG_MAX_COUNTERSa, we use a modulo operation to make it fit:

[306f] ⟨function prototypes 45a⟩+≡ (44a) ◁ 306e 319a ▷
int hash (int val, int maxval) {

// return val % maxval; // ridiculous hash
return ((val >> 20)*32 + (val & 0b1111111111)) % maxval;

}
Defines:

hash, used in chunks 304 and 306–8.
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e update code does not disable interrupts or use a lock; we do not really care if data
are changed while we assemble the statistical data, since a small error in the statistics
(which might result from parallel access to a page table entry) will not change the overall
behavior.

e double loop over address space IDs and page numbers that we’ve shown above in
the ⟨pseudo code for counter updates 304b⟩ code chunk turns into a triple loop (over address
space IDs, page table descriptors and page descriptors) since we cannot directly access the
page descriptor for some page n without inspecting the right page table (number n/)
first. We only look at the first 768 page tables—beyond that kernel memory starts, and we
have decided to never page out memory that belongs to the kernel. at way we need not
deal with sticky bits sticky bit,

locked
(locked bits) in the page descriptors. Instead, the simple rule is: If a

page belongs to process memory, it is a candidate for removal; otherwise not.
[307a]⟨page replacement: update counters 307a⟩≡ (306d)

if (mutex_try_lock (paging_lock)) {
for (int as = 1; as < MAX_ADDR_SPACES; as++) {

if (address_spaces[as].status != AS_FREE) {
page_directory *pd = address_spaces[as].pd;
for (int i = 0; i < 100; i++) { // < 768: only work on process memory

if (pd->ptds[i].present) { // directory entry in use
page_table *pt = (page_table*)(PHYSICAL ((pd->ptds[i].frame_addr)<<12));
for (int j = 0; j < 1024; j++) {

if (pt->pds[j].present) { // table entry in use
⟨page replacement: update counter for page i · + j 307b⟩

}
}

}
}

}
}
mutex_unlock (paging_lock);

}
Uses address_spaces 162b, AS_FREE 162a, MAX_ADDR_SPACES 158a, mutex_try_lock 366b, mutex_unlock 366c,

page_directory 103d, page_table 101b, paging_lock 306b, and PHYSICAL 116a.

For updating the counter for page  · i + j we look at its page descriptor. If the
accessed bit is set

[307b]⟨page replacement: update counter for page i · + j 307b⟩≡ (307a)
int pageno = i*1024 + j;
int n = pt->pds[j].accessed; // get and ...
pt->pds[j].accessed = false; // reset access flag
int index;
if (n == 1 &&

(index = hash ((as << 20) | pageno, PG_MAX_COUNTERS)) < PG_MAX_COUNTERS) {
counter_table[index].used = true;
counter_table[index].count++;

}
Uses counter_table 306b, hash 306f, and PG_MAX_COUNTERS 306a.
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e implementation of the rescaling operation is only slightly more complex than the
pseudocode:

[308a] ⟨page replacement: rescale counters 308a⟩≡ (306d)
// get the maximum count
int themax = 0;
if (mutex_try_lock (paging_lock)) {

for (int index = 0; index < PG_MAX_COUNTERS; index++) {
if (counter_table[index].used) {

int val = counter_table[index].count;
if (val > themax) themax = val;

}
}

if (themax > PG_COUNTER_THRESHOLD) {
// rescale all counters
for (int index = 0; index < PG_MAX_COUNTERS; index++) {

if (counter_table[index].used) {
counter_table[index].count /= 2;
counter_table[index].count += 1; // avoid 0 value

}
}

}
mutex_unlock (paging_lock);

}
Uses counter_table 306b, mutex_try_lock 366b, mutex_unlock 366c, paging_lock 306b, PG_COUNTER_THRESHOLD 308b,

and PG_MAX_COUNTERS 306a.

We still need to define the counter threshold:
[308b] ⟨constants 112a⟩+≡ (44a) ◁ 306a 318a ▷

#define PG_COUNTER_THRESHOLD 100000
Defines:

PG_COUNTER_THRESHOLD, used in chunk 308a.

Once at least one page has been access counted more than 100 000 times, the counter
values will be rescaled.

Finally this is the code which frees a frame. It looks at all the pages in all address
spaces, generates the hash and looks up the counter for that hash (if it exists). It initializes
pick_as and pick_pageno to the first address space and page number for whose hash it finds
a counter and then updates these variables whenever it finds a smaller counter.

[308c] ⟨page replacement: free one frame 308c⟩≡ (119a 310a)
addr_space_id pick_as = -1;
int pick_pageno, themin;
while (!mutex_try_lock (paging_lock)) ; // active waiting for lock
for (int as = 1; as < MAX_ADDR_SPACES; as++) {

if (address_spaces[as].status == AS_USED) {
page_directory *pd = address_spaces[as].pd;
for (int i = 0; i < 768; i++) { // < 768: only work on process memory

if (pd->ptds[i].present) { // directory entry in use
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page_table *pt = (page_table*) (PHYSICAL ((pd->ptds[i].frame_addr) << 12));
for (int j = 0; j < 1024; j++) {

if (pt->pds[j].present) { // table entry in use
int pageno = i*1024 + j;
int index = hash ((as << 20) | pageno, PG_MAX_COUNTERS);
if (pick_as==-1 && counter_table[index].used) {

// initialize minimum, pick
pick_as = as;
pick_pageno = pageno;
themin = counter_table[index].count;

} else {
if (counter_table[index].count < themin) {

themin = counter_table[index].count;
pick_as = as;
pick_pageno = pageno;

}
}

}
}

}
}

}
}
mutex_unlock (paging_lock);

if (pick_as != -1) {
mutex_lock (paging_lock);
page_out (pick_as, pick_pageno);
mutex_unlock (paging_lock);

} else {
printf ("\nERROR: cannot pick a page to evict!\n");

}
Uses addr_space_id 158b, address_spaces 162b, AS_USED 162a, counter_table 306b, hash 306f, lock 365a,

MAX_ADDR_SPACES 158a, mutex_lock 366a, mutex_try_lock 366b, mutex_unlock 366c, page_directory 103d,
page_out 296, page_table 101b, paging_lock 306b, PG_MAX_COUNTERS 306a, PHYSICAL 116a, pick_pageno,
printf 601a, and themin.

Again, instead of the double loop from the ⟨pseudo code for picking a page 305b⟩ code
chunk, we need a triple loop to access all page tables referenced by all page directories for
all address spaces.

9.4.1 The Swapper Process
We provide two system calls that retrieve the number of free frames and issue a request
to free a page:

[309]⟨syscall prototypes 173b⟩+≡ (202a) ◁ 298c 330b ▷
void syscall_get_free_frames (context_t *r);
void syscall_free_a_frame (context_t *r);
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[310a] ⟨syscall functions 174b⟩+≡ (202b) ◁ 299a 331a ▷
void syscall_get_free_frames (context_t *r) {

// no parameters
mutex_lock (swapper_lock); // lock_, see below
eax_return (free_frames);

}

void syscall_free_a_frame (context_t *r) {
// no parameters
⟨page replacement: free one frame 308c⟩

}
Defines:

syscall_free_a_frame, used in chunk 310c.
syscall_get_free_frames, used in chunks 309 and 310c.

Uses context_t 142a, eax_return 174a, free_frames 112b, mutex_lock 366a, and swapper_lock 310f.

[310b] ⟨ulix system calls 206e⟩+≡ (205a) ◁ 260b 330c ▷
#define __NR_get_free_frames 509
#define __NR_free_a_frame 510

Uses __NR_free_a_frame and __NR_get_free_frames.

[310c] ⟨initialize syscalls 173d⟩+≡ (44b) ◁ 299b 328e ▷
install_syscall_handler (__NR_get_free_frames, syscall_get_free_frames);
install_syscall_handler (__NR_free_a_frame, syscall_free_a_frame);

Uses __NR_free_a_frame, __NR_get_free_frames, install_syscall_handler 201b, syscall_free_a_frame 310a,
and syscall_get_free_frames 310a.

We also need user mode library functions which can make the two system calls:
[310d] ⟨ulixlib function prototypes 174c⟩+≡ (48a) ◁ 299c 328f ▷

int get_free_frames ();
void free_a_frame ();

[310e] ⟨ulixlib function implementations 174d⟩+≡ (48b) ◁ 299d 328g ▷
int get_free_frames () { return syscall1 (__NR_get_free_frames); }
void free_a_frame () { syscall1 (__NR_free_a_frame); }

Defines:
free_a_frame, used in chunks 311b and 513e.
get_free_frames, used in chunks 310d, 311b, and 513e.

Uses __NR_free_a_frame, __NR_get_free_frames, and syscall1 203c.

e swapper process should not work permanently, so we use a trick: We let it block
on a lock and add a timer task that unlocks that lock every 0.1 seconds.

[310f] ⟨global variables 92b⟩+≡ (44a) ◁ 306b 316 ▷
lock swapper_lock;

Defines:
swapper_lock, used in chunks 310 and 311a.

Uses lock 365a.

[310g] ⟨initialize kernel global variables 184d⟩+≡ (44b) ◁ 306c 363d ▷
swapper_lock = get_new_lock ("swapper");

Uses get_new_lock 367b and swapper_lock 310f.
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[311a]⟨timer tasks 306d⟩+≡ (342b) ◁ 306d 342c ▷
if (scheduler_is_active && ((system_ticks % 10) == 0)) {

// Every 10 clocks (approx. 0.1 seconds)
if (swapper_lock->bq.next)

mutex_unlock (swapper_lock);
}

Uses mutex_unlock 366c, scheduler_is_active 276e, swapper_lock 310f, and system_ticks 338a.

e swapper program switches to the last virtual console. In an infinite loop it queries
the number of free frames using get_free_framese, and that function will block because
syscall_get_free_framesa locks the swapper_lockf . e function returns aer the timer
handler releases the lock, so the loop is only executed every 0.1 seconds.

If the number of frames gets too low, the program calls free_a_framee.
[311b]⟨lib-build/tools/swapper.c 311b⟩≡ 513e ▷

#include "../ulixlib.h"
#define THRESHOLD init_frames - 500
int main () {

setterm (9);
int init_frames = get_free_frames ();
int last_free_frames;
int free_frames = init_frames;
int pid = getpid ();
unsigned int counter = 0;

for (;;) {
last_free_frames = free_frames;
free_frames = get_free_frames ();
if (free_frames != last_free_frames) {

printf ("[%d.%d] swapper: %d free frames. threshold = %d.",
pid, counter++, free_frames, THRESHOLD);

if (free_frames < THRESHOLD) {
printf ("calling free_a_frame (%d < %d)\n", free_frames, init_frames - 500);
free_a_frame ();

} else {
printf ("\n");

}
}

}
}

Uses free_a_frame 310e, free_frames 112b, get_free_frames 310e, getpid 223b, main 44b, printf 601a,
setterm 328g, and THRESHOLD.

We will start this swapper process right from the init process; it will run with process
ID 2. In order to stop arbitrary processes from calling free_a_framee, the system call
handler should verify that it was called by this process (and no other one).
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Talking to the Hardware

In this chapter we provide the code which talks to various kinds of hardware. In most
cases this will include an interrupt handler which gets called when a device generates a
hardware interrupt.

10.1 Keyboard
U does not provide a graphical user interface, and it does not recognize a mouse. us,
the keyboard is the only available input device. Since there will be up to ten virtual con-
soles (on which users can log on with different user accounts), we need several keyboard
input buffers and keep track of where to store a new character when a key was pressed.

10.1.1 Scan Code Tables
e keyboard interrupt handler must recognize which key was pressed, while also check-
ing if any of the modifier keys modifier keys(such as shi, control or alt) was held down at the same
time.

e array scancode_table maps the key codes key codesof a standard US keyboard (as generated
by the keyboard controller) to ASCII characters. We started with the code in Bran’s Kernel
Development tutorial [Fri05] (the table is on the http://www.osdever.net/bkerndev/Docs/
keyboard.htm page), but modified it.

Similarly, scancode_up_table holds the characters for the same key codes, but with
one of the shi keys pressed. Since we alternated between US and German keyboards
during the development of U, we also provide corresponding tables for the German
layout which you can find in scancode_DE_table and scancode_DE_up_table.

http://www.osdever.net/bkerndev/Docs/keyboard.htm
http://www.osdever.net/bkerndev/Docs/keyboard.htm
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Figure 10.1: Layout of a US keyboard with additional Windows keys (without the number
pad)
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Figure 10.2: Layout of a German keyboard with additional Windows keys (without the

number pad)

Figure 10.3: Scancodes for the US keyboard; on a German keyboard “<” generates the key
code 41.

Figure 10.1 shows the layout of a standard US-American PC keyboard, and Figure 10.2
shows the German layout. In the third figure (Figure 10.3) you can find the key codes.
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Both pressing and releasing a key generate a key code (that way the operating system
can see whether the user holds a key pressed). e key codes for pressing and releasing
any specific key are identical except for the upper bit: If a key was pressed, the key code’s
upper bit is unset (0); if it was released it is set (1). us scancode & 0x80 is 0 if the event
is a key press event, it is non-zero otherwise. In the laer case scancode-0x80 (or scancode
& ~0x80) calculates the key code of the corresponding key press event.

ere are some exceptions for newer keys which did not exist on the original PC XT
keyboard [IBM83, pp. 1-65–1-69], and they use combinations which are initiated with an
escape character (0xe0 = 224 or 0xe1 = 225). Figure 10.3 shows this for the two Windows
keys, the (Windows) menu key and the right Alt and Ctrl keys. Note how Le-Alt and
Right-Alt (or Le-Ctrl and Right-Ctrl) only differ in that the right keys generate the escape
code and then the same code as the corresponding le key, e. g., 29 for Le-Ctrl and 224
/ 29 for Right-Ctrl. is way a driver that is unaware of escape codes will just ignore the
escape code and interpret the second code (almost) correctly.

In the “Keyboard scancodes” list [Bro09], Brouwer describes the newer keys, too. He
also notes:

“e prefix e0 was originally used for the grey duplicates of keys on the
original PC/XT keyboard. ese days e0 is just used to expand code space. e
prefix e1 used for Pause/Break indicated that this key sends the make/break
sequence at make time, and does nothing upon release.”

e terms scan codes scan codesand key codes are sometimes used interchangeably, but there are
other encodings of key-press and key-release events. We only discuss the key codes that
are transmied by the keyboard controller. ey are also called “set 1” or “IBM PC XT”
scan codes. A complete overview of “set 1” and “set 2” scan codes can also be found in a
Microso specification document [Mic00a].

All 0 entries in the map make U ignore a key. We also enter 0 in the map for modifier
keys (Shi, Ctrl, Alt etc.) since we handle them separately. For the Escape and cursor keys
we provide names because we will use them later:

[315]⟨public constants 46a⟩+≡ (44a 48a) ◁ 298b 326b ▷
#define KEY_ESC 27
#define KEY_UP 191
#define KEY_DOWN 192
#define KEY_LEFT 193
#define KEY_RIGHT 194

Defines:
KEY_DOWN, used in chunks 316 and 317.
KEY_LEFT, used in chunks 316 and 317.
KEY_RIGHT, used in chunks 316 and 317.
KEY_UP, used in chunks 316 and 317.

Uses KEY_ESC.

is is the table for the US keyboard:
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[316] ⟨global variables 92b⟩+≡ (44a) ◁ 310f 317 ▷
byte scancode_table[128] = {

/* 0.. 9 */ 0, KEY_ESC, '1', '2', '3', '4', '5', '6', '7', '8',
/* 10..19 */ '9', '0', '-', '=', '\b', /* Backspace */

'\t', /* Tab */ 'q', 'w', 'e', 'r',
/* 20..29 */ 't', 'y', 'u', 'i', 'o', 'p', '[', ']',

'\n', /* Enter */ 0, /* Control */
/* 30..39 */ 'a', 's', 'd', 'f', 'g', 'h', 'j', 'k', 'l', ';',
/* 40..49 */ '\'', '`', 0, /* Left shift */ '\\', 'z', 'x', 'c', 'v', 'b', 'n',
/* 50..59 */ 'm', ',', '.', '/', 0, /* Right shift */

'*', 0, /* Alt */ ' ', /* Space bar */
0, /* CapsLock */ 0, /* F1 */

/* 60..69 */ 0, 0, 0, 0, 0, 0, 0, 0, 0, /* F2..F10 */ 0, /* NumLock */
/* 70..79 */ 0, /* Scroll Lock */ 0, /* Home */ KEY_UP, 0, /* Page Up */

'-', KEY_LEFT, 0, KEY_RIGHT, '+', 0, /* End */
/* 80..89 */ KEY_DOWN, 0, /* Page Down */ 0, /* Insert */ 0, /* Delete */

0, 0, 0, 0, /* F11 */ 0, /* F12 */ 0,
/* 90..127 not defined */

};

byte scancode_up_table[128] = {
/* 0.. 9 */ 0, KEY_ESC, '!', '@', '#', '$', '%', '^', '&', '*',
/* 10..19 */ '(', ')', '_', '+', '\b', /* Backspace */

'\t', /* Tab */ 'Q', 'W', 'E', 'R',
/* 20..29 */ 'T', 'Y', 'U', 'I', 'O', 'P', '{', '}',

'\n', /* Enter */ 0, /* Control */
/* 30..39 */ 'A', 'S', 'D', 'F', 'G', 'H', 'J', 'K', 'L', ':',
/* 40..49 */ '"', '~', 0, /* Left shift */ '|', 'Z', 'X', 'C', 'V', 'B', 'N',
/* 50..59 */ 'M', '<', '>', '?', 0, /* Right shift */

'*', 0, /* Alt */ ' ', /* Space bar */
0, /* CapsLock */ 0, /* F1 */

/* 60..69 */ 0, 0, 0, 0, 0, 0, 0, 0, 0, /* F2..F10 */ 0, /* NumLock */
/* 70..79 */ 0, /* Scroll Lock */ 0, /* Home */ KEY_UP, 0, /* Page Up */

'-', KEY_LEFT, 0, KEY_RIGHT, '+', 0, /* End */
/* 80..89 */ KEY_DOWN, 0, /* Page Down */ 0, /* Insert */ 0, /* Delete */

0, 0, 0, 0, /* F11 */ 0, /* F12 */ 0,
/* 90..127 not defined */

};
Defines:

scancode_table, used in chunk 319d.
scancode_up_table, used in chunk 319d.

Uses KEY_DOWN 315, KEY_ESC, KEY_LEFT 315, KEY_RIGHT 315, and KEY_UP 315.

U does not support German special characters (äöüÄÖÜß§), so the keys which would
generate those characters are mapped to standard ASCII characters which can then be
entered via two keys, for example, pressing [Ä] or [Shi-Ä] will generate the ' and "
characters. Users can switch between the US and German layouts by pressing [Ctrl-L].
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[317]⟨global variables 92b⟩+≡ (44a) ◁ 316 318c ▷
byte scancode_DE_table[128] = {

/* 0.. 9 */ '^', KEY_ESC, '1', '2', '3', '4', '5', '6', '7', '8',
/* 10..19 */ '9', '0', '-', '\'', '\b', /* Backspace */

'\t', /* Tab */ 'q', 'w', 'e', 'r',
/* 20..29 */ 't', 'z', 'u', 'i', 'o', 'p', '[', '+',

'\n', /* Enter */ 0, /* Control */
/* 30..39 */ 'a', 's', 'd', 'f', 'g', 'h', 'j', 'k', 'l', ';',
/* 40..49 */ '\'', '<', 0, /* Left shift */ '#', 'y', 'x', 'c', 'v', 'b', 'n',
/* 50..59 */ 'm', ',', '.', '-', 0, /* Right shift */

'*', 0, /* Alt */ ' ', /* Space bar */
0, /* CapsLock */ 0, /* F1 */

/* 60..69 */ 0, 0, 0, 0, 0, 0, 0, 0, 0, /* F2..F10 */ 0, /* NumLock */
/* 70..79 */ 0, /* Scroll Lock */ 0, /* Home */ KEY_UP, 0, /* Page Up */

'-', KEY_LEFT, 0, KEY_RIGHT, '+', 0, /* End */
/* 80..89 */ KEY_DOWN, 0, /* Page Down */ 0, /* Insert */ 0, /* Delete */

0, 0, 0, 0, /* F11 */ 0, /* F12 */ 0,
/* 90..127 not defined */

};

byte scancode_DE_up_table[128] = {
/* 0.. 9 */ '^', KEY_ESC, '!', '"', '#', '$', '%', '&', '/', '(',
/* 10..19 */ ')', '=', '?', '`', '\b', /* Backspace */

'\t', /* Tab */ 'Q', 'W', 'E', 'R',
/* 20..29 */ 'T', 'Y', 'U', 'I', 'O', 'P', '{', '*',

'\n', /* Enter */ 0, /* Control */
/* 30..39 */ 'A', 'S', 'D', 'F', 'G', 'H', 'J', 'K', 'L', ':',
/* 40..49 */ '"', '>', 0, /* Left shift */ '\'', 'Z', 'X', 'C', 'V', 'B', 'N',
/* 50..59 */ 'M', ';', ':', '_', 0, /* Right shift */

'*', 0, /* Alt */ ' ', /* Space bar */
0, /* CapsLock */ 0, /* F1 */

/* 60..69 */ 0, 0, 0, 0, 0, 0, 0, 0, 0, /* F2..F10 */ 0, /* NumLock */
/* 70..79 */ 0, /* Scroll Lock */ 0, /* Home */ KEY_UP, 0, /* Page Up */

'-', KEY_LEFT, 0, KEY_RIGHT, '+', 0, /* End */
/* 80..89 */ KEY_DOWN, 0, /* Page Down */ 0, /* Insert */ 0, /* Delete */

0, 0, 0, 0, /* F11 */ 0, /* F12 */ 0,
/* 90..127 not defined */

};
Defines:

scancode_DE_table, used in chunk 319d.
scancode_DE_up_table, used in chunk 319d.

Uses KEY_DOWN 315, KEY_ESC, KEY_LEFT 315, KEY_RIGHT 315, and KEY_UP 315.

10.1.2 Virtual Consoles
We provide ten virtual consoles (terminals), each of which has its own keyboard buffer.
Such a buffer can store up to 32 characters—if an application does not react fast enough
to key-press events, the buffer can become full: in that case further key-presses are lost.
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[318a] ⟨constants 112a⟩+≡ (44a) ◁ 308b 319c ▷
#define SYSTEM_KBD_BUFLEN 32
#define TERMINALS 10

Defines:
SYSTEM_KBD_BUFLEN, used in chunks 318b, 321b, 324a, and 416b.
TERMINALS, used in chunks 318c and 324a.

For each buffer we also store the current position (where the next character will be
entered) and the last read position (which character was last read):

[318b] ⟨type definitions 91⟩+≡ (44a) ◁ 295c 325b ▷
typedef struct {

char kbd[SYSTEM_KBD_BUFLEN+1];
int kbd_pos;
int kbd_lastread;
int kbd_count;

} terminal_t;
Defines:

terminal_t, used in chunks 318c, 321b, 324a, and 416b.
Uses SYSTEM_KBD_BUFLEN 318a.

e kbd_count field is redundant but makes checking the buffer status simpler.
[318c] ⟨global variables 92b⟩+≡ (44a) ◁ 317 318d ▷

terminal_t terminals[TERMINALS] = { { { 0 } } };
Defines:

terminals, used in chunks 318, 321b, 324a, 326c, 381b, and 416b.
Uses terminal_t 318b and TERMINALS 318a.

Terminal 0 is also used as the system terminal. U provides a kernel mode shell that
can be activated with Shi-Esc. It always uses the first terminal and keeps its own set of
position variables.

[318d] ⟨global variables 92b⟩+≡ (44a) ◁ 318c 319b ▷
char *system_kbd = terminals[0].kbd;
int system_kbd_pos;
int system_kbd_lastread;
int system_kbd_count;

Defines:
system_kbd_count, used in chunks 318e and 610a.
system_kbd_lastread, used in chunks 318e and 610a.
system_kbd_pos, used in chunks 318e and 610a.

Uses terminals 318c.

ey need to be initialized when the system boots:
[318e] ⟨setup keyboard 318e⟩≡ (44b)

system_kbd_pos = 0;
system_kbd_lastread = -1;
system_kbd_count = 0;
for (int i = 0; i < 10; i++)

terminals[i].kbd_lastread = -1;
Uses system_kbd_count 318d, system_kbd_lastread 318d, system_kbd_pos 318d, and terminals 318c.
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10.1.3 Keyboard Interrupt Handler
e keyboard handler deals will all press and release events:

[319a]⟨function prototypes 45a⟩+≡ (44a) ◁ 306f 323a ▷
void keyboard_handler (context_t *r);

It checks the variable LANG_GERMANb to decide whether it shall use the German or the
US keyboard layout:

[319b]⟨global variables 92b⟩+≡ (44a) ◁ 318d 323d ▷
boolean LANG_GERMAN = 1; // default: german keyboard

Defines:
LANG_GERMAN, used in chunks 319d and 321a.

e implementation is rather simple, the function is only long because it needs to handle
key presses differently when one of the modifier keys (Le-Shi, Right-Shi, Ctrl, Alt) is
held while another key is pressed. Other than that, the handler reads a scan code from
the keyboard I/O port.

[319c]⟨constants 112a⟩+≡ (44a) ◁ 318a 320a ▷
#define IO_KEYBOARD 0x60

Defines:
IO_KEYBOARD, used in chunk 320b.

and interprets it. For standard keys it looks up the assigned character using one of the scan
code tables. Key-release events are ignored unless one of the modifier keys was released:
in that case the status of shift_pressed, alt_pressed etc. must be updated. We declare
those variables as static in the function so that they keep their values between several
invocations of the handler.

[319d]⟨function implementations 100b⟩+≡ (44a) ◁ 297 323b ▷
void keyboard_handler (context_t *r) {

char *lower_table; char *upper_table;
if (LANG_GERMAN) {

lower_table = scancode_DE_table; upper_table = scancode_DE_up_table;
} else {

lower_table = scancode_table; upper_table = scancode_up_table;
}

static boolean shift_pressed = false; static boolean left_shift_pressed = false;
static boolean alt_pressed = false; static boolean right_shift_pressed = false;
static boolean ctrl_pressed = false;
⟨keyboard handler implementation 320b⟩

}
Defines:

keyboard_handler, used in chunks 319a and 323b.
Uses context_t 142a, LANG_GERMAN 319b, scancode_DE_table 317, scancode_DE_up_table 317, scancode_table 316,

and scancode_up_table 316.

Aer initializing the keyboard mapping and the states of the modifier keys the real
work begins. We read the scan code from the I/O port IO_KEYBOARDc. en we check if
the scan code corresponds to a key release event (i. e., the highest bit is set). at situation
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is only of interest for the modifier keys: If Shi, Ctrl or Alt were released, we update
the corresponding static variable and return immediately. e release of regular keys is
ignored. We also give the modifier key numbers names to make the code more readable:

[320a] ⟨constants 112a⟩+≡ (44a) ◁ 319c 325a ▷
#define KEY_CTRL 29
#define KEY_L_SHIFT 42
#define KEY_R_SHIFT 54
#define KEY_ALT 56

Defines:
KEY_ALT, used in chunk 320.
KEY_CTRL, used in chunk 320.
KEY_L_SHIFT, used in chunk 320.
KEY_R_SHIFT, used in chunk 320.

[320b] ⟨keyboard handler implementation 320b⟩≡ (319d) 320c ▷
byte scancode = inportb (IO_KEYBOARD); // read scan code from keyboard
if (scancode & 0x80) { // release key event

switch (scancode & ~0x80) {
case KEY_CTRL: ctrl_pressed = false; break;
case KEY_L_SHIFT: left_shift_pressed = false; break;
case KEY_R_SHIFT: right_shift_pressed = false; break;
case KEY_ALT: alt_pressed = false; break;

}
shift_pressed = left_shift_pressed || right_shift_pressed;
return;

}
Uses inportb 133b, IO_KEYBOARD 319c, KEY_ALT 320a, KEY_CTRL 320a, KEY_L_SHIFT 320a, and KEY_R_SHIFT 320a.

Otherwise we deal with a key press event. To keep things ordered nicely, we start with
checking whether one of the modifier keys was pressed: Again, we can update a state
variable and return from the handler. If that was not the case, we look up the character in
the right scan code table (either upper_table or lower_table):

[320c] ⟨keyboard handler implementation 320b⟩+≡ (319d) ◁ 320b 321a ▷
// press key event
switch (scancode) {

case KEY_CTRL: ctrl_pressed = true; return;
case KEY_L_SHIFT: shift_pressed = left_shift_pressed = true; return;
case KEY_R_SHIFT: shift_pressed = right_shift_pressed = true; return;
case KEY_ALT: alt_pressed = true; return;

}

byte c = (shift_pressed ? upper_table[scancode] : lower_table[scancode]);
Uses KEY_ALT 320a, KEY_CTRL 320a, KEY_L_SHIFT 320a, and KEY_R_SHIFT 320a.

en we check for special key combinations: Alt-0 to Alt-9 let us switch to a different
terminal, Ctrl-C kills the current process,kernel mode

shell
Ctrl-L changes the keyboard layout, and Shi-

Escape starts the kernel mode shell (which can be used for debugging, see Chapter 17).



10.1 Keyboard 321

[321a]⟨keyboard handler implementation 320b⟩+≡ (319d) ◁ 320c 321b ▷
// Alt-0 to Alt-9: switch terminal
if (alt_pressed && '0' ≤ c && c ≤ '9') {

vt_activate ((int)((c-'0')+9)%10); // activate virtual console
vt_move_cursor (); // update cursor on new terminal
return;

};

// Ctrl-C: kill and reset input
if (ctrl_pressed && c == 'c') {
⟨keyboard handler: find active process, set target_pid 322b⟩
u_kill (target_pid, SIGKILL); // kill the process
return;

}

// Ctrl-L: change keyboard layout
if (ctrl_pressed && c == 'l') {

switch (LANG_GERMAN) {
case 0: LANG_GERMAN = 1; _set_statusline ("de", 44); return;
case 1: LANG_GERMAN = 0; _set_statusline ("en", 44); return;

}
}

// Shift-Escape: start kernel mode shell
if (shift_pressed && c == KEY_ESC && scheduler_is_active) {
⟨disable scheduler 276b⟩
printf ("\nGoing to kernel shell\n");
vt_activate (0); // must run on vt0
kernel_shell ();
printf ("returning from kernel shell\n");
return;

};
Uses _set_statusline 337b, kernel_shell 610a, KEY_ESC, kill 568b, LANG_GERMAN 319b, printf 601a,

scheduler_is_active 276e, SIGKILL 562a, target_pid, u_kill 562b, vt_activate 327a, and vt_move_cursor 328a.

With all special cases handled, only the default case remains: If a regular character was
entered, we need to store it in one of the keyboard buffers—as long as it is not filled already.
So we first check whether the buffer can carry the new character:

[321b]⟨keyboard handler implementation 320b⟩+≡ (319d) ◁ 321a
terminal_t *term = &terminals[cur_vt];
if (term->kbd_count < SYSTEM_KBD_BUFLEN) {

if (ctrl_pressed && c ≥ 'a' && c ≤ 'z') c -= 96; // Ctrl
term->kbd[term->kbd_pos] = c;
term->kbd_pos = (term->kbd_pos + 1) % SYSTEM_KBD_BUFLEN;
term->kbd_count++;
if (scheduler_is_active) { ⟨keyboard handler: wake sleeping process 322a⟩ }

}
Uses cur_vt 326a, scheduler_is_active 276e, SYSTEM_KBD_BUFLEN 318a, terminal_t 318b, and terminals 318c.
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We still need to discuss what happens when a process is sleeping (while waiting for
input from its terminal). We search the keyboard_queued (that we will define in the fol-
lowing section) for a process which waits for input and uses the currently active terminal
cur_vta. If we find one (and we assume that for each terminal at most one process can
wait for key entry) we wake it up, i. e., move it to the ready queue using the deblockb
function:

[322a] ⟨keyboard handler: wake sleeping process 322a⟩≡ (321b 381b)
thread_id start_pid = keyboard_queue.next;
if (start_pid != 0) { // only if the queue is not empty

thread_id search_pid = start_pid;
do {

if (thread_table[search_pid].terminal == cur_vt) {
deblock (search_pid, &keyboard_queue);
break;

} else {
search_pid = thread_table[search_pid].next;

}
} while (search_pid != start_pid && search_pid != 0);

}
Uses cur_vt 326a, deblock 186b, keyboard_queue 323d, thread_id 178a, and thread_table 176b.

A Ctrl-C key combination should make the system deliver a SIGKILLa signal to the
process that uses the current terminal. ere may be several such processes; we will pick
the first one which has no child process:

[322b] ⟨keyboard handler: find active process, set target_pid 322b⟩≡ (321a)
int target_pid = 0;
for (int i = 3; i < MAX_THREADS; i++) {

if (thread_table[i].used && (thread_table[i].terminal == cur_vt)) {
int is_candidate = true;
for (int j = 3; j < MAX_THREADS; j++) {

if (thread_table[j].used && (thread_table[j].ppid == i)) {
// thread j has parent i - not a candidate
is_candidate = false;
break; // leave inner loop

}
}
if (is_candidate) {

target_pid = i;
goto end_of_search;

}
}

}
end_of_search:
; // label needs a statement

Uses cur_vt 326a, MAX_THREADS 176a, target_pid, and thread_table 176b.
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During system initialization we register the keyboard handler:
[323a]⟨function prototypes 45a⟩+≡ (44a) ◁ 319a 323f ▷

void keyboard_install ();

[323b]⟨function implementations 100b⟩+≡ (44a) ◁ 319d 324a ▷
void keyboard_install () {

install_interrupt_handler (IRQ_KBD, keyboard_handler);
enable_interrupt (IRQ_KBD);

}
Defines:

keyboard_install, used in chunk 323.
Uses enable_interrupt 140b, install_interrupt_handler 146c, IRQ_KBD 132, and keyboard_handler 319d.

We add calling keyboard_installb to the general chunk that installs interrupt hand-
lers:

[323c]⟨install the interrupt handlers 139b⟩+≡ (45b) ◁ 139b
keyboard_install ();

Uses keyboard_install 323b.

10.1.4 The Keyboard eue
We provide several blocked queues—one for each different reason that a process may block
for. Here we define the queue for processes that wait for a keystroke (on their terminal).

[323d]⟨global variables 92b⟩+≡ (44a) ◁ 319b 326a ▷
blocked_queue keyboard_queue; // processes which wait for a keystroke

Defines:
keyboard_queue, used in chunks 322a, 323e, 416b, 564c, and 606.

Uses blocked_queue 183a.

We must initialize the queue:
[323e]⟨initialize system 45b⟩+≡ (44b) ◁ 218c 326c ▷

initialize_blocked_queue (&keyboard_queue);
Uses initialize_blocked_queue 183c and keyboard_queue 323d.

Now we can provide two functions which read in a character or a whole string:
[323f]⟨function prototypes 45a⟩+≡ (44a) ◁ 323a 326e ▷

void kgetch (char *c);
void kreadline (char *s, int maxlength);

ey are only used for the kernel mode shell, processes have their own way of read-
ing characters from the keyboard; they use the regular file readb function with the
STDIN_FILENOb file descriptor because their input might be redirected to a file. We will
describe this in Chapter 12.

In kernel mode we can just run a loop that waits for a new character to appear in the
keyboard buffer.
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[324a] ⟨function implementations 100b⟩+≡ (44a) ◁ 323b 324b ▷
void kgetch (char *c) {

int t = thread_table[current_task].terminal;
if (t < 0 || t > TERMINALS-1) {

t = 0; printf ("ERROR: terminal not set! setting to 0\n");
}
terminal_t *term = &terminals[t];

*c = 0;
while (*c == 0) {

if (term->kbd_count > 0) {
term->kbd_count--;
term->kbd_lastread = (term->kbd_lastread+1) % SYSTEM_KBD_BUFLEN;
*c = term->kbd[term->kbd_lastread];

} else {
*c = 0;

};
};

};
Defines:

kgetch, used in chunk 324b.
Uses current_task 192c, printf 601a, SYSTEM_KBD_BUFLEN 318a, terminal_t 318b, TERMINALS 318a, terminals 318c,

and thread_table 176b.

e kreadlineb function repeatedly calls kgetcha until a newline character is read
(which terminates the input).

[324b] ⟨function implementations 100b⟩+≡ (44a) ◁ 324a 327a ▷
void kreadline (char *s, int maxlength) {

char c;
int pos = 0;
for (;;) {
⟨enable interrupts 47b⟩
kgetch (&c); // read one character
if (c == 0x08 && pos > 0) { // backspace

pos--;
kputch (c); kputch (' '); kputch (c);

} else if ( c == '\n' ) { // newline: end of input
kputch ('\n');
s[pos] = (char) 0;
return;

} else if (c != 0x08 && pos < maxlength) { // other character
kputch (c);
s[pos++] = c;

};
};

};
Defines:

kreadline, used in chunks 323f and 610a.
Uses kgetch 324a and kputch 335b.
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10.2 Terminals
Wewant U to provide several terminals so that we can run a few login shells and execute
programs on them.

Conceptually, providing terminals is not complicated: we need

• memory to store the contents of the terminals – roughly 80 x 25 x 2 bytes per terminal
(the size of the textmode video buffer),

• a way to make U switch the active terminal,
• a modification of the writeb() functions so that they will either write to the current

terminal or a specified terminal.
• When writes to a terminal occur, the terminal’s screen buffer is updated—if it is the

active terminal, the screen is updated at the same time.
• When switching to a different terminal, its screen buffer is copied to the screen.

We start with the required memory. Since U uses the last line on the screen for
displaying a status line, we consider it not to be part of any terminal buffer; for example
scrolling shall always ignore the last line, and from a process’ point of view the 25th line
does not exist. So we can define

[325a]⟨constants 112a⟩+≡ (44a) ◁ 320a 325c ▷
#define VT_WIDTH (80)
#define VT_HEIGHT (24)
#define VT_SIZE (VT_WIDTH * VT_HEIGHT * 2)

Defines:
VT_HEIGHT, used in chunk 334.
VT_SIZE, used in chunks 325–27, 329b, 332b, and 337b.
VT_WIDTH, used in chunks 329b and 334a.

[325b]⟨type definitions 91⟩+≡ (44a) ◁ 318b 360a ▷
typedef struct {

char mem[VT_SIZE];
int x,y;

} term_buffer;
Defines:

term_buffer, used in chunks 326a, 334b, and 335b.
Uses VT_SIZE 325a.

Two bytes are required for each character; the first one holds the ASCII value of the
symbol to be displayed, the second is used for foreground and background colors.

We want the system to use up to ten virtual consoles (numbered from 0 to 9), so we
create an array for them:

[325c]⟨constants 112a⟩+≡ (44a) ◁ 325a 327c ▷
#define MAX_VT 9

Defines:
MAX_VT, used in chunks 326–28.
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[326a] ⟨global variables 92b⟩+≡ (44a) ◁ 323d 327b ▷
term_buffer vt[MAX_VT+1];
int cur_vt = 0;

Defines:
cur_vt, used in chunks 321, 322, 327a, 329b, 330a, 332b, 334b, 335b, and 342b.
vt, used in chunks 326–30, 332b, 334b, and 335b.

Uses MAX_VT 325c and term_buffer 325b.

vta[i].mem is the buffer of console i, and vta[i].x and vta[i].y hold the current
cursor position in console i. We initialize the current terminal to number 0.

To start with proper contents, we initialize each of the ten text buffers with blanks. A
blank character is actually a word with the low byte containing the ASCII value of the
blank symbol (0x20) and the high byte containing the color information (0x0F for white on
black).

[326b] ⟨public constants 46a⟩+≡ (44a 48a) ◁ 315 328d ▷
#define VT_NORMAL_BACKGROUND (0x0F << 8)
#define VT_BLUE_BACKGROUND (0x1F << 8)
#define VT_RED_BACKGROUND (0x4F << 8)

Defines:
VT_BLUE_BACKGROUND, used in chunks 329b and 609.
VT_NORMAL_BACKGROUND, used in chunks 326c, 329b, and 333–35.
VT_RED_BACKGROUND, used in chunk 609.

[326c] ⟨initialize system 45b⟩+≡ (44b) ◁ 323e 509b ▷
int vtno;
word *memptr;
unsigned blank = 0x20 | VT_NORMAL_BACKGROUND; // blank character
for (vtno = 1; vtno < 10; vtno++) {

memptr = (word*)vt[vtno].mem;
memsetw (memptr, blank, VT_SIZE/2);

}
printf ("VT: Initialized ten terminals (press [Alt-1] to [Alt-0])\n");

Uses memsetw 596c, printf 601a, terminals 318c, vt 326a, VT_NORMAL_BACKGROUND 326b, and VT_SIZE 325a.

Note that we do not initialize the first terminal’s buffer vta[0] because it will obtain a
copy of the current screen when we switch to a different terminal.

We also need a way to tell a process what terminal it runs on, so we add a new TCB
entry:

[326d] ⟨more TCB entries 158c⟩+≡ (175) ◁ 255d 424c ▷
int terminal;

A regular Unix system would allow for a more complex setup, but for U we restrict
ourselves to using ten text consoles.

Activating a console via
[326e] ⟨function prototypes 45a⟩+≡ (44a) ◁ 323f 327d ▷

int vt_activate (int i);

is the simplest of all the operations:
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[327a]⟨function implementations 100b⟩+≡ (44a) ◁ 324b 328a ▷
int vt_activate (int new_vt) {

if (new_vt < 0 || new_vt > MAX_VT) return -1; // no such console
else {

memcpy (vt[cur_vt].mem, (void*)VIDEORAM, VT_SIZE); // save old contents
vt[cur_vt].x = csr_x; vt[cur_vt].y = csr_y;
memcpy ((void*)VIDEORAM, vt[new_vt].mem, VT_SIZE); // load new contents
cur_vt = new_vt;
csr_x = vt[new_vt].x; csr_y = vt[new_vt].y;
vt_move_cursor ();
return 0;

}
}

Defines:
vt_activate, used in chunks 321a and 326e.

Uses cur_vt 326a, MAX_VT 325c, memcpy 596c, VIDEORAM 327b, vt 326a, vt_move_cursor 328a, and VT_SIZE 325a.

Here we’re using the address VIDEORAMb to access the text mode frame buffer of the
graphics card; csr_x and csr_y store the cursor position on the visible terminal. We have
not defined the variables yet, so here they are:

[327b]⟨global variables 92b⟩+≡ (44a) ◁ 326a 328b ▷
uint VIDEORAM = 0xB8000;
byte csr_x = 0; byte csr_y = 0; // Cursor position

Defines:
VIDEORAM, used in chunks 116, 327a, 332b, 334b, 337b, and 342d.

It is initially set to 0xb8000 but changes its value to 0xd00b8000 during system initial-
ization (when we set up paging). We can also use textmemptrc which was #defined as
((word*)VIDEORAMb).

With vt_move_cursora we update the cursor location update cursor
location

, since it will need to be in a
different position on the new terminal. e cursor location can be controlled by sending
 · x + y (where x is the line number and y is the column number) to the VGA cursor
location register. is is a 16 bit value—it must be sent in two chunks. First the control
code IO_VGA_CURSOR_LOC_HIGHc is sent to the IO_VGA_TARGETc port (which signals that the
high byte of the cursor location follows), then that high byte is sent to the IO_VGA_VALUEc
port. A similar sequence follows, using IO_VGA_CURSOR_LOC_LOWc and the lower byte.

[327c]⟨constants 112a⟩+≡ (44a) ◁ 325c 338d ▷
#define IO_VGA_TARGET 0x3D4
#define IO_VGA_VALUE 0x3D5
#define IO_VGA_CURSOR_LOC_HIGH 14
#define IO_VGA_CURSOR_LOC_LOW 15

Defines:
IO_VGA_CURSOR_LOC_HIGH, used in chunk 328a.
IO_VGA_CURSOR_LOC_LOW, used in chunk 328a.
IO_VGA_TARGET, used in chunk 328a.

[327d]⟨function prototypes 45a⟩+≡ (44a) ◁ 326e 329a ▷
void vt_move_cursor ();
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[328a] ⟨function implementations 100b⟩+≡ (44a) ◁ 327a 328c ▷
void vt_move_cursor () {

unsigned position = csr_y * 80 + csr_x;
// high byte:
outportb (IO_VGA_TARGET, IO_VGA_CURSOR_LOC_HIGH);
outportb (0x3D5, position >> 8);
// low byte:
outportb (IO_VGA_TARGET, IO_VGA_CURSOR_LOC_LOW);
outportb (0x3D5, position & 0xff); // low byte

}
Defines:

vt_move_cursor, used in chunks 321a, 327, 329b, 330a, and 335b.
Uses IO_VGA_CURSOR_LOC_HIGH 327c, IO_VGA_CURSOR_LOC_LOW 327c, IO_VGA_TARGET 327c, and outportb 133b.

Let’s define what terminal we expect to display kernel messages. We initialize the vari-
able KERNEL_VTb to 0 (for the first terminal), though it may later be changed.

[328b] ⟨global variables 92b⟩+≡ (44a) ◁ 327b 338a ▷
short int KERNEL_VT = 0;

Defines:
KERNEL_VT, used in chunks 334b and 335b.

Back to terminal selection, we provide a system call that lets a process choose which
terminal to use.

[328c] ⟨function implementations 100b⟩+≡ (44a) ◁ 328a 329b ▷
void syscall_setterm (context_t *r) {

int vt = r->ebx; // argument in ebx register
if (vt<0 || vt>MAX_VT) { return; } // check if proper number...
thread_table[current_task].terminal = vt;

};
Defines:

syscall_setterm, used in chunk 328e.
Uses context_t 142a, current_task 192c, MAX_VT 325c, thread_table 176b, and vt 326a.

We define the system call number and register the syscall:
[328d] ⟨public constants 46a⟩+≡ (44a 48a) ◁ 326b 415b ▷

#define __NR_setterm 511
Defines:

__NR_setterm, used in chunk 328.

[328e] ⟨initialize syscalls 173d⟩+≡ (44b) ◁ 310c 331b ▷
install_syscall_handler (__NR_setterm, syscall_setterm);

Uses __NR_setterm 328d, install_syscall_handler 201b, and syscall_setterm 328c.

e user mode library gains a new function as well:
[328f] ⟨ulixlib function prototypes 174c⟩+≡ (48a) ◁ 310d 331c ▷

void setterm (int vt);

[328g] ⟨ulixlib function implementations 174d⟩+≡ (48b) ◁ 310e 331d ▷
void setterm (int vt) { syscall2 (__NR_setterm, (uint) vt); }

Defines:
setterm, used in chunks 311b and 513e.

Uses __NR_setterm 328d, syscall2 203c, and vt 326a.
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We also need functions to clear the screen, set the cursor and get the current cursor
location:

[329a]⟨function prototypes 45a⟩+≡ (44a) ◁ 327d 332a ▷
void vt_clrscr ();
void vt_get_xy (char *x, char *y);
void vt_set_xy (char x, char y);

Clearing clearing the
screen

the screen means writing a blank character to each location. We need to con-
sider that each character byte is followed by a format byte and—if calling the function
from the kernel—we want to format the last line with a blue background so that the status
line can be recognized.

vt_clrscrb just overwrites the terminal buffer of the current process with blank char-
acters and then calls vt_set_xya to set the cursor to the top le position. If the current
process is also working on the currently visible terminal, the function updates the physical
screen as well. (Otherwise the change will only become visible when the user switches to
that terminal.)

[329b]⟨function implementations 100b⟩+≡ (44a) ◁ 328c 330a ▷
void vt_clrscr () {

word blank = 0x20 | VT_NORMAL_BACKGROUND;
word blankrev = 0x20 | VT_BLUE_BACKGROUND;
int process_term;
if (scheduler_is_active) {

process_term = thread_table[current_task].terminal;
word *memptr = (word*)vt[process_term].mem;
memsetw (memptr, blank, VT_SIZE/2); // lines 1-24
vt_set_xy (0, 0);

}

// current terminal?
if ((!scheduler_is_active) || (scheduler_is_active && process_term == cur_vt))

memsetw (textmemptr, blank, VT_SIZE/2); // lines 1-24

// kernel mode? clear status line, set cursor
if (!scheduler_is_active) {

memsetw (textmemptr + VT_SIZE/2, blankrev, VT_WIDTH); // line 25
csr_x = csr_y = 0;
vt_move_cursor ();

}
}

Defines:
vt_clrscr, used in chunks 331a, 337c, and 608b.

Uses cur_vt 326a, current_task 192c, memsetw 596c, scheduler_is_active 276e, textmemptr 116c,
thread_table 176b, vt 326a, VT_BLUE_BACKGROUND 326b, vt_move_cursor 328a, VT_NORMAL_BACKGROUND 326b,
vt_set_xy 330a, VT_SIZE 325a, and VT_WIDTH 325a.
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e vt_get_xya and vt_set_xya read respectively set the x and y members of the
current terminal’s term_bufferb structure. We will only call them from processes, so we
need not check for as many special cases as we did in vt_clrscrb. e only condition
we have to check is whether we’re changing the cursor location of the currently active
terminal—then we also need to update the hardware cursor.

[330a] ⟨function implementations 100b⟩+≡ (44a) ◁ 329b 332b ▷
void vt_get_xy (char *x, char *y) {

int process_term = thread_table[current_task].terminal;
*x = vt[process_term].x;
*y = vt[process_term].y;

}

void vt_set_xy (char x, char y) {
int process_term = thread_table[current_task].terminal;
vt[process_term].x = x;
vt[process_term].y = y;

// current terminal?
if (process_term == cur_vt) {

csr_x = x; csr_y = y;
vt_move_cursor ();

}
}

Defines:
vt_get_xy, used in chunk 331a.
vt_set_xy, used in chunks 329 and 331a.

Uses cur_vt 326a, current_task 192c, thread_table 176b, vt 326a, and vt_move_cursor 328a.

We provide three system calls
[330b] ⟨syscall prototypes 173b⟩+≡ (202a) ◁ 309 370c ▷

void syscall_clrscr (context_t *r);
void syscall_get_xy (context_t *r);
void syscall_set_xy (context_t *r);

for these functions:
[330c] ⟨ulix system calls 206e⟩+≡ (205a) ◁ 310b 332c ▷

#define __NR_clrscr 512
#define __NR_get_xy 513
#define __NR_set_xy 514

Defines:
__NR_clrscr, used in chunk 331.
__NR_get_xy, used in chunk 331.
__NR_set_xy, used in chunk 331.

As usual, the system call handlers evaluate the parameters by looking at the registers
EBX and ECX (if there are any), then they call the above functions.
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[331a]⟨syscall functions 174b⟩+≡ (202b) ◁ 310a 332d ▷
void syscall_clrscr (context_t *r) {

// no parameters, no return value
vt_clrscr ();

}

void syscall_get_xy (context_t *r) {
// ebx: address of x position (char)
// ecx: address of y position (char)
vt_get_xy ((char*)r->ebx, (char*)r->ecx);

}

void syscall_set_xy (context_t *r) {
// ebx: x position (char)
// ecx: y position (char)
vt_set_xy ((char)r->ebx, (char)r->ecx);

}
Defines:

syscall_clrscr, used in chunk 331b.
syscall_get_xy, used in chunk 331b.
syscall_set_xy, used in chunks 330b and 331b.

Uses context_t 142a, vt_clrscr 329b, vt_get_xy 330a, and vt_set_xy 330a.

And we add those system calls to the system:
[331b]⟨initialize syscalls 173d⟩+≡ (44b) ◁ 328e 333a ▷

install_syscall_handler (__NR_clrscr, syscall_clrscr);
install_syscall_handler (__NR_get_xy, syscall_get_xy);
install_syscall_handler (__NR_set_xy, syscall_set_xy);

Uses __NR_clrscr 330c, __NR_get_xy 330c, __NR_set_xy 330c, install_syscall_handler 201b, syscall_clrscr 331a,
syscall_get_xy 331a, and syscall_set_xy 331a.

Via the user mode library we provide the functionality to processes:
[331c]⟨ulixlib function prototypes 174c⟩+≡ (48a) ◁ 328f 333b ▷

void clrscr ();
void get_xy (char *x, char *y);
void set_xy (char x, char y);

[331d]⟨ulixlib function implementations 174d⟩+≡ (48b) ◁ 328g 333c ▷
void clrscr () { syscall1 (__NR_clrscr); }
void get_xy (char *x, char *y) { syscall3 (__NR_get_xy, (int) x, (int) y); }
void set_xy (char x, char y) { syscall3 (__NR_set_xy, (int) x, (int) y); }

Defines:
set_xy, used in chunk 331c.

Uses __NR_clrscr 330c, __NR_get_xy 330c, __NR_set_xy 330c, syscall1 203c, and syscall3 203c.

To make life easier for the application programmer (who cannot access the screen mem-
ory directly) we also provide functions which allow reading or writing the whole screen
(that is: 24 lines of 80 characters; the last line on the ×  display is reserved for the op-
erating system). For this purpose we implement the read_screenb and write_screenb
functions and let applications call them via system calls.
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[332a] ⟨function prototypes 45a⟩+≡ (44a) ◁ 329a 335a ▷
void read_write_screen (char *buf, boolean read_flag);
void read_screen (char *buf);
void write_screen (char *buf);

[332b] ⟨function implementations 100b⟩+≡ (44a) ◁ 330a 334a ▷
void read_write_screen (char *buf, boolean read_flag) {

// if read_flag == true: read from screen, otherwise write
int process_term = thread_table[current_task].terminal;
char *video_address = (char*) vt[process_term].mem;

if (read_flag) {
memcpy (buf, video_address, VT_SIZE); // read the screen

} else {
memcpy (video_address, buf, VT_SIZE); // write the screen
// current terminal?
if (process_term == cur_vt)

memcpy ((char*)VIDEORAM, video_address, VT_SIZE);
}

}

void read_screen (char *buf) { read_write_screen (buf, true); }
void write_screen (char *buf) { read_write_screen (buf, false); }

Defines:
read_screen, used in chunk 333e.
read_write_screen, used in chunk 332d.
write_screen, used in chunks 332 and 333.

Uses cur_vt 326a, current_task 192c, memcpy 596c, thread_table 176b, VIDEORAM 327b, vt 326a, and VT_SIZE 325a.

In the system call handlers we call read_write_screenb instead of read_screenb and
write_screenb to save the extra function call:

[332c] ⟨ulix system calls 206e⟩+≡ (205a) ◁ 330c 370b ▷
#define __NR_read_screen 515
#define __NR_write_screen 516

Uses __NR_read_screen and __NR_write_screen.

[332d] ⟨syscall functions 174b⟩+≡ (202b) ◁ 331a 370d ▷
void syscall_read_screen (context_t *r) {

// ebx: buffer address
read_write_screen ((char *) r->ebx, true);

}

void syscall_write_screen (context_t *r) {
// ebx: buffer address
read_write_screen ((char *) r->ebx, false);

}
Defines:

syscall_read_screen, used in chunk 333a.
syscall_write_screen, used in chunk 333a.

Uses context_t 142a and read_write_screen 332b.
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[333a]⟨initialize syscalls 173d⟩+≡ (44b) ◁ 331b 370e ▷
install_syscall_handler (__NR_read_screen, syscall_read_screen);
install_syscall_handler (__NR_write_screen, syscall_write_screen);

Uses __NR_read_screen, __NR_write_screen, install_syscall_handler 201b, syscall_read_screen 332d,
and syscall_write_screen 332d.

Again, we add these to the library:
[333b]⟨ulixlib function prototypes 174c⟩+≡ (48a) ◁ 331c 333d ▷

void read_screen (char *buf);
void write_screen (char *buf);

[333c]⟨ulixlib function implementations 174d⟩+≡ (48b) ◁ 331d 333e ▷
void read_screen (char *buf) { syscall2 (__NR_read_screen, (uint) buf); }
void write_screen (char *buf) { syscall2 (__NR_write_screen, (uint) buf); }

Defines:
read_screen, used in chunk 333e.
write_screen, used in chunks 332 and 333.

Uses __NR_read_screen, __NR_write_screen, and syscall2 203c.

Applications can use read_screenb and write_screenb for scrolling. scrolling in
user mode

Here’s a simple
scroll function which scrolls the user mode part of the screen (lines 1–24) one line “up”
(that means: the first lines disappears, and all other lines move up one line, leaving one
blank line at the boom)

[333d]⟨ulixlib function prototypes 174c⟩+≡ (48a) ◁ 333b 373d ▷
void scroll_up ();
void scroll_down ();

[333e]⟨ulixlib function implementations 174d⟩+≡ (48b) ◁ 333c 373e ▷
void scroll_up () {

char buffer[80*25*2]; // we reserve space for 25 (!) lines
word blank = 0x20 | VT_NORMAL_BACKGROUND; // blank character
read_screen ((char*)buffer);
memsetw ((word*)((char*)buffer + 80*24*2), blank, 80);
write_screen ((char*)buffer + 160);

}

void scroll_down () {
char buffer[80*25*2]; // we reserve space for 25 (!) lines
word blank = 0x20 | VT_NORMAL_BACKGROUND; // blank character
read_screen ((char*)buffer + 160);
memsetw ((word*)((char*)buffer), blank, 80);
write_screen ((char*)buffer);

}
Defines:

scroll_up, used in chunk 333d.
Uses memsetw 596c, read_screen 332b 333c, VT_NORMAL_BACKGROUND 326b, and write_screen 332b 333c.



334 10 Talking to the Hardware

For scrolling from inside the kernelscrolling in
kernel mode

, we provide a helper function that can “scroll” any
screen-sized chunk of memory. In our case that is an area of 24 lines à 80 characters, each
of which is 2 bytes large (× ×  =  bytes), and scrolling it means to move lines
2–24 to lines 1–23 and empty line 24.

[334a] ⟨function implementations 100b⟩+≡ (44a) ◁ 332b 334b ▷
void vt_scroll_mem (word *address) {

word blank = ' ' | VT_NORMAL_BACKGROUND; // space + format
memcpy (address, address + VT_WIDTH, (VT_HEIGHT-1) * VT_WIDTH * 2);
memsetw (address + (VT_HEIGHT-1) * VT_WIDTH, blank, VT_WIDTH);

}
Defines:

vt_scroll_mem, used in chunk 334b.
Uses memcpy 596c, memsetw 596c, VT_HEIGHT 325a, VT_NORMAL_BACKGROUND 326b, and VT_WIDTH 325a.

Note that this function uses pointer arithmetic: address is of type word*, i. e., a pointer
to a 16-bit wide integer. at means that when we add e. g. VT_WIDTHa to address, the
resulting address is actually 2 * VT_WIDTHa higher.

[334b] ⟨function implementations 100b⟩+≡ (44a) ◁ 334a 335b ▷
void vt_scroll () {

term_buffer *term;
short int target_vt;
if (scheduler_is_active) {

target_vt = thread_table[current_task].terminal;
term = &vt[target_vt];

} else {
target_vt = KERNEL_VT; // kernel: default write to 0

}

if (cur_vt == target_vt && csr_y ≥ VT_HEIGHT) {
vt_scroll_mem ((word*)VIDEORAM);
csr_y = VT_HEIGHT-1;

}

if (scheduler_is_active && term->y ≥ VT_HEIGHT) {
vt_scroll_mem ((word*)term->mem);
term->y = VT_HEIGHT-1;

}
}

Defines:
vt_scroll, used in chunk 335b.

Uses cur_vt 326a, current_task 192c, KERNEL_VT 328b, scheduler_is_active 276e, term_buffer 325b,
thread_table 176b, VIDEORAM 327b, vt 326a, VT_HEIGHT 325a, and vt_scroll_mem 334a.
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10.2.1 Terminal Output
e next two functions

[335a]⟨function prototypes 45a⟩+≡ (44a) ◁ 332a 336a ▷
void kputch (byte c);
void kputs (char *text);

write a character or a string to the screen.
e kputchb function is based on the scrn.c function of Bran’s kernel tutorial [Fri05]

but was modified a lot.
[335b]⟨function implementations 100b⟩+≡ (44a) ◁ 334b 336b ▷

void kputch (byte c) {
// check if we're writing to current terminal
term_buffer *term;
short int target_vt;
word *where;
if (scheduler_is_active) {

target_vt = thread_table[current_task].terminal;
term = &vt[target_vt];

} else {
target_vt = KERNEL_VT; // kernel: default write to 0

}

switch (c) {
case '\b': // backspace, move cursor back

if (cur_vt == target_vt) { if (csr_x != 0) csr_x--; }
if (scheduler_is_active) { if (term->x != 0) term->x--; }
break;

case '\r': // carriage return, go back to first column
if (cur_vt == target_vt) { csr_x = 0; }
if (scheduler_is_active) { term->x = 0; }
break;

case '\n': // newline, go to next line, first column
if (cur_vt == target_vt) { csr_x = 0; csr_y++; }
if (scheduler_is_active) { term->x = 0; term->y++; }
break;

}

if (c ≥ ' ') { // normal character
if (cur_vt == target_vt) {

where = textmemptr + (csr_y * 80 + csr_x);
*where = c | VT_NORMAL_BACKGROUND;
csr_x++;

}
if (scheduler_is_active) {

where = (word*)term->mem + (term->y * 80 + term->x);
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*where = c | VT_NORMAL_BACKGROUND;
term->x++;

}
}

if (csr_x ≥ 80) { // end of line reached
if (cur_vt == target_vt) { csr_x = 0; csr_y++; }
if (scheduler_is_active) { term->x = 0; term->y++; }

}

vt_scroll (); // scroll if necessary
if (cur_vt == target_vt) { vt_move_cursor (); };

// write to serial console
if (c == '\b') { // backspace

uartputc ('\b'); uartputc (' '); uartputc ('\b');
} else uartputc (c);

}

void kputs (char *text) {
while (*text != 0)

kputch (*(text++));
}

Defines:
kputch, used in chunks 324b, 417, 598a, 605b, 611b, and 613b.
kputs, used in chunks 108, 115d, 121b, 335a, 603, 604b, 608b, and 610–13.

Uses cur_vt 326a, current_task 192c, KERNEL_VT 328b, scheduler_is_active 276e, term_buffer 325b,
textmemptr 116c, thread_table 176b, uartputc 336b, vt 326a, vt_move_cursor 328a, VT_NORMAL_BACKGROUND 326b,
and vt_scroll 334b.

For writing to the serial console, kputchb uses the helper function
[336a] ⟨function prototypes 45a⟩+≡ (44a) ◁ 335a 337a ▷

void uartputc (int c);

which sends a character to the I/O port IO_COM1a. is is useful for running U in the
qemu PC emulator [B+14] which can display serial line output in the terminal window of
the host machine, see also Section 10.4 on serial ports.

[336b] ⟨function implementations 100b⟩+≡ (44a) ◁ 335b 337b ▷
void uartputc (int c) {

// taken from the xv6 operating system [CKM12], uart.c
if (!uart[0]) return; // leave if we have no first serial port
// wait until COM1 is ready to receive another byte
for (int i = 0; i < 128 && !(inportb (IO_COM1+5) & 0x20); i++) ;
outportb (IO_COM1+0, c); // write the byte

}
Defines:

uartputc, used in chunks 335b, 336a, and 598a.
Uses inportb 133b, IO_COM1 344a, outportb 133b, and uart 344b.
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10.2.2 Status Line Management
e last line on the screen kernel status

messages
is reserved for the U status line. We provide two functions

which let the kernel display status messages:
[337a]⟨function prototypes 45a⟩+≡ (44a) ◁ 336a 338b ▷

void set_statusline (char *text);
void _set_statusline (char *text, int offset);

efirst function, set_statuslineb, alwayswrites to the start of the status line, whereas
_set_statuslineb takes an extra position argument and can be used to update a small
location somewhere in the middle of the line.

[337b]⟨function implementations 100b⟩+≡ (44a) ◁ 336b 338c ▷
void set_statusline (char *text) { _set_statusline (text, 0); }

void _set_statusline (char *text, int offset) {
int i = 0;
uint videoaddress = VIDEORAM + VT_SIZE+2*offset; // last line of video
while ((*text != 0) && (i < 80)) {

POKE (videoaddress + 2*i, *text);
i++; text++;

}
}

Defines:
_set_statusline, used in chunks 276, 280a, 321a, 342b, 343b, and 512b.
set_statusline, used in chunks 337 and 608–10.

Uses POKE 117, VIDEORAM 327b, and VT_SIZE 325a.

10.2.3 Initializing the Screen
When we described the kernel initialization in the mainb function, we promised to define
the code chunk ⟨setup video 337c⟩ in this chapter—here it is: We use vt_clrscrb to clear
the screen and set_statuslineb to display the OS name and version.

[337c]⟨setup video 337c⟩≡ (44b)
vt_clrscr ();
set_statusline (UNAME);
printf ("%s Build: %s\n", UNAME, BUILDDATE);

Uses BUILDDATE 35a, printf 601a, set_statusline 337b, UNAME 35a, and vt_clrscr 329b.

Remember that we’ve set UNAMEa and BUILDDATEa at the very beginning.
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10.3 System Timer
A central hardware component is the clock chipclock chip

timer interrupt
which regularly causes a timer interrupt.

By adding a timer handler, the kernel can regularly check whether some administrative
action is necessary. e most important action is calling the scheduler: Without the timer
handler we would have to live without preemptive multi-tasking.

ere are many other tasks for the timer handler, for example we will use it to keep
track of time in our system. Every time the timer handler runs, we will increment a
system_ticksa variable that must be initialized at system start. system_timea will be
set to Unix time (the seconds since the Unix epochUnix epoch , 1 January 1970, 00:00:00 UTC) so that
we can properly display the date and time and update timestamps in the filesystem.

[338a] ⟨global variables 92b⟩+≡ (44a) ◁ 328b 339c ▷
unsigned int system_ticks = 0; // updated 100 times a second
unsigned int system_time; // unix time (in seconds)

Defines:
system_ticks, used in chunks 306d, 311a, 342, and 343b.
system_time, used in chunks 342c, 343b, 475c, 478b, and 605a.

10.3.1 Seing the Frequency
Initially the clock chip is pre-set to a weird frequencytimer frequency (≈ . Hz), we change that to
100 Hz when the system starts. e function

[338b] ⟨function prototypes 45a⟩+≡ (44a) ◁ 337a 340d ▷
void timer_phase (int hz);

adjusts the timer’s frequency: It first announces that it wants to set the frequency by
sending 0x36 to port IO_CLOCK_COMMANDd and then sends the lower and the higher eight
bits of the divisor 1193180 / hz to the port IO_CLOCK_CHANNEL0d which is responsible for
configuring timer 0 (the system timer) [vG94, p. 794].

[338c] ⟨function implementations 100b⟩+≡ (44a) ◁ 337b 340e ▷
void timer_phase (int hz) {

// source: http://www.osdever.net/bkerndev/Docs/pit.htm
int divisor = 1193180 / hz; // calculate divisor
outportb (IO_CLOCK_COMMAND, 0x36); // set command byte 0x36
outportb (IO_CLOCK_CHANNEL0, divisor & 0xFF); // set low byte of divisor
outportb (IO_CLOCK_CHANNEL0, divisor >> 8); // set high byte of divisor

};
Defines:

timer_phase, used in chunks 338b and 339a.
Uses IO_CLOCK_CHANNEL0 338d, IO_CLOCK_COMMAND 338d, and outportb 133b.

with
[338d] ⟨constants 112a⟩+≡ (44a) ◁ 327c 339b ▷

#define IO_CLOCK_COMMAND 0x43
#define IO_CLOCK_CHANNEL0 0x40
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Defines:
IO_CLOCK_CHANNEL0, used in chunk 338c.
IO_CLOCK_COMMAND, used in chunk 338c.

When the kernel runs through the initialization steps, we let it set the frequency and
install the timer interrupt handler (whose implementation we will discuss soon) for in-
terrupt number IRQ_TIMER (0). While we’re at it, we also query the current date and
time.

[339a]⟨install the timer 339a⟩≡ (45b)
timer_phase (100); // set timer to 100 Hz (100 interrupts/second)
install_interrupt_handler (IRQ_TIMER, timer_handler);
enable_interrupt (IRQ_TIMER);
⟨read date and time from CMOS 339d⟩

Uses enable_interrupt 140b, install_interrupt_handler 146c, IRQ_TIMER 132, timer_handler 342b,
and timer_phase 338c.

10.3.2 Reading the Date and Time
Since it is a somewhat related task, we also query the PC’s CMOS chip to find out what
date and time it is [vG94, p. 746–747]:

[339b]⟨constants 112a⟩+≡ (44a) ◁ 338d 343a ▷
#define IO_CMOS_CMD 0x70
#define IO_CMOS_DATA 0x71

Defines:
IO_CMOS_CMD, used in chunks 339d and 552c.
IO_CMOS_DATA, used in chunks 339d and 552c.

[339c]⟨global variables 92b⟩+≡ (44a) ◁ 338a 344b ▷
unsigned long system_start_time = 0;

Defines:
system_start_time, used in chunks 340b and 342c.

[339d]⟨read date and time from CMOS 339d⟩≡ (339a) 340b ▷
// code adapted from http://wiki.osdev.org/CMOS
outportb (IO_CMOS_CMD, 0); byte second = inportb (IO_CMOS_DATA);
outportb (IO_CMOS_CMD, 2); byte minute = inportb (IO_CMOS_DATA);
outportb (IO_CMOS_CMD, 4); byte hour = inportb (IO_CMOS_DATA);
outportb (IO_CMOS_CMD, 7); byte day = inportb (IO_CMOS_DATA);
outportb (IO_CMOS_CMD, 8); byte month = inportb (IO_CMOS_DATA);
outportb (IO_CMOS_CMD, 9); word year = inportb (IO_CMOS_DATA);
outportb (IO_CMOS_CMD, 0x32); word century = inportb (IO_CMOS_DATA);

Uses hour, inportb 133b, IO_CMOS_CMD 339b, IO_CMOS_DATA 339b, and outportb 133b.

e values that the CMOS chip returns are BCD BCD-encoded (binary-coded decimal; each
half-byte encodes a decimal digit, from 0 = 0000b to 9 = 1001b), so they have to be converted
so that they make sense: To convert one BCD byte into a proper number, take the upper
half times 10 ((bcd >> 4) * 10) and add the lower half (bcd & 0x0f):
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[340a] ⟨macro definitions 35a⟩+≡ (44a) ◁ 279a 471d ▷
#define CONVERT_BCD(bcd) (((bcd >> 4) * 10) + (bcd & 0x0f))

Defines:
CONVERT_BCD, used in chunk 340b.

[340b] ⟨read date and time from CMOS 339d⟩+≡ (339a) ◁ 339d
second = CONVERT_BCD (second); minute = CONVERT_BCD (minute);
hour = CONVERT_BCD (hour); day = CONVERT_BCD (day);
month = CONVERT_BCD (month); century = CONVERT_BCD (century);
year = CONVERT_BCD (year) + 100 * century;
system_start_time = unixtime (year, month, day, hour, minute, second);
printf ("Current time: %4d/%02d/%02d %02d:%02d:%02d\n",

year, month, day, hour, minute, second);
Uses CONVERT_BCD 340a, hour, printf 601a, system_start_time 339c, and unixtime 340e.

e year is only stored with two digits (e. g., 14 for the year 2014), so we have to add
100 * century. Some CMOS chips return the hour in “12 hour time”. For example, they
would represent the hour value 23 as 11 and set the highest bit to indicate “pm” time. A
formula that can cope with both types of BIOS is

[340c] ⟨alternative hour transformation 340c⟩≡
hour = ( (hour & 0x0F) + (((hour & 0x70) / 16) * 10) ) | (hour & 0x80);

—we do not use it since qemu returns “24 hour time”. We need functions
[340d] ⟨function prototypes 45a⟩+≡ (44a) ◁ 338b 342a ▷

ulong unixtime (int year, int month, int day, int hour, int minute, int second);
void rev_unixtime (ulong unixtime, short *year, char *month, char *day,

char *hour, char *minute, char *second);

that convert between Unix time (seconds since 01/01/1970) and a time structure with year,
month, day, hour, minute and second. You can skip the implementation of the following
two functions since they are neither prey to look at nor do they tell you anything about
operating systems.

[340e] ⟨function implementations 100b⟩+≡ (44a) ◁ 338c 341 ▷
ulong unixtime (int year, int month, int day, int hour, int minute, int second) {

// Source code taken from http://de.wikipedia.org/wiki/Unixzeit,
// variable and function names translated to english
const short days_since_start_of_year[12] =

{0,31,59,90,120,151,181,212,243,273,304,334};
unsigned long years=year-1970;
int leapyears=((year-1)-1968)/4 - ((year-1)-1900)/100 + ((year-1)-1600)/400;

ulong unix_time = second + 60*minute + 60*60*hour +
(days_since_start_of_year[month-1]+day-1)*60*60*24 +
(years*365+leapyears)*60*60*24;

if ( (month>2) && (year%4==0 && (year%100!=0 || year%400==0)) )
unix_time+=60*60*24; // leap day?

return unix_time;
}
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Defines:
unixtime, used in chunk 340.

Uses hour and ulong 46b.

e function rev_unixtime is not used in the U kernel at all, however the user mode
program ls uses it, so we show it here for completeness. yearlength is a helper function
that returns the length of a year (either 364 or 365 for a leap year).

[341]⟨function implementations 100b⟩+≡ (44a) ◁ 340e 342b ▷
short yearlength (short year) {

int res = 364;
if ( ((year % 4 == 0) && ( year % 100 != 0)) || (year % 400 == 0) ) res++;
return res;

}

void rev_unixtime (ulong utime, short *year, char *month, char *day,
char *hour, char *minute, char *second) {

char days_per_month[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
int days = utime / (60*60*24); char sec = utime % 60;
char min = (utime/60) % 60; char hou = (utime/(60*60)) % 24;

int yy = 1970;
if (days > 15706) { // speed up calculation for 2013 or later

days -= 15706;
yy += 43;

}

for (;;) {
int l = yearlength (yy);
if (days ≥ l) {

yy++;
days -= (l+1); // distance between two years is l+1, not l

} else break;
}

int mon = 1;
for (;;) {

int l = days_per_month[mon];
if ((l == 2) && (yearlength (yy) == 365)) l++;
if (days ≥ l) {

mon++;
days -= l;

} else break;
}

days++;
*year = yy; *month = mon; *day = days; // return results
*hour = hou; *minute = min; *second = sec;

}
Uses hour, min, sec, and ulong 46b.
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10.3.3 Implementation of the Timer Handler
is is our timer interrupt handler:

[342a] ⟨function prototypes 45a⟩+≡ (44a) ◁ 340d 345b ▷
void timer_handler (context_t *r);

It executes all the timer tasks (as defined in the code chunk ⟨timer tasks 306d⟩ and updates
the status line.

[342b] ⟨function implementations 100b⟩+≡ (44a) ◁ 341 344c ▷
void timer_handler (context_t *r) {

char buf[80]; // temporary buffer, can be used by all timer tasks
⟨timer tasks 306d⟩

// show current terminal, free frames, current_as
sprintf ((char*)&buf, "tty%d FF=%04x AS=%04d", cur_vt, free_frames, current_as);
_set_statusline ((char*)&buf, 48);

}
Defines:

timer_handler, used in chunks 339a and 342a.
Uses _set_statusline 337b, context_t 142a, cur_vt 326a, current_as 170b, free_frames 112b, and sprintf 601a.

10.3.4 Tasks for the Timer
We need the timer handler to do several things which we collect in the ⟨timer tasks 306d⟩
code chunk. e first and easiest task is to modify the system uptime:

[342c] ⟨timer tasks 306d⟩+≡ (342b) ◁ 311a 342d ▷
system_ticks++; // one more timer interrupt
system_time = (uint)(system_ticks/100) + system_start_time; // frequency: 100 Hz

Uses system_start_time 339c, system_ticks 338a, and system_time 338a.

Next, it calls the scheduler. It also displays a quickly changing progress character in the
right top corner of the screen so that users can check that the scheduler is still active. If
those signs stop spinning, something has gone wrong.

[342d] ⟨timer tasks 306d⟩+≡ (342b) ◁ 342c 343b ▷
char sched_chars[] = "|/-\\"; // scheduler activity
static short sched_c = 0; // next character to display

if (system_ticks % 5 == 0) {
// cycle |/-\\- to show scheduler calls in upper right corner
POKE (VIDEORAM + 79*2, sched_chars[sched_c]);
sched_c++; sched_c %= 4;
scheduler (r, SCHED_SRC_TIMER);

};
Uses POKE 117, sched_chars, SCHED_SRC_TIMER 343a, scheduler 276d, system_ticks 338a, and VIDEORAM 327b.
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As mentioned earlier, the timer handler does not call schedulerd if a resign action is
currently active. When it does call the scheduler, it provides a second SCHED_SRC_TIMERa
argument to indicate that it was himwho called. (e alternative is that syscall_resigna
called the scheduler which it announces by using SCED_SRC_RESIGN.)

[343a]⟨constants 112a⟩+≡ (44a) ◁ 339b 344a ▷
#define SCHED_SRC_TIMER 0
#define SCHED_SRC_RESIGN 1

Defines:
SCHED_SRC_RESIGN, used in chunks 216b, 221a, and 278a.
SCHED_SRC_TIMER, used in chunk 342d.

In the status line at the boom of the screen we display the current time; we want to
update this display approximately every other second:

[343b]⟨timer tasks 306d⟩+≡ (342b) ◁ 342d 546e ▷
short int sec,min,hour;

if (system_ticks % 100 == 0) { // Every 100 clocks (approx. 1 second)
hour = (system_time/60/60)%24; // display the time
min = (system_time/60)%60;
sec = system_time%60;
sprintf ((char*)&buf, "%02d:%02d:%02d", hour, min, sec);
_set_statusline ((char*)&buf, 72);

}
Uses _set_statusline 337b, hour, min, sec, sprintf 601a, system_ticks 338a, and system_time 338a.

ere are only two further places in the book where ⟨timer tasks 306d⟩ gets an addition;
we have decided not to place them in this chapter but at the places where the need for
them arises. ese are the chunks:

• Updating the counters for the page replacement code, p. 306
• Releasing the swapper_lockf so that the swapper process can enter the next loop,

p. 311

10.4 Serial Ports
U supports two serial ports. It uses the first one to copy the regular output to a serial
console and also writes kernel debug messages to that console. When running in a PC
emulator which can redirect serial ports, these messages can be displayed in the terminal
window from which U was started. e Makefile in the bin-build/ directory calls qemu
with a -serial option and a pipe into the tee command

-serial mon:stdio | tee ulix.output

to simultaneously display the serial output in the terminal window and write it into a log
file ulix.output.
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e following code is borrowed from the xv6 operating system [CKM12], especially
from source files uart.c and console.c. We modified the uartinitc function so that it
can deal with two serial ports.

Several I/O ports are used for sending data to the serial ports or reading from them, the
base port numbers are the following:

[344a] ⟨constants 112a⟩+≡ (44a) ◁ 343a 363a ▷
#define IO_COM1 0x3f8
#define IO_COM2 0x2f8

Defines:
IO_COM1, used in chunks 336b and 344c.
IO_COM2, used in chunks 344c, 345c, and 519d.

We use the array uartb to keep track of available ports.
[344b] ⟨global variables 92b⟩+≡ (44a) ◁ 339c 363b ▷

static int uart[2]; // do we have serial ports?
Defines:

uart, used in chunks 336b, 344c, 345c, and 519d.

[344c] ⟨function implementations 100b⟩+≡ (44a) ◁ 342b 345c ▷
void uartinit (int serport) {

char *p;
word io_com, irq;
switch (serport) {

case 1: io_com = IO_COM1; irq = IRQ_COM1; break;
case 2: io_com = IO_COM2; irq = IRQ_COM2; break;
default: return;

}

outportb (io_com+2, 0); // Turn off the FIFO
// set 9600 baud, 8 data bits, 1 stop bit, parity off.
outportb (io_com+3, 0x80); // Unlock divisor
outportb (io_com+0, 115200/9600);
outportb (io_com+1, 0);
outportb (io_com+3, 0x03); // Lock divisor, 8 data bits.
outportb (io_com+4, 0);
outportb (io_com+1, 0x01); // Enable receive interrupts.

// If status is 0xFF, no serial port.
if (inportb (io_com+5) == 0xFF) { return; }
uart[serport-1] = 1;

// Acknowledge pre-existing interrupt conditions; enable interrupts.
inportb (io_com+2);
inportb (io_com+0);
enable_interrupt (irq);

}
Defines:

uartinit, used in chunk 345.
Uses enable_interrupt 140b, inportb 133b, IO_COM1 344a, IO_COM2 344a, IRQ_COM1 132, IRQ_COM2 132,

outportb 133b, and uart 344b.
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We start the serial port when booting:
[345a]⟨setup serial port 345a⟩≡ (44b)

uartinit (1);
Uses uartinit 344c.

To simplify disk access, we provide something we call a serial hard disk serial
hard disk

(see Chapter
13.4). Using the second serial port (of a virtual machine) we allow U to connect to an
external process which imitates a hard disk controller. U can send simple commands
to that process and in return will be served with data (1024 byte sectors) out of a hard disk
image file.

[345b]⟨function prototypes 45a⟩+≡ (44a) ◁ 342a 361a ▷
void uart2putc (int);

[345c]⟨function implementations 100b⟩+≡ (44a) ◁ 344c 361c ▷
void uart2putc (int c) {

// taken from the xv6 operating system [CKM12], uart.c
if (!uart[1]) return; // leave if we have no second serial port
// wait until COM2 is ready to receive another byte
for (int i = 0; i < 128 && !(inportb (IO_COM2+5) & 0x20); i++) ;
outportb (IO_COM2+0, c); // write the byte

}
Defines:

uart2putc, used in chunks 345b, 517, 518, and 521a.
Uses inportb 133b, IO_COM2 344a, outportb 133b, and uart 344b.

(is function is almost identical to uartputcb except that it uses IO_COM2a instead
of IO_COM1a, see page 336.)

[345d]⟨setup serial hard disk 345d⟩≡ (45c) 520a ▷
uartinit (2);

Uses uartinit 344c.

e interrupt handler for the second serial port will be implemented in Chapter 13.4.
We need no handler for the first port because we only write to it.





11
Synchronization

In previous chapters, we had a look at the basic abstractions implemented by the operating
system: virtual memory abstracting physical memory and virtual processors (threads) ab-
stracting physical processors. Virtual processors may now execute concurrent programs
in which the concurrent threads oen have to interact in some specific way. ere are
two basic interaction paerns:
• A competitive interaction paern competitive

interaction
occurs when two threads want to perform the same

operation, however only one of them is permied to do so at the same time. is
means that one threadmust go first and the other must wait until the first has finished
his operation. Classic examples of this interaction paern are accesses to exclusive
resources or critical code sections. In this interaction paern, the competing threads
oen don’t know of each other so that some mediator (i. e., the operating system) has
to synchronize the threads in a convenient and fair manner.

• A cooperative interaction model cooperative
interaction

occurs when two threads know each other and want
to exchange information in a well-defined way. is interaction paern occurs for
example in client/server-type systems where one thread requests information which
another thread provides.

e question for U is: Which thread synchronization abstractions make sense and how
can they be implemented?

Depending on the basic implementation mechanisms, we distinguish between memory-
based synchronization abstractions and message-based synchronization abstractions. e
most relevant ones for us are the former ones which are based on the availability of shared
memory between threads. ey can therefore be utilized in those operating systems using
service combinations which primarily depend on the availability of shared memory.
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Outline
We first present the central abstraction of competitive thread synchronization in Sec-
tion 11.1. en we go through different ways of implementing critical sections. While
there are some purely soware-basedmethods for achievingmutual exclusion that require
no hardware support, they are rarely used; thus we immediately turn to more low-level
and more practical synchronization techniques based on special hardware operations in
Section 11.2.

We then climb again up the abstraction ladder and look at a higher-level concepts: Se-
maphores can be regarded as an operating system service which is more useable than
low-level hardware. ey are treated in Section 11.3. We will discuss the implementa-
tion of these concepts in U as we go along. We present a standard implementation of
semaphores based on atomic hardware operations.

en we look at a specialization of semaphores, the mutexes (or locks), and show their
implementation in U in Sections 11.4 (for the kernel) and 11.5 (for threads in user mode).
Finally, Section 11.6 discusses the important topic of kernel-level synchronization which
is needed in situations where interrupt handlers and threads share common data—in those
situations we cannot use blocking mutexes or semaphores because an interrupt handler
must not block.

11.1 Critical Sections
We start with explaining the central concept: the critical section.

11.1.1 The Case of the Lost List Element
Consider an implementation of a linked list. is could for example be the implementation
of the ready queue within the dispatcher (for the real implementation see Section 6.2.2).
Imagine a list element consists of the real content of the element together with a pointer to
the next list element. Adding an item to the front of the queue is usually implemented like
add_to_front does it in the following example program and as is illustrated in Figure 11.1.

0start

step 1
step 2new element

Figure 11.1: Example of adding an element to the front of a linked list.
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[349]⟨code example: adding an item to a linked list 349⟩≡
typedef struct element {

int value;
struct element *next;

} element;

void add_to_front (element **first, element *e) {
e->next = *first; // operation 1
*first = e; // operation 2

}

void show (element *first) {
int i = 0; while (first != 0) {

printf ("%d: contains %d\n", i++, first->value); first = first->next;
}

}

int main () {
element a, b, c; a.value = 100; a.next = &b; b.value = 101; b.next = 0;
element *list = &a; show (list); // list = [ 100, 101 ]
c.value = 102;
add_to_front (&list, &c); show (list); // list = [ 102, 100, 101 ]

}

First, the next pointer of the new element is set to the “old” front of the list. Second, the
global list pointer is set to the “new” front of the list. If you follow the final pointer
structure you will see that the new list element has been correctly inserted at the front of
the list.

e claim is now that the list implementation from above can cause problems if multiple
threads try to put different elements into the list at the same time. To see this, consider
Figure 11.2. ere, two threads T and T invoke the implementation of add_to_front from
above at almost the same time. e scheduling of the two threads is somewhat unfortunate
in that T is interrupted aer the first operation, then T adds its element, and then thread
T can finalize its insertion by executing the second operation. In total there are four
pointer assignments, which are reflected in the figure. If you follow the final pointer
structure of the ready queue, you will see that one element (namely that of thread T) has
been lost: It is not contained in the list anymore.

e reason for this is the unfortunate scheduling of themachine instructions. Operation
2 of thread T overwrites the effect of the two operations of thread T, because it implicitly
assumes that nothing has happened aer it executed its own operation 1. ese problems
would have been avoided if there were a guarantee that whenever some thread executes
operation 1 it can also execute operation 2 without being interrupted.

11.1.2 Defining Critical Sections
A critical section is a sequence of instructions of a program which access shared resources.
In the example above, the linked list is the shared resource shared resource. Manipulation of shared re-
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0start

step 1
step 2
step 3
step 4

new element (1)

new element (2)

e1->next = *start;

e2->next = *start;

*start = e2;

*start = e1;

T1:
T2:
T2:
T1:

Figure 11.2: Concurrent threads trying to add two elements to a linked list: e list can
lose elements when operations are interleaved in a special way.

sources should be protected by an entry and exit protocolentry/exit
protocol

. ese should guarantee mutual
exclusion between critical sections. is is defined as follows:

Definition 1 (mutual exclusion) At any time there is at most one thread executing within
its critical section.

Note that critical sections are something very abstract. ey have a meaning at almost
any level of abstraction, be it operating system, user program or programming language
level. When dealing with critical sections it is merely necessary to mark the beginning
and the end of the critical sections. e runtime system must then guarantee that no two
critical sections at the same level of abstraction are executed concurrently.

In the following code examples, we mark beginning and end of critical sections with the
two macros ENTER_MUTEX and EXIT_MUTEX. is is an abbreviation for entering and exiting
mutual exclusion. So if we write our list operation from above again, we should mark the
critical section in the following way:

[350] ⟨code example: adding an item to a linked list within a critical section 350⟩≡
void add_to_front (element **first, element *e) {

ENTER_MUTEX ();
e->next = *first; // operation 1
*first = e; // operation 2
EXIT_MUTEX ();

}

Wewill learn about many ways to implement critical sections in this chapter. For the time
being, imagine a global token which must be acquired before a thread can enter its critical
section.

What we want to achieve is the behavior that you can see in Figure 11.3: Assume that
there are two threads which share a resource, e. g., a memory location in the process
that both threads belong to. Both threads contain code that performs an update on that
memory address: It reads the value stored at the address, performs some calculation and
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Thread A Thread B

ENTER_MUTEX

EXIT_MUTEX

ENTER_MUTEX

EXIT_MUTEX

A in critical 
section B blocked

B in critical 
section

time

Figure 11.3: Simple example of mutual exclusion between two threads. Using a global
token, one thread has to wait until the other thread returns the token to enter
its critical section.

then writes back a new value to the same location. e whole code range from reading
it in to writing it back is the critical section, and we want to make sure that they cannot
overlap, turning the code block into an atomic action.

One of the threads (in the figure, it is thread A) will first reach the entry point of its
critical section. Before it enters, it calls ENTER_MUTEX. Since at that time no other thread is
in its own critical section, it can enter. Shortly aerwards, the other thread (thread B) also
arrives at the entry point of its critical section: It must not pass, because thread A is still
executing inside the critical section. Since it cannot continue, it will block.

Aer some time has passed, thread A finishes the work in the critical section and calls
EXIT_MUTEX. Now we can let thread B pass and enter its critical section. Later it finishes
the work and also leaves, calling EXIT_MUTEX, too.

You can think of the mutex as some global token that only one of the threads can pos-
sess and which is required to enter the critical section. Application programmers arrive
at this situation all the time when they write multi-threaded programs, they use the syn-
chronization features that the operating system provides, and our task is to implement
this mechanism.
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11.2 Hardware-based Synchronization
In this section we will consider synchronization based on explicit hardware support. We
will look at the simplest thinkable mechanism first and then at more refined ways which
are based on special CPU operations.

11.2.1 Disabling Interrupts
e simplest way to achieve mutual exclusion on a single CPU is to switch off the in-
terrupts, which is also oen called interrupt masking.interrupt

masking
Every modern multi-purpose CPU

which has an interrupt mechanism allows to disable certain or all interrupts. e effect
is that the interrupt handler is not invoked when the interrupt is signaled. Hence, asyn-
chronous interrupts, which are usually the source for non-atomicity in critical sections,
can be effectively eliminated.

Conceptually, everyCPU should offer instructions like INTERRUPTS_OFF and INTERRUPTS_ON.
We have already defined code chunks ⟨disable interrupts 47a⟩ and ⟨enable interrupts 47b⟩
which perform these tasks on an Intel x86 processor via the assembler instructions cli

cli, sti (clear interrupt flag) and sti (set interrupt flag).
Whenever a kernel programmer needs to ensure mutual exclusion of a critical section

in system mode, he will now have to write the following.
[352] ⟨example: mutual exclusion using interrupt masking 352⟩≡

⟨disable interrupts 47a⟩
// critical section
⟨enable interrupts 47b⟩

Note that masking interrupts can only be performed in system mode. (If normal pro-
grams could invoke the interrupt masking operations in user mode then they could mo-
nopolize the CPU.) Also, interrupts should only be disabled for relatively short periods
of time. Otherwise, interrupts which are only flagged for a certain period of time like
asynchronous I/O interrupts could be missed, leading to a possible lost wakeup (discussed
later in Section 11.6.4.6). So overall, disabling interrupts is only advisable for rather short
code sections within the kernel. Another disadvantage of this mechanism is that it only
works for monoprocessor systems since turning off interrupts on one CPU does not affect
the code executed on another CPU which could access shared memory data structures
concurrently.

A trick makes is possible to improve the situation slightly: Using a global bit busy as a
lock, we can extend the duration within a critical section without losing interrupts. e
idea is to use the global lock bit as an indication whether some thread is within the critical
section and just use interrupt masking to access this bit. e entry and exit protocols
ENTER_MUTEX and EXIT_MUTEX for critical sections can then be programmed as follows.



11.2 Hardware-based Synchronization 353

[353]⟨example: mutual exclusion using global lock bit and interrupt masking 353⟩≡
global boolean busy = false; // no thread in critical section

void ENTER_MUTEX () {
⟨disable interrupts 47a⟩
while (busy == true) { // someone else in critical section
⟨enable interrupts 47b⟩
NOP; // briefly leave interrupts on
⟨disable interrupts 47a⟩

}
busy = true; // I am in the critical section
⟨enable interrupts 47b⟩

}

void EXIT_MUTEX () {
busy = false; // I've left the critical section

}

Two processes wishing to enter their critical sections will “race” for the lock bit during
the entry protocol. e process which is able to switch off interrupts first will be able to
grab the lock bit (in case it is free). If it is not free, some other process is in its critical
section. So we have to turn on the interrupts at least for a short period of time to allow
that process to interrupt and exit the critical section.

11.2.2 Using Special Hardware Instructions
Most processors today offer machine instructions which are specially tailored towards
synchronization so that it can be achieved without having to mess around with the inter-
rupts. e most common such instructions are either called test-and-set or lock. ey are
designed is such a way that mutual exclusion can be achieved by “grabbing a token”—that
is similar to the use of the global lock bit above.

11.2.2.1 Test-and-Set

Assume you have a global lock bit busywhich is initially false. e test-and-set instruction
takes two arguments: the first is the name (or address) of the global lock bit, the second is
a local variable. Invoking Test-and-Set (&busy, &local) then results in the following two
actions performed as one atomic (i. e., uninterrupted) operation:
1. e value of locked_bit is copied into local (“test”), and
2. the locked_bit is set to true (“set”).

In pseudocode this can be expressed as:

void Test-and-Set (*busy, *local) {
*local = *busy;
*busy = true;

}
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e idea of this operation is that aer it has been performed you can safely check
whether you have “grabbed the token” or not. If you have grabbed the token, then the
result of the operation (i. e., the value stored in local) should be false since it reflects the
value of busy before it was set to true.

As an example for a “real” Test-and-Set operation, here is the description of the gcc
built-in function __sync_lock_test_and_seta [Int01, section 7.4.5, p. 61] which can be
used in the way described above. e semantics of the function is as follows:

[354a] ⟨compiler-internal functions 354a⟩≡ 391b ▷
int __sync_lock_test_and_set (int *variable, int value) {

int tmp = *variable; // save old value
*variable = value; // set new value
return tmp; // return old value

}

e compiler (and in the end the processor) guarantees that all of this is executed atomi-
cally.

11.2.2.2 Lock Instruction

Another common machine instruction you can find is called Lock. Our presentation here
follows Nehmer and Sturm [NS01] who introduce it in the form of a boolean function
which implicitly refers to the global lock bit busy.

In pseudocode, Lock does the following:

boolean Lock () {
tmp = busy;
busy = true;
return tmp;

}

In effect, Lock does the same as Test-and-Set in that it copies the value of busy before it is set
to true and then returns this value. Note again that all this is done in an uninterruptible
way.

11.2.2.3 Spin Locks

Nowwe can implement ENTER_MUTEX and EXIT_MUTEXwithout having to use privileged hard-
ware instructions. We first have a look at the implementations based on Test-and-Set.

[354b] ⟨example: synchronization using Test-and-Set 354b⟩≡
boolean busy = false;

void ENTER_MUTEX() {
repeat {

Test-and-Set (&busy, &local);
} until (local == false);

}
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void EXIT_MUTEX() {
busy = false;

}

Here is the implementation based on Lock.
[355]⟨example: synchronization using Lock 355⟩≡

void ENTER_MUTEX() {
while (Lock () == true) ; // loop over empty instruction

}

void EXIT_MUTEX() {
busy = false;

}

Note that both implementations do not require privileged machine instructions, thus such
a mechanism could be implemented completely in user mode, for example as part of a
library that supplies service functions for threads.

e construction using Test-and-Set and Lock in the preceding examples is called a spin lockspin
lock. In such a spin lock, threads waiting to enter their critical section must “spin” in a
loop until they are allowed to enter. A spin lock is a form of busy waiting busy waitingwhich is oen
encountered in low-level synchronization. Busy waiting however is a very inefficient
form of waiting since CPU cycles are used up without actually contributing to any form
of computation. Imagine howmany machine instructions a 3 GHz CPU spinning in a loop
could have donated to some computation. So similar to interrupt masking, spin locks are
only allowed if critical sections are relatively short. e advantage of spin locks over
interrupt masking however is that they can be performed without switching to kernel
mode.

11.2.3 Monoprocessor vs. Multiprocessor Synchronization
To achieve mutual exclusion on a monoprocessor system, it is sufficient to turn interrupts
off when entering and turning them on again when leaving the critical section. We will
illustrate this strategy for performing mutual exclusion within U in Section 11.6. As
noted above, however, simply turning interrupts off is not sufficient on a multiprocessor
system because disabling interrupts on one CPU does not prevent another CPU from ac-
cessing a shared data structure. In a multiprocessor system we additionally have to use
spin locks. e strategy is as follows:
1. First we achieve local mutual exclusion per CPU by disabling interrupts.
2. en we go into a spin lock to achieve global mutual exclusion over all CPUs.
Is achieving mutual exclusion at the lowest level in multiprocessor systems necessarily

as complicated as this? Find out yourself by solving exercise 30.
It is generally advisable to avoid busy waiting whenever possible. At the lowest level

of abstraction (e. g., synchronizing CPUs on the hardware level) busy waiting cannot be
totally avoided. However, on higher levels of abstraction it generally can be avoided using
more abstract synchronization primitives like semaphores.
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11.2.4 Nested Critical Sections
In processor systems that support multiple interrupt levels turning off interrupts is not
as easy as it may seem because interrupt handlers (and therefore critical sections) can be
invoked in a nested fashion.

Assume for example, an interrupt handler at interrupt level 3 is executed on a CPU.
During execution of that handler all interrupts at level 3 or lower are disabled, however,
an interrupt at higher priority 5 may kick in and its handler be executed. It disables
interrupts up to level 5. However, when this interrupt handler returns, it would be a
bad idea to enable interrupts altogether. It rather must restore the interrupt level that was
active before the interrupt occured.

A similar situation happens if (on purpose or by accident) one critical section is declared
within another such as in the following code example:

[356] ⟨example: nested critical sections 356⟩≡
f() {

// higher level critical section
ENTER_MUTEX ();
g();
EXIT_MUTEX ();

}

g() {
// lower level critical section
ENTER_MUTEX ();
// do something critical
EXIT_MUTEX ();

}

If we use interrupt masking as synchronization primitive and these markers are nested,
it must be assured that EXIT_MUTEX enables interrupts only when it is called in f() and not
in g(). e general rule is: e EXIT_MUTEX must restore the interrupt level that was ac-
tive before its corresponding ENTER_MUTEX was called. In systems such as U that do not
distinguish interrupt levels (i. e., interrupts are either on or off completely), inner critical
sections are superseded by outer critical sections, i. e., the outermost critical section dis-
ables interrupts and finally enables them again. All inner critical sections do not change
anything with the interrupt seings.

We now show how to realize such a “nestable” ENTER_MUTEX and EXIT_MUTEX in code. We
assume a system (such as U) that does not distinguish interrupt levels (i. e., interrupts
are either on or off completely). In such environments storing the prior interrupt level
burns down to storing a counter representing the nexting level. We use a global variable
to store the current level of nesting.
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[357a]⟨global variables (unused) 357a⟩≡
int if_nested_level = 0;

Defines:
if_nested_level, used in chunk 357.

Whenever we enter and exit a critical section, we flag that code appropriately. Here is a
first implementation that assumes that interrupts are on when calling the chunk for the
first time. It disables the interrupts and increments the nesting level. Note that disabling
interrupts using cli is idempotent. We only turn interrupts back on again if the nesting
level has reached its initial value again.

[357b]⟨nestable begin critical section (first version) 357b⟩≡
⟨disable interrupts 47a⟩ // invoke cli
if_nested_level++;

Uses if_nested_level 357a.

[357c]⟨nestable end critical section (first version) 357c⟩≡
if_nested_level--;
if (if_nested_level == 0) {
⟨enable interrupts 47b⟩ // invoke sti

}
Uses if_nested_level 357a.

In case we do not know whether interrupts were on or off before we invoke the chunk
for the first time, we can use the following (slightly beer) code. It remembers the state
of the first invocation of the chunk and sets the value that was active during that instance
when returning for the last time.

[357d]⟨nestable begin critical section 357d⟩≡
{ // create scope for scope-local variable eflags

int eflags;
asm volatile (

"pushf \n" // push EFLAGS
"cli \n" // disable interrupts
"movl (%%esp), %0 \n" // copy to eflags variable
"addl $4, %%esp \n" // restore stack pointer

: "=r"(eflags) );
if (if_nested_level == 0)

if_state = (eflags >> 9) & 1; // bit 9 of EFLAGS is IF
if_nested_level++;

}
Uses if_nested_level 357a and if_state 383b.

[357e]⟨nestable end critical section 357e⟩≡
if_nested_level--;
if (if_nested_level == 0 && if_state == 1) {
⟨enable interrupts 47b⟩

}
Uses if_nested_level 357a and if_state 383b.

In exercise 31 we discuss the case of nestable critical sections onmultiprocessor systems.
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11.3 Semaphores
As seen above in Section 11.2.2, the simplest way of implementing blocking is busy wai-
ting. However, that is a rather inefficient way to implement blocking as it consumes CPU
cycles that could have been used for threads that are ready to run. We can avoid it by of-
fering the right synchronization abstractions within the operating system. e operations
ENTER_MUTEX and EXIT_MUTEX can, for example, then directly influence the state of threads.
is is depicted in Figure 11.4 where three threads are scheduled onto two CPUs. In the
example, thread A enters its critical section while running on CPU 1 and thread B run-
ning on CPU 2 calls ENTER_MUTEX. Because A is already in its critical section, B must block.
Instead of waiting actively in a loop, it could go to sleep (change its state to blocked) and
allow a different ready-to-run thread C to run on CPU 2.

emost popular abstraction for synchronization in operating systems is thesemaphore semaphore.
e name stems from a special type of signal used in railway systems. ere, a critical
section is a single track railway line. At any time, at most one train is allowed to run on
such a line and so entering and exiting this part is governed by special signals. Note that
designing proper semantics for such signals is not as easy at it seems because the signals
at both ends must be synchronized. For example, it must be ensured that of two trains
concurrently approaching the signals from opposite ends only one is allowed to pass. Also,
leaving the critical section on one end must allow another follow-up train waiting at the
opposite end to enter the track, too.

Inspired by real-world semaphores, Edsger W. Dijkstra introduced semaphores as a
synchronization abstraction in his “THE” operating system in 1968 [Dij68]. e name
“THE” stands for “Technische Hogeschool Eindhoven” (Eindhoven University of Technol-

Thread A Thread B

ENTER_MUTEX

EXIT_MUTEX

ENTER_MUTEX

EXIT_MUTEX

A in critical 
section B blocked

B in critical 
section

time

Thread C

CPU 1 CPU 2

Figure 11.4: Avoiding busy waiting by running a different thread.
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ogy) where Dijkstra was a professor at that time. Ever since, Dijkstra evolved into one
of the most prominent and fascinating figures in computer science. Not only did he influ-
ence many of today’s programming languages through his work on the language ALGOL
(Algorithmic Language), but he also invented a lot of clever algorithms (like the famous
shortest path algorithm for graphs).

11.3.1 Semantics of Semaphores
A semaphore is an operating system abstraction offering two primitive operations called
P and V. e operation P (which can be read as “pass”, originally: dutch prolaag, probeer
te verlagen; try to reduce) [Wik, Dij] is invoked by a thread when it wishes to enter its
critical section. Conversely, the operation V (which can be read as “leaVe”, originally:
dutch verhogen, increase) is invoked when a process leaves its critical section.

A semaphore guarantees k-mutual
exclusion

k-mutual exclusion. e formal statement of this concept can
be defined as follows.

Definition 2 (k-mutual exclusion) If all threads properly encapsulate their critical section
with P and V, then the semaphore guarantees that at most k threads are in their critical
sections at the same time.

e concept of k-mutual exclusion is a generalization of simple mutual
exclusion

mutual exclusion for
which k = . e actual value of k must be passed to the semaphore upon initialization.

It is possible to break down k-mutual exclusion to specific semantics of the individual
semaphore operations P and V as follows:

Definition 3 (semantics of P and V ) Assume semaphore S is initialized with k. en the
operations P and V on S, wrien P (S ) and V (S ), have the following meaning:

• P (S ) blocks in case exactly k threads have passed P (S ) without passing V (S ).

• V (S ) deblocks a thread which is blocked at a P (S ) in case such a thread exists.

For k = , the operations P and V therefore clearly resemble the semantics of a mecha-
nism necessary to protect a single track railway line. More generally, they resemble the
semantics for protection signals of a k-track railway line segment.

11.3.2 Single Mutual Exclusion
e notion of k-mutual exclusion for k =  is oen simply called mutual exclusion or
mutex mutexfor short. e name “mutex” is also used for the semaphore that protects a simple
critical section where at most one thread is allowed to enter. Such a critical section can
be implemented easily with semaphores as follows.

[359]⟨example: classical mutual exclusion with semaphores 359⟩≡
Semaphore Mutex = 1; // initialization
// code of the thread
P (Mutex); // enter critical section
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// critical section
V (Mutex); // leave critical section
// continued code of the thread

Incidentally, this is exactly what we would need if we want to implement ENTER_MUTEX and
EXIT_MUTEX without busy waiting at the operating system level. e question of course is:
Can we implement semaphores without busy waiting?

11.3.3 Initialization of Semaphores
We now look at a simple implementation of semaphores at the operating system level.
ese semaphores are consequently called kernel level semaphoreskernel level

semaphores
. Semaphores at that

level basically encapsulate a counter and a list of threads. is list can be thought of as
being at the same level as the ready queue in the dispatcher. In fact, it implements one
type of blocked queue in the system (see Section 6.2.1.3).

We first declare the semaphore type, a structure consisting of a counter and a queue.
All declarations and functions on this type of semaphore are prefixed with kl_ to identify
them as kernel level semaphores and clearly separate them from user level semaphores.
We allow for additional “implementation” fields at the end of the semaphore structure
which are not of interest for the general idea of semaphores.

[360a] ⟨type definitions 91⟩+≡ (44a) ◁ 325b 360b ▷
typedef struct {

int counter;
blocked_queue bq;
⟨more kl_semaphore entries 363c⟩

} kl_semaphore;
Defines:

kl_semaphore, used in chunks 361–63 and 391a.
Uses blocked_queue 183a.

e structure kl_semaphorea is the internal representation of semaphores. In later code
we will refer to semaphores by a unique identifier instead of a pointer to such a structure.
Basically, this identifier will serve as a pointer into a global semaphore table implemented
later.

[360b] ⟨type definitions 91⟩+≡ (44a) ◁ 360a 365a ▷
typedef int kl_semaphore_id;

Defines:
kl_semaphore_id, used in chunks 361c, 362, 364, and 391a.

e function get_new_semaphoreb(k) returns the identifier of a new semaphore initialized
with k. e return value − is used as an error code meaning that something went wrong
during allocation. is usually means that the internal table is full, which is a bad sign.

We also provide a function to release a semaphore. Releasing it implies that all threads
which may be blocked on that semaphore are deblocked.

Here are the prototypes:
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[361a]⟨function prototypes 45a⟩+≡ (44a) ◁ 345b 361b ▷
kl_semaphore_id get_new_semaphore (int k);
void release_semaphore (kl_semaphore_id s);

11.3.4 Implementing P and V
e idea of the implementation of P and V is as follows. e counter of the semaphore
represents the remaining “potential” of the semaphore, i. e., the number of threads which
are still allowed to pass without being blocked. To actually block and deblock threads, we
can simply use the operations provided by the kernel level dispatcher (see Section 6.2.1.1
for the general description and Section 6.2.2.3 for the implementation).

We will name the functions wait_semaphorec (for P ) and signal_semaphore (for V ):
[361b]⟨function prototypes 45a⟩+≡ (44a) ◁ 361a 365d ▷

void wait_semaphore (kl_semaphore_id sid);
void signal_semaphore (kl_semaphore_id sid);

e idea of the operation P is to check the remaining potential of the semaphore and
block in case the potential is used up. To understand the condition under which a thread
is blocked (counter < 0), remember that a semaphore initialized with 1 allows one thread
to pass. Since the counter is decremented before the check, a condition counter < 1 would
not be correct.

Note that wemark the body of the implementations of P andV as critical sections. To see
why, you should explore the case of interrupts happening aer the counter manipulation
and the test of the counter value (or solve exercise 32). Since semaphores are synchro-
nization techniques on a higher level of abstraction than hardware mechanisms, it would
also be counter-intuitive if we could implement themwithout referring to any lower-level
synchronization primitive.

[361c]⟨function implementations 100b⟩+≡ (44a) ◁ 345c 362 ▷
void wait_semaphore (kl_semaphore_id sid) {

kl_semaphore sem = ⟨semaphore structure with identifier sid 363e⟩;
⟨begin critical section in kernel 380a⟩
sem.counter--;
if (sem.counter < 0) {

block (&sem.bq, TSTATE_LOCKED);
⟨resign 221d⟩

}
⟨end critical section in kernel 380b⟩

}
Defines:

wait_semaphore, used in chunks 361b and 391a.
Uses kl_semaphore 360a, kl_semaphore_id 360b, and TSTATE_LOCKED 180a.

e operation V is slightly simpler than P because there is no danger of a context switch.
e function just checks whether a thread is still blocked on the semaphore queue and
deblocks this thread if there is one.
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[362] ⟨function implementations 100b⟩+≡ (44a) ◁ 361c 364b ▷
void signal_semaphore (kl_semaphore_id sid) {

kl_semaphore sem = ⟨semaphore structure with identifier sid 363e⟩;
⟨begin critical section in kernel 380a⟩
sem.counter++;
if (sem.counter < 1) {

blocked_queue *bq = &(sem.bq);
thread_id head = bq->next;
if (head != 0) {

deblock (head, bq);
}

}
⟨end critical section in kernel 380b⟩

}
Defines:

signal_semaphore, used in chunk 391a.
Uses blocked_queue 183a, deblock 186b, kl_semaphore 360a, kl_semaphore_id 360b, and thread_id 178a.

e above implementation of semaphores is probably the simplest one but still leaves
some room for variation. For example, the implementation of the semaphore queue can be
performed in different ways, e. g. as a simple FIFO queue, but priority queues can be used,
too. e FIFO processing order is likely the one which is implicitly assumed most oen
when using semaphores, because it guarantees that the thread which has waited longest
is deblocked first.

11.3.5 User-Level Semaphores
Until now, we have discussed the implementation of kernel-level semaphores, i. e., sema-
phores that have the power to block and deblock kernel-level threads. If you are imple-
menting a user-mode thread library to realize user-level threads, you also may need a
synchronization abstraction such as semaphores. You could use kernel-level semaphores
for this purpose, but it is also possible to realize synchronization primitives that are tai-
lored to handle user-level threads: user-level semaphores.

To recapitulate the difference between kernel-level threads and user-level threads, have
a look again at Figure 7.3 on page 252. Kernel-level threads are virtual processors for user
programs, and it is even possible to map a user program to multiple kernel-level threads
(resulting in a virtual multiprocessor). But the power of such a virtual multiprocessor can
only be unfolded if the user mode program supports a multiprogramming abstraction in
user mode, such as a user-level thread library.

User-level semaphores are semaphores that block and deblock user-level threads. eir
design and implementation is equivalent to those at kernel level, however, they are imple-
mented in user mode, i. e., one step up the abstraction hierarchy. User-level semaphores
have counters, blocked queues etc. in a similar way as kernel-level semaphores. However,
these counters are simple integers in user space and the queues are the queues manipu-
lated in user space by the thread library. To build user-level semaphores, you can therefore
simply take the implementation of kernel-level semaphores and copy them into your user
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program, at least in large parts. e only notable difference is the implementation of crit-
ical sections. is will be discussed later when we discuss the general notion of kernel
synchronization.

11.3.6 Semaphores in U
e main effort to implement kernel level semaphores has already been done above. Here
we fill in the final gaps.

Although semaphores (like threads and virtual address spaces) can be allocated and
freed, we want to implement them without dynamic memory. us semaphores are held
in a large semaphore table called kl_semaphore_tableb. It is an array of kl_semaphorea
structures.

[363a]⟨constants 112a⟩+≡ (44a) ◁ 344a 365b ▷
#define MAX_SEMAPHORES 1024

Defines:
MAX_SEMAPHORES, used in chunks 363 and 364b.

[363b]⟨global variables 92b⟩+≡ (44a) ◁ 344b 364a ▷
kl_semaphore kl_semaphore_table[MAX_SEMAPHORES];

Defines:
kl_semaphore_table, used in chunks 363 and 364.

Uses kl_semaphore 360a and MAX_SEMAPHORES 363a.

ere’s a maximum number of semaphores that can be allocated in the kernel.
Since both used and unused semaphores are held in a table, we need additional informa-

tion to distinguish both. So each semaphore has a counter and a queue, but it also has an
additional field storing the semaphore state. e value false (0) means that the semaphore
entry is free.

[363c]⟨more kl_semaphore entries 363c⟩≡ (360a)
boolean used;

Now it’s also clear how we can initialize the fields.
[363d]⟨initialize kernel global variables 184d⟩+≡ (44b) ◁ 310g 516c ▷

for (int i = 0; i < MAX_SEMAPHORES; i++) {
kl_semaphore_table[i].counter = 0;
initialize_blocked_queue (&kl_semaphore_table[i].bq);
kl_semaphore_table[i].used = false;

}
Uses initialize_blocked_queue 183c, kl_semaphore_table 363b, and MAX_SEMAPHORES 363a.

Since we didn’t mention the semaphore table earlier, we need to fill in the mapping be-
tween the semaphore identifier sid and the semaphore structure in the table.

[363e]⟨semaphore structure with identifier sid 363e⟩≡ (361c 362 391a)
kl_semaphore_table[sid]

Uses kl_semaphore_table 363b.
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Finally, we have to implement the two functions get_new_semaphoreb for acquiring and
release_semaphorec for releasing semaphores. Allocation is done in a round robin fash-
ion (like in the FIFO allocation scheme for pages). We use a counter next_kl_semaphorea
to point to the next semaphore entry in the table which can be allocated.

[364a] ⟨global variables 92b⟩+≡ (44a) ◁ 363b 365c ▷
kl_semaphore_id next_kl_semaphore = 0;

Defines:
next_kl_semaphore, used in chunk 364b.

Uses kl_semaphore_id 360b.

To allocate a new semaphore we check the next table entry and use it if it is free. While
looking for a free entry in the table we use a check counter to catch the case where the
semaphore table is full.

[364b] ⟨function implementations 100b⟩+≡ (44a) ◁ 362 364c ▷
kl_semaphore_id get_new_semaphore (int k) {

int check = MAX_SEMAPHORES;
while (kl_semaphore_table[next_kl_semaphore].used == true) {

next_kl_semaphore = (next_kl_semaphore + 1) % MAX_SEMAPHORES;
check--;
if (check ≤ 0) return -1;

}
kl_semaphore_table[next_kl_semaphore].used = true;
kl_semaphore_table[next_kl_semaphore].counter = k;
initialize_blocked_queue (&kl_semaphore_table[next_kl_semaphore].bq);
return next_kl_semaphore;

}
Uses initialize_blocked_queue 183c, kl_semaphore_id 360b, kl_semaphore_table 363b, MAX_SEMAPHORES 363a,

and next_kl_semaphore 364a.

Releasing a semaphore is a lile tricky. Just reseing the state field in the semaphore table
is not enough since threads may be blocked in the semaphore queue. ese threads must
be released to the ready queue.

[364c] ⟨function implementations 100b⟩+≡ (44a) ◁ 364b 366a ▷
void release_semaphore (kl_semaphore_id s) {

kl_semaphore_table[s].used = false;
while (front_of_blocked_queue (kl_semaphore_table[s].bq) != 0) {

thread_id t = front_of_blocked_queue (kl_semaphore_table[s].bq);
remove_from_blocked_queue (t, &kl_semaphore_table[s].bq);
add_to_ready_queue (t);

}
}

Defines:
release_semaphore, used in chunk 361a.

Uses add_to_ready_queue 184b, front_of_blocked_queue 185b, kl_semaphore_id 360b, kl_semaphore_table 363b,
remove_from_blocked_queue 186a, and thread_id 178a.
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11.4 U Locks
Locks could be treated as a special case of semaphores (which are initialized to 1), but
we have decided to provide a separate implementation for kernel locks and a user mode
interface.

For locks, we use the following type which resembles the definition of the semaphore
type kl_semaphorea:

[365a]⟨type definitions 91⟩+≡ (44a) ◁ 360b 405a ▷
typedef struct {

short int l; // the lock
boolean used; // are we using this lock?
blocked_queue bq; // queue for this lock
char lockname[20]; // name

} lock_t;
typedef lock_t *lock;

Defines:
lock, used in chunks 306b, 308c, 310f, 366–69, 371a, 373c, 509a, 516b, 530a, 547b, and 552c.
lock_t, used in chunk 365c.

Uses blocked_queue 183a.

As we make a lot of use of locks in the kernel, we provide the lockname field so that we can
generate more helpful debugging output.

We allow up to 1024 locks
[365b]⟨constants 112a⟩+≡ (44a) ◁ 363a 410a ▷

#define MAX_LOCKS 1024
Defines:

MAX_LOCKS, used in chunks 365c, 367b, and 606.

and reserve a table for them—aswith the semaphores, wewant to avoid dynamic allocation
of memory in the kernel.

[365c]⟨global variables 92b⟩+≡ (44a) ◁ 364a 383b ▷
lock_t kernel_locks[MAX_LOCKS];

Defines:
kernel_locks, used in chunks 367b, 368, and 606.

Uses lock_t 365a and MAX_LOCKS 365b.

We reserve the first lock (kernel_locksc[0]) for locking the lock table itself.

11.4.1 Locking, Unlocking and Just Wishing
We provide three functions that can be used by user mode processes or threads (via corre-
sponding library functions that we introduce in the next section):

[365d]⟨function prototypes 45a⟩+≡ (44a) ◁ 361b 367a ▷
void mutex_lock (lock lockvar);
boolean mutex_try_lock (lock lockvar);
void mutex_unlock (lock lockvar);
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mutex_locka and mutex_unlockc have the expected behavior: e first function tries
to acquire the lock, and if that fails, it will block the active process and place it on the
queue that belongs to this lock. e unlocking function returns the lock and wakes the
first waiting process. In addition to these, mutex_try_lockb does what its name implies:
It tries to acquire the lock, but does not block if that goes wrong. It always returns, and its
return value indicates whether the lock was acquired or not. If it failed, it returns false.
So programs can use this to aempt to get a lock, but they have to check the return value
and must not enter the critical section, if false was returned.

Regarding the placement of ⟨begin critical section in kernel 380a⟩ see exercises 34 and 35.
[366a] ⟨function implementations 100b⟩+≡ (44a) ◁ 364c 366b ▷

void mutex_lock (lock lockvar) {
if (current_task == 0) { return; } // no process
⟨begin critical section in kernel 380a⟩
while ( lockvar->l == 1 ) {

block (&(lockvar->bq), TSTATE_LOCKED); // put process to sleep
⟨resign 221d⟩

}
lockvar->l = 1;
⟨end critical section in kernel 380b⟩

}
Defines:

mutex_lock, used in chunks 308c, 310a, 367b, 368, 371a, 509d, 510b, 512b, 516d, 517c, 520c, 530, and 549d.
Uses current_task 192c, lock 365a, and TSTATE_LOCKED 180a.

[366b] ⟨function implementations 100b⟩+≡ (44a) ◁ 366a 366c ▷
boolean mutex_try_lock (lock lockvar) {
⟨begin critical section in kernel 380a⟩
int tmp = lockvar->l; lockvar->l = 1;
⟨end critical section in kernel 380b⟩
return (tmp == 0);

}
Defines:

mutex_try_lock, used in chunks 307, 308, and 371a.
Uses lock 365a.

For unlocking, we reset lockvar->l to 0 and then check whether we can wake up a
waiting thread:

[366c] ⟨function implementations 100b⟩+≡ (44a) ◁ 366b 367b ▷
void mutex_unlock (lock lockvar) {

if (current_task == 0) { return; } // no process
if (lockvar->l == 0) {

debug_printf ("NOTICE: unlocking unlocked LOCK: %s\n", lockvar->lockname);
}
⟨begin critical section in kernel 380a⟩
lockvar->l = 0;
// wake a process
blocked_queue *bq = &(lockvar->bq);
thread_id head = bq->next;
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if (head != 0) { // If one thread is waiting, deblock and resign
deblock (head, bq);

}
⟨end critical section in kernel 380b⟩

}
Defines:

mutex_unlock, used in chunks 307, 308, 311a, 365d, 367b, 368, 371a, 509d, 510b, 512b, 516d, 517c, 520c, 530,
and 549e.

Uses blocked_queue 183a, current_task 192c, deblock 186b, debug_printf 601d, lock 365a, and thread_id 178a.

If you compare the mutex_locka and mutex_unlockc functionswith wait_semaphorec
and signal_semaphore you will notice a big similarity. e main difference is that sema-
phores are more general, thus allowing k-mutual exclusion, whereas locks can only be
used for single-mutual exclusion. However, in none of the U code we came across a
situation where a semaphore with k >  would have been useful. So now, if we want to
achieve mutual exclusion between kernel level threads, we can simply acquire a kernel
lock. is strategy is more elegant than using hardware mechanisms directly and also
more efficient on multi-processor systems where we can avoid effort spent spinning in
spin locks.

11.4.1.1 Lock Administration

Finally, we need to provide functions that allow to create a new lock and release it when
it is no longer needed. ey have these prototypes:

[367a]⟨function prototypes 45a⟩+≡ (44a) ◁ 365d 369b ▷
lock get_new_lock (char *name);
void release_lock (lock l);

e get_new_lockb function has an argument via which we can give the lock a name.
If you enable the kernel mode shell, you can type locks to see a list of all the locks, with
their names and the threads on their blocked queues.

[367b]⟨function implementations 100b⟩+≡ (44a) ◁ 366c 368 ▷
lock get_new_lock (char *name) {
mutex_lock (kernel_locks); // lock the list of kernel locks, we use kernel_locks[0]

for (int i = 1; i < MAX_LOCKS; i++) {
if (!kernel_locks[i].used) {

kernel_locks[i].used = true;
initialize_blocked_queue (&kernel_locks[i].bq); // initialize blocked queue
strncpy (kernel_locks[i].lockname, name, 20);
mutex_unlock (kernel_locks); // unlock access to list
return &kernel_locks[i];

}
}

mutex_unlock (kernel_locks);
return NULL;

}
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Defines:
get_new_lock, used in chunks 306c, 310g, 369c, 509b, 516c, 530b, and 552c.

Uses initialize_blocked_queue 183c, kernel_locks 365c, lock 365a, MAX_LOCKS 365b, mutex_lock 366a,
mutex_unlock 366c, NULL 46a, and strncpy 594b.

For freeing a lock we set the used entry to false and unlock all threads on the blocked
list (if there are any):

[368] ⟨function implementations 100b⟩+≡ (44a) ◁ 367b 369c ▷
void release_lock (lock l) {

mutex_lock (kernel_locks); // lock the list of kernel locks
l->used = false;
blocked_queue *bq = &(l->bq);
thread_id head = bq->next;
while (head != 0) {

thread_id next = thread_table[head].next;
deblock (head, bq);
head = next;

}
mutex_unlock (kernel_locks);

}
Defines:

release_lock, used in chunks 367a and 373c.
Uses blocked_queue 183a, deblock 186b, kernel_locks 365c, lock 365a, mutex_lock 366a, mutex_unlock 366c,

thread_id 178a, and thread_table 176b.

11.5 Pthread Mutexes for Threads
In order to provide user space programs with mutexes, it is not necessary to interface the
kernel—the code that we used for the implementation of kernel locks would also work in
user mode since it requires no privileged instructions. However, we want to queue threads
which try to acquire a mutex, and that is a task for the kernel. So instead of duplicating
parts of the already existing locking code, we provide a user mode interface to the kernel
functions get_new_lockb, mutex_locka, mutex_unlockc and release_lock.

If you search for POSIX mutex functions on a Linux machine, you will find several
functions, including the following ones:

pthread_mutex_init(3) - create a mutex
pthread_mutex_lock(3) - lock a mutex
pthread_mutex_trylock(3) - attempt to lock a mutex without blocking
pthread_mutex_unlock(3) - unlock a mutex
pthread_mutex_destroy(3) - free resources allocated for a mutex

Our implementation only supports the essential features, so for example, you cannot
use mutex aributes. We only include the corresponding argument in the function call
so that the functions have a similar look and feel as the regular POSIX functions. You’ve
already seen the same comment when you looked at the implementation of POSIX threads.
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Also note that our kernel locks are valid globally and can be used across process borders.
at means that in a U program a process can create a mutex and then fork; aerwards
both processes can be synchronized via the mutex. POSIX mutexes forbid this.

11.5.1 Creating a New Mutex
Before we start, we define two types that simplify aempts to port programs to U:

[369a]⟨public type definitions 142a⟩+≡ (44a 48a) ◁ 254a 489b ▷
typedef int pthread_mutex_t;
typedef int pthread_mutexattr_t;

Defines:
pthread_mutex_t, used in chunks 369–73.
pthread_mutexattr_t, used in chunks 369c, 370d, and 373.

For mutex creation we implement the function
[369b]⟨function prototypes 45a⟩+≡ (44a) ◁ 367a 370f ▷

int u_pthread_mutex_init (pthread_mutex_t *restrict mutex,
const pthread_mutexattr_t *restrict attr);

that reserves a fresh kernel lock via get_new_lockb and returns the memory address of
the lock data structure. is serves as a unique identifier for the lock when used in user
space. (Since that address is in the kernel’s private memory range, it will also be valid
across process borders; see our earlier comment about cross-process use of mutexes.)

Since kernel locks have names, the function generates a name that consists of the string
"lock, pid=" and the thread ID. Note that this is not unique if the same thread creates
several mutexes.

[369c]⟨function implementations 100b⟩+≡ (44a) ◁ 368 371a ▷
int u_pthread_mutex_init (pthread_mutex_t *restrict mutex,

const pthread_mutexattr_t *restrict attr) {
char s[20];
sprintf ((char*)s, "lock, pid=%d", thread_table[current_task].pid);
lock tmp = get_new_lock (s);
if (tmp != NULL) {

*mutex = (pthread_mutex_t)tmp;
return 0; // success

} else {
thread_table[current_task].error = EAGAIN;
return -1; // error

}
}

Defines:
u_pthread_mutex_init, used in chunks 369b and 370d.

Uses current_task 192c, EAGAIN 370a, get_new_lock 367b, lock 365a, NULL 46a, pthread_mutex_t 369a,
pthread_mutexattr_t 369a, sprintf 601a, and thread_table 176b.
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If get_new_lockb was unsuccessful, we set the error field in the TCB to EAGAINa (it
can be queried via the errnob macro in the process).

[370a] ⟨error constants 370a⟩≡ (207a) 371b ▷
#define EAGAIN 35

Defines:
EAGAIN, used in chunk 369c.

We add a system call:
[370b] ⟨ulix system calls 206e⟩+≡ (205a) ◁ 332c 371c ▷

#define __NR_pthread_mutex_init 517
Defines:

__NR_pthread_mutex_init, used in chunks 370e and 373e.

[370c] ⟨syscall prototypes 173b⟩+≡ (202a) ◁ 330b 371d ▷
void syscall_pthread_mutex_init (context_t *r);

[370d] ⟨syscall functions 174b⟩+≡ (202b) ◁ 332d 372a ▷
void syscall_pthread_mutex_init (context_t *r) {

// ebx: mutex id
// ecx: attributes, not implemented
eax_return ( u_pthread_mutex_init ( (pthread_mutex_t*)r->ebx,

(pthread_mutexattr_t*)r->ecx ) );
}

Defines:
syscall_pthread_mutex_init, used in chunk 370.

Uses context_t 142a, eax_return 174a, pthread_mutex_t 369a, pthread_mutexattr_t 369a,
and u_pthread_mutex_init 369c.

and enter it in the syscall table:
[370e] ⟨initialize syscalls 173d⟩+≡ (44b) ◁ 333a 372b ▷

install_syscall_handler (__NR_pthread_mutex_init, syscall_pthread_mutex_init);
Uses __NR_pthread_mutex_init 370b, install_syscall_handler 201b, and syscall_pthread_mutex_init 370d.

11.5.2 Locking and Unlocking a Mutex
We define the three locking and unlocking functions

[370f] ⟨function prototypes 45a⟩+≡ (44a) ◁ 369b 373b ▷
int u_pthread_mutex_lock (pthread_mutex_t *mutex);
int u_pthread_mutex_trylock (pthread_mutex_t *mutex);
int u_pthread_mutex_unlock (pthread_mutex_t *mutex);

which “convert” POSIX-compliantmutexes into kernel mutexes and call the mutex_locka,
mutex_try_lockb and mutex_unlockc functions. If u_pthread_mutex_trylocka cannot
acquire the mutex via mutex_try_lockb, it will set the error field of the TCB to EBUSYb
(as expected by the POSIX standard) and return −. e other two functions cannot fail,
they simply return.
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[371a]⟨function implementations 100b⟩+≡ (44a) ◁ 369c 373c ▷
int u_pthread_mutex_lock (pthread_mutex_t *mutex) {

lock l = (lock)*mutex;
mutex_lock (l);
return 0;

}

int u_pthread_mutex_trylock (pthread_mutex_t *mutex) {
lock l = (lock)*mutex;
if (mutex_try_lock (l))

return 0; // success
else {

thread_table[current_task].error = EBUSY;
return -1; // error

}
}

int u_pthread_mutex_unlock (pthread_mutex_t *mutex) {
lock l = (lock)*mutex;
mutex_unlock (l);
return 0;

}
Defines:

u_pthread_mutex_lock, used in chunk 372a.
u_pthread_mutex_trylock, used in chunk 372a.
u_pthread_mutex_unlock, used in chunks 370f and 372a.

Uses current_task 192c, EBUSY 371b, lock 365a, mutex_lock 366a, mutex_try_lock 366b, mutex_unlock 366c,
pthread_mutex_t 369a, and thread_table 176b.

[371b]⟨error constants 370a⟩+≡ (207a) ◁ 370a 561c ▷
#define EBUSY 16 // device / resource busy

Defines:
EBUSY, used in chunk 371a.

Uses busy.

Again, we add system calls for the new functions:
[371c]⟨ulix system calls 206e⟩+≡ (205a) ◁ 370b 372e ▷

#define __NR_pthread_mutex_lock 518
#define __NR_pthread_mutex_unlock 519
#define __NR_pthread_mutex_trylock 526

Defines:
__NR_pthread_mutex_lock, used in chunks 372b and 373e.
__NR_pthread_mutex_trylock, used in chunk 372b.
__NR_pthread_mutex_unlock, used in chunks 372b and 373e.

[371d]⟨syscall prototypes 173b⟩+≡ (202a) ◁ 370c 372c ▷
void syscall_pthread_mutex_lock (context_t *r);
void syscall_pthread_mutex_trylock (context_t *r);
void syscall_pthread_mutex_unlock (context_t *r);
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ey simply evaluate the mutex ID (found in the EBX register) and return the result by
seing the EAX register:

[372a] ⟨syscall functions 174b⟩+≡ (202b) ◁ 370d 372d ▷
void syscall_pthread_mutex_lock (context_t *r) {

// ebx: mutex id
eax_return ( u_pthread_mutex_lock ((pthread_mutex_t*)r->ebx) );

}

void syscall_pthread_mutex_trylock (context_t *r) {
// ebx: mutex id
eax_return ( u_pthread_mutex_trylock ((pthread_mutex_t*)r->ebx) );

}

void syscall_pthread_mutex_unlock (context_t *r) {
// ebx: mutex id
eax_return ( u_pthread_mutex_unlock ((pthread_mutex_t*)r->ebx) );

}
Defines:

syscall_pthread_mutex_lock, used in chunk 372b.
syscall_pthread_mutex_unlock, used in chunks 371d and 372b.

Uses context_t 142a, eax_return 174a, pthread_mutex_t 369a, syscall_pthread_mutex_trylock,
u_pthread_mutex_lock 371a, u_pthread_mutex_trylock 371a, and u_pthread_mutex_unlock 371a.

[372b] ⟨initialize syscalls 173d⟩+≡ (44b) ◁ 370e 373a ▷
install_syscall_handler (__NR_pthread_mutex_lock, syscall_pthread_mutex_lock);
install_syscall_handler (__NR_pthread_mutex_trylock,syscall_pthread_mutex_trylock);
install_syscall_handler (__NR_pthread_mutex_unlock, syscall_pthread_mutex_unlock);

Uses __NR_pthread_mutex_lock 371c, __NR_pthread_mutex_trylock 371c, __NR_pthread_mutex_unlock 371c,
install_syscall_handler 201b, syscall_pthread_mutex_lock 372a, syscall_pthread_mutex_trylock,
and syscall_pthread_mutex_unlock 372a.

11.5.3 Destroying a Mutex
Finally, we need to be able to destroy a mutex when it is no longer needed.

[372c] ⟨syscall prototypes 173b⟩+≡ (202a) ◁ 371d 416a ▷
void syscall_pthread_mutex_destroy (context_t *r);

[372d] ⟨syscall functions 174b⟩+≡ (202b) ◁ 372a 416b ▷
void syscall_pthread_mutex_destroy (context_t *r) {

// ebx: mutex id
eax_return ( u_pthread_mutex_destroy ((pthread_mutex_t*)r->ebx) );

}
Defines:

syscall_pthread_mutex_destroy, used in chunks 372c and 373a.
Uses context_t 142a, eax_return 174a, pthread_mutex_t 369a, and u_pthread_mutex_destroy 373c.

[372e] ⟨ulix system calls 206e⟩+≡ (205a) ◁ 371c 415d ▷
#define __NR_pthread_mutex_destroy 520

Defines:
__NR_pthread_mutex_destroy, used in chunk 373.
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[373a]⟨initialize syscalls 173d⟩+≡ (44b) ◁ 372b 416c ▷
install_syscall_handler (__NR_pthread_mutex_destroy, syscall_pthread_mutex_destroy);

Uses __NR_pthread_mutex_destroy 372e, install_syscall_handler 201b, and syscall_pthread_mutex_destroy
372d.

Here is the implementation of the kernel function
[373b]⟨function prototypes 45a⟩+≡ (44a) ◁ 370f 405d ▷

int u_pthread_mutex_destroy (pthread_mutex_t *mutex);

[373c]⟨function implementations 100b⟩+≡ (44a) ◁ 371a 406 ▷
int u_pthread_mutex_destroy (pthread_mutex_t *mutex) {

lock l = (lock)*mutex;
release_lock (l);
return 0;

}
Defines:

u_pthread_mutex_destroy, used in chunks 372d and 373b.
Uses lock 365a, pthread_mutex_t 369a, and release_lock 368.

11.5.4 The Library Functions
As usual we provide a set of library functions that let user mode processes make these
system calls:

[373d]⟨ulixlib function prototypes 174c⟩+≡ (48a) ◁ 333d 429a ▷
int pthread_mutex_init (pthread_mutex_t *mutex,

const pthread_mutexattr_t *attr);
int pthread_mutex_lock (pthread_mutex_t *mutex);
int pthread_mutex_unlock (pthread_mutex_t *mutex);
int pthread_mutex_destroy (pthread_mutex_t *mutex);

[373e]⟨ulixlib function implementations 174d⟩+≡ (48b) ◁ 333e 429b ▷
int pthread_mutex_init (pthread_mutex_t *mutex,

const pthread_mutexattr_t *attr) {
return syscall3 (__NR_pthread_mutex_init, (unsigned int)mutex, (unsigned int)attr);

}

int pthread_mutex_lock (pthread_mutex_t *mutex) {
return syscall2 (__NR_pthread_mutex_lock, (int)mutex);

}

int pthread_mutex_unlock (pthread_mutex_t *mutex) {
return syscall2 (__NR_pthread_mutex_unlock, (int)mutex);

}

int pthread_mutex_destroy (pthread_mutex_t *mutex) {
return syscall2 (__NR_pthread_mutex_destroy, (int)mutex);

}
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Uses __NR_pthread_mutex_destroy 372e, __NR_pthread_mutex_init 370b, __NR_pthread_mutex_lock 371c,
__NR_pthread_mutex_unlock 371c, pthread_mutex_t 369a, pthread_mutexattr_t 369a, syscall2 203c,
and syscall3 203c.

11.5.5 Testing
In order to test the synchronization of threads, you can run the /bin/thread program. It
starts three threads, two of which add to or subtract from a shared variable. Aer 250
additions and 250 subtractions, the variable should have the initial value. e program
accepts a parameter: If you start it as thread 0 it will work without synchronization (and
return random results due to the two threads concurrently entering their critical sections).
If, however, you start it as thread 1 it will use a pthread_mutex_ta to protect those sections
and consistently return the correct result.

11.6 Kernel Synchronization
Until now, we have dealt with a couple of synchronization mechanisms that are suitable
for different levels of abstraction:
1. Hardware-based mechanisms, such as interrupt masking and spin locks, that can es-

tablish mutual exclusion on a monoprocessor or multiprocessor system.
2. Kernel-level semaphores that can be used to block and deblock kernel level threads.

Kernel-level locks are a special instance of such semaphores.
3. User-level semaphores that can be used to block and deblock user-level threads.

So far, our discussion of synchronization has focused on threads and with semaphores
and locks we have provided nice abstractions to synchronize them. Whenever we need to
prevent a thread from accessing some resource we simply block it; later when the resource
becomes available again, we unblock such a thread so that it can continue execution. is
works for both threads in user mode and in kernel mode.

However, there is other code in the kernel which is not executed on behalf of some par-
ticular thread: Interrupt handlers are activated whenever an interrupt occurs, and while
such a handler function runs in the context of the thread which was active when the in-
terrupt was signaled, it is not related to that thread in any manner. Geing this right is
called kernel synchronization.

Kernel synchronization is a messy business because machine operations run in kernel
mode and interrupts and context switches make code and execution sequences unintuitive.
At its core, kernel synchronization deals with correctly implementing critical sections at
the lowest level (the kernel). is section deals with kernel synchronization and discusses
how this issue is solved in U.
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11.6.1 Overview
In general, synchronization may be needed on different levels of abstraction within an
operating system. Figure 11.5 (a modified version of Figure 7.3 on page 252) shows those
levels; the doed black lines represent situations where shared data may be used, thus
requiring synchronization. Differing from Figure 7.3, it also includes an interrupt handler
which always runs in kernel mode.

We now discuss the different synchronization issues in context from top (user-level
threads) to boom (CPUs).

11.6.1.1 Synchronizing User-Level Threads

First we consider the following case: Two user-level threads which are mapped to one
or multiple kernel-level threads may use the same data and need to perform mutual ex-
clusion. In Figure 11.5, for example, Process 1 runs on one kernel-level thread (virtual
monoprocessor) and Process 2 runs on two kernel-level threads (virtual multiprocessor).
In both cases, the user-level thread library has to take care of synchronization since the
kernel does not recognize the two threads as separate entities.
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Figure 11.5: Synchronization in user and kernel mode. Arrow colors (on one level) ex-
press the order of allocation of a virtual (top) or physical (boom) processor;
black doed arrows show where synchronization can be supported between
user-level threads (1), between kernel-level threads (2), between kernel-level
threads and interrupt handlers (3), and between two CPUs (4).
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e mechanism of choice to synchronize user-level threads are user-level semaphores.
ey can be used to block and deblock user-level threads for synchronization. And if the
thread library runs on a single kernel-level thread and the library does not support a signal
mechanism (a “user-level interrupt” mechanism, see Chapter 14), only one concurrent
activity will update the critical thread library data structures at any time. So while there
might be critical sections in the thread (library) code, the entry and exit protocols may be
empty.

However, if user-level threads can be interrupted (using signals for example) or if user-
level threads run on a virtual multiprocessor (multiple kernel-level threads), we have to
ensure mutual exclusion of concurrent activities in the threads library again. For the case
of “interruptible” user-level threads (via signals), we need to enusure that any invoca-
tion of a signal handler does not violate mutual exclusion. A valid method would be to
“mask” signals (i. e., ensure that during certain times user-defined signal handlers are not
executed). is situation is analogous to interrupt-masking at lower levels.

For the case of a virtual multiprocessor (multiple kernel-level threads), signal masking
is not enough since signals target kernel-level threads and so if one kernel-level thread
masks signals another can still receive them and invoke a signal handler, thus violating
mutual exclusion. So how could mutual exclusion be achieved here?

A naive approach would be to use a spin lock in addition to signal masking. Since the
necessary machine instructions like Test-and-Set are not privileged, the user-level thread
library can use them to achieve “global” mutual exclusion. However, spin locks imply
busy waiting, so the question is: Can we do beer?

Fortunately, the answer is yes: We can use a kernel-level semaphore, or more precisely
a kernel lock as follows. During initialization of the thread library we allocate a kernel
lock. Whenever a user-level thread wishes to run exclusively, if will lock the mutex and
proceed. When it finishes its critical section, it releases the lock. To see why this works,
consider again Figure 11.5 and look at user-level thread 3 and user-level thread 4 in the top
right. Both threads might be running on different virtual processors (kernel-level thread
2 and kernel-level thread 3, the green assignment). Now assume that user-level thread
3 enters a critical section and acquires the lock. If user-level thread 4 aempts to enter
its own critical section, it will try to acquire the same lock, but because it is taken, then
kernel-level thread 3 is blocked. It is automatically deblocked when user-level thread 3
releases the lock. Busy waiting is completely avoided!

Remember however, that the above solution still needs to take care of user-level “inter-
rupts” (signals). If signal handlers can be run at any time, also note that kernel locks are
not useful for mutual exclusion if the thread library is running on a virtual monoprocessor.
If one of the user-level threads acquires the lock, is interrupted by a signal handler and
switches to another thread that also tries to acquire the lock, the kernel-level thread (i. e.,
the entire user-level thread library) would block and the situation could never be resolved.

U (like most other systems) does not implement the mapping of several user-level
threads to one kernel-level thread, thus we need not consider this case—the user-mode
functions pthread_mutex_locke and pthread_mutex_unlocke use system calls to call the
kernel functions u_pthread_mutex_locka and u_pthread_mutex_unlocka.
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11.6.1.2 Synchronizing Kernel-Level Threads

Now we consider the case where two kernel-level threads wish to synchronize because
they use the same data. is is case (2) in Figure 11.5. e method of choice here is obvi-
ously to use kernel-level semaphores, or more specifically (for mutual exclusion) kernel
locks. If such locks can be acquired and released atomically, kernel locks can be used to
achieve mutual exclusion between kernel-level threads, just as discussed previously for
the virtual multiprocessor that runs a user-level thread library.

e property we need to ensure, however, is in fact the atomicity of lock acquisition.
Remember that kernel-level threads may be interrupted at any time and a context switch
might schedule another kernel-level thread. So the problem of achievingmutual exclusion
between kernel-level threads can be reduced to the problem of ensuring the atomicity of
the locking procedure. Unfortunately, we cannot use kernel mutexes for this since this is
the mechanism we are trying to implement.

We have handled exactly this case in the previous sections where we have discussed the
implementation of u_pthread_mutex_locka and u_pthread_mutex_unlocka. e trick to
solve this problem was to declare the main parts of mutex_locka, mutex_try_lockb and
mutex_unlockc as critical sections in the kernel, but we have not yet discussed how to
actually implement this. However, we have all necessary ingredients ready to deal with it
now. is is what kernel synchronization is all about.

Many operating systems also support synchronization across processes which is also
possible in U if two processes share a pthread_mutex_ta variable; note however that
the POSIX standard forbids this (see Section 11.5). Instead Unix systems use named

semaphore
named sema-

phores for cross-process synchronization which are not implemented in U.
To summarize synchronization issues up to now—and as partially shown in Figure 11.6,

• in user mode, threads can call the user-mode library functions pthread_mutex_locke
and pthread_mutex_unlocke to acquire kernel levelmutexes that can be used for inter-
thread synchronization.

• in kernel mode, threads can also use the kernel functions u_pthread_mutex_locka
and u_pthread_mutex_unlocka for the same purposes,

• and these are (again) wrappers for the general kernel-internal synchronization func-
tions mutex_locka and mutex_unlockc.

• Besides mutex_locka and mutex_unlockc the U kernel also supports synchro-
nization with semaphores via the wait_semaphorec and signal_semaphore func-
tions which are not accessible from user mode applications.

11.6.1.3 Sychronizing the Kernel

Kernel synchronization deals with cases (3) and (4) in Figure 11.5. e main task of kernel
synchronization is to achieve mutual exclusion of concurrent activities in the kernel. is
is a challenge because concurrent activities are natural in operating systems, let they be
introduced through interrupts or through multiple CPUs.
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Figure 11.6: Mutex functionality is available in user mode and kernel mode; the kernel can
also use semaphores.

e case of interrupts, case (3) in Figure 11.5, is probably the toughest issue to solve
because it happens in all operating systems:

An interrupt handler may share data with a process which has made a system call. As
we will show on the following pages, we cannot use the same mutex/locking approach as
for inter-thread synchronization, instead we will need to revert to hardware-based mecha-
nisms discussed in Section 11.2. In fact, U uses the simplest approach to synchronize the
kernel: It realizes a non-interruptible kernel. What this means will be discussed shortly.

e case of multiprocessing, case (4) in Figure 11.5, is equally tough. When more than
one CPU (or CPU core) is used, the situation becomes more complicated because code will
be executed truly simultaneously on those CPUs or cores. But as we will see, if case (3) has
been solved conceptually, it is not too hard to extend this solution to case (4). Furthermore,
since U does not support more than one CPU or core, we do not need to work out this
case in code anyway.

11.6.2 Minimizing the Size of Critical Sections:
Interruptible Kernels

We now turn to the central problem of implementing critical sections in the kernel, i. e.,
achieving mutual exclusion at the lowest layer. Until now, we declared critical sections
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using the markers ⟨begin critical section in kernel 380a⟩ and ⟨end critical section in ker-
nel 380b⟩. A kernel built in this way is called an interruptible

kernel
interruptible kernel. Such kernels allow

concurrent activities within the kernel, but only in some parts. For a monoprocessor sys-
tem this means that interrupts may be enabled during the execution of some kernel code.
(It does not mean that interrupts are always on.) For multiprocessor systems, spin locks
are needed in addition to disabling the interrupts (see Section 11.2).

Building correct interruptible kernels boils down to finding all critical sections and en-
suring that the entry and exit protocols to these sections are implemented correctly. Both
problems are non-trivial and have causedmuchmisery in the history of operating systems:
• It is easy to spot some critical sections, but it is hard to overlook no critical section.

Overlooking a critcal section (i. e., failing to mark it correctly) usually causes hard to
diagnose system faults because bugs are usually the result of non-reproducible race
conditions (so called Heisenbugs).

• It is easy to “play safe” and mark all possible candidates for critical sections as such,
following the strategy: if in doubt, then it’s a critcal section. But this results in rather
large critical sections, and large critical sections cause their own problems (ineffi-
ciency being one). So the challenge is to declare “minimal” critical sections.

A typical approach is to let system call handlers be interruptible while disabling (all or
some) interrupts during the execution of interrupt handlers.

ese challenges have been debated by operating system designers for many decades.
ey effectively ask the question of the size of critical sections. e more code allows
interrupts, the beer the performance and responsiveness of the system can become, but
at the same time complexity of synchronization increases.

Interestingly, there is a very simple synchronization strategy that works in most cases
and allows you to start off with a system which is inefficient yet correctly synchronized:
e most simple approach is to generally forbid interrupts while executing kernel code,
thereby “maximizing” the size of critical sections in the kernel. We call such an implemen-
tation a non-interrupt-

ible kernel
non-interruptible kernel. For a single-CPU, single-core machine this means that

all kernel code can expect to remain in control and keep the CPU until it either finishes
or blocks (in a system call handler).

Only when the system runs in user mode (i. e., executes the application code of some
thread), interrupts can occur. Note that this means that whenever a threadmakes a system
call (and thus transitions to kernel mode via the system call interface), interrupts will be
disabled until the system call function completes its work and returns to user mode. In
such systems, there will be no need to synchronize interrupt handlers and system call
handlers.

Note however that system call handlers still have to consider synchronization because a
thread executing such a system call handler may decide to block (for example, in order to
wait for a disk operation to complete). In that case control will transfer to a different thread
which might call some other or the same system call handler, thus possibly accessing the
same kernel data structures. erefore, the begin of a critical section might happen in
thread A while the end of a critical section might happen in thread B (aer a context
switch). is needs to be considered.
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Fortunately, the Intel CPU lets developers decide whether interrupts are automatically
disabled upon entering some handler by providing both interrupt gates (which auto-disable
interrupts) and trap gates (which do not), see also Section 6.4.1.

11.6.3 U as a Non-Interruptible Kernel
We have decided to make the U kernel non-interruptible which greatly reduces the
demand for synchronization. For completeness, Section 11.6.4 will describe the issues
arising with interruptible kernels and illustrate them with examples from the U code.

As mentioned above, the Intel CPU lets developers decide whether interrupts are auto-
matically disabled upon entering some handler by providing both interrupt gates and trap
gates. We have used an interrupt gate in our system call implementation in Section 6.4.1.
So we can safely assume that interrupts are off whenever we execute code in kernel mode.
Since U does not support multiple CPUs, there is nothing more to do.

Now, finally, we can show the entry and exit protocols for the critical sections in the
kernel. Recall that we marked them using the code chunks ⟨begin critical section in ker-
nel 380a⟩ and ⟨end critical section in kernel 380b⟩. Since we have a non-interruptible kernel
and switch off interrupts using an interrupt gate, there is no further necessity for addi-
tional synchronization. erefore, their implementations are empty.

[380a] ⟨begin critical section in kernel 380a⟩≡
(168d 169a 184–87 209c 216b 219c 221a 255a 260a 276d 361c 362 366 391 392 416b 521a 530 539c 540c 545b 548b 551 580c 581)

// do nothing

[380b] ⟨end critical section in kernel 380b⟩≡
(168d 169a 184–87 212 216b 219c 221a 255a 260a 276d 277a 280b 361c 362 366 391 392 416b 521b 531a 545b 580c 581)

// do nothing

e interested reader might ask: Why didn’t we omit these markers from the beginning
if they are empty anyway? ere are two answers to this question:
1. Omiing these markers would have avoided the discussion (and identification) of

critical sections, which would have avoided some nice intellectual challenges.
2. Keeping these markers allows for a future evolution of U into an interruptible

kernel.
In such a future U version with an interruptible kernel these chunks would be im-
plemented using ⟨disable interrupts 47a⟩ and ⟨enable interrupts 47b⟩, or with the nestable
versions.

11.6.4 Illustrating Problems of Interruptible Kernels
In this section we describe some relevant problems that arise and discuss the additional
care that needs to be taken when the kernel is interruptible. Note that the situation would
become even more complex if several CPUs (or cores) were supported. Wherever possible,
we use code of U to illustrate the problems.
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11.6.4.1 Example: Accessing a Keyboard Buffer

We begin with an introductory example for the synchronization problems that arise from
using an interruptible kernel. Consider the way that reading from the keyboard works for
a thread:

• A thread calls the readb() function (using file descriptor STDIN_FILENOb = 0) which
in turn makes a system call. is enters kernel mode and leads to the execution of
syscall_readb() which in turn will make an other system call that activates the
system call handler syscall_readcharb().

• syscall_readcharb() determines the current terminal term, reads a character from
its associated buffer term->kbd[] and updates the current position and number of char-
acters in the buffer (term->kbd_lastread and term->kbd_count). Note that those two
changes modify a global data structure.

• On the other hand, the keyboard interrupt handler, keyboard_handlerd(), updates
the same data structure: it determines the active terminal (the one currently displayed
on the screen), enters the character’s ASCII code in the corresponding buffer and also
modifies the buffer’s current position and number of contained characters.

If both accesses originated from threads, we could simply use a list of mutexes (one for
each terminal) to lock these structures, but we cannot use the locking mechanism in the
interrupt handler since that might put it to sleep if a thread had just acquired the lock
right before the keyboard interrupt occurred. us, the obvious aempt of using a lock
list keyboard_buffer_lock[] and implementing mutual exclusion via

[381a]⟨first aempt for locking the keyboard buffer (in syscall_readchar) 381a⟩≡
void syscall_readchar (context_t *r) {

char c;
int t = thread_table[current_task].terminal;
terminal_t *term = &terminals[t];

// get character, return 0 if there is no new character in the buffer
mutex_lock (keyboard_buffer_lock[t]);

if (term->kbd_count > 0) {
term->kbd_count--;
term->kbd_lastread = (term->kbd_lastread+1) % SYSTEM_KBD_BUFLEN;
c = term->kbd[term->kbd_lastread];

}
mutex_unlock (keyboard_buffer_lock[t]);
// ...

and
[381b]⟨first aempt for locking the keyboard buffer (in keyboard handler implementation) 381b⟩≡

terminal_t *term = &terminals[cur_vt];
mutex_lock (keyboard_buffer_lock[cur_vt]);

if (term->kbd_count < SYSTEM_KBD_BUFLEN) {
if (ctrl_pressed && c ≥ 'a' && c ≤ 'z') c -= 96; // Ctrl
term->kbd[term->kbd_pos] = c;
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term->kbd_pos = (term->kbd_pos + 1) % SYSTEM_KBD_BUFLEN;
term->kbd_count++;
if (scheduler_is_active) { ⟨keyboard handler: wake sleeping process 322a⟩ }

}
mutex_unlock (keyboard_buffer_lock[cur_vt]);

cannot work. However, note that the situation is not symmetrical: Whereas two threads
will run alternately, this is not true for an interrupt handler which will interrupt the flow
of control in a thread, but not vice versa. us it will be sufficient to prevent the interrupt
handler from running at all while we access the data structures in a system call handler—
we can simply disable interrupts before the critical section and re-enable them aerwards.

is implements a synchronization model that is calledone-sided
synchronization

one-sided synchronization. Since
disabling interrupts disturbs the overall functioning of the operating system (e. g., by de-
laying the next scheduling decision) we should limit this to very short time spans. Fig-
ure 11.7 shows the difference between two-sidedtwo-sided

synchronization
inter-thread synchronization and the

synchronization of system call and interrupt handlers.

shared data

Thread 1

mutex_lock (l);

// access
... 

mutex_unlock (l);

Thread 2

mutex_lock (l);

// access
... 

mutex_unlock (l);

Thread / System Call

⟨disable interrupts ⟩
 
// access
... 

⟨enable interrupts ⟩

Interrupt Handler

// interrupts are off

 
// access
... 

shared data

Synchronization Between Threads

Synchronization Between System Call and Interrupt Handlers

Figure 11.7: Mutex-based synchronization of threads (top) is an example of two-sided syn-
chronization; data which is shared between system call and interrupt handlers
is handled via a one-sided synchronization method (boom; i. e., disabling in-
terrupts in the system call handler).

A working implementation of syscall_readcharb() thus looks as follows:
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[383a]⟨second aempt for locking the keyboard buffer (in syscall_readchar) 383a⟩≡
void syscall_readchar (context_t *r) {

char c;
int t = thread_table[current_task].terminal;
terminal_t *term = &terminals[t];

// get character, return 0 if there is no new character in the buffer
⟨disable interrupts 47a⟩ // critical section starts here

if (term->kbd_count > 0) {
term->kbd_count--;
term->kbd_lastread = (term->kbd_lastread+1) % SYSTEM_KBD_BUFLEN;
c = term->kbd[term->kbd_lastread];

}
⟨enable interrupts 47b⟩ // critical section ends here
// ...

and that is also the way it could be implemented in U (see page 416). e corresponding
critical section in the interrupt handler would need no protection because there it would
be impossible for the system call handler’s code to interfere with the running interrupt
handler.

11.6.4.2 Restoring Old Interrupt States

As discussed in Section 11.2.4, marking critical sections needs to be done with care since
nested critical sections can cause premature enabling of interrupts. is can be avoided
by using “nestable” entry and exit protocols for critical sections, as discussed. How-
ever, sometimes interrupts might have been turned off by other means (e. g., the inter-
rupt gate) and so we might not even know whether interrupts were enabled before we
wish to disable them. For example, deblockb calls remove_from_blocked_queuea and
add_to_ready_queueb, and deblockb itself is both called from the interrupt handler
keyboard_handlerd and from the syscall handler syscall_killc via u_killb and a
further helper function (see Figure 11.8).

us, for a U version with an interruptible kernel, we might enter deblockb with
interrupts on or off, depending on which function calls it.

In those situations we want to restore the original state aerwards. us, we need to
save the current state of the interrupt flag (IF) which is bit 9 of the EFLAGS register before
we disable interrupts. We can use a global variable

[383b]⟨global variables 92b⟩+≡ (44a) ◁ 365c 405b ▷
boolean if_state; // state of the interrupt flag (IF)

Defines:
if_state, used in chunks 357 and 384.

for storing the state because interrupts will always be off aer reading the state and until
it is restored.

e following two new code chunks save and disable interrupts and restore them, re-
spectively:
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(a) Keyboard interrupt occurs

keyboard_handler ()

deblock ()

– interrupts are of
– needs to modify thread queues

(b) Process sends a signal

syscall_kill ()

deblock ()

– interrupts are on
– needs to modify thread queues

u_kill ()

wake_waiting_parent_process ()

Figure 11.8: Two ways to enter the deblock functions with interrupts off or on.

[384a] ⟨save and disable interrupts 384a⟩≡
{ // create scope for scope-local variable eflags

int eflags;
asm volatile (

"pushf \n" // push EFLAGS
"cli \n" // disable interrupts
"movl (%%esp), %0 \n" // copy to eflags variable
"addl $4, %%esp \n" // restore stack pointer

: "=r"(eflags) );
if_state = (eflags >> 9) & 1; // bit 9 of EFLAGS is IF

}
Uses if_state 383b.

[384b] ⟨restore interrupts 384b⟩≡
if (if_state == 1) {
⟨enable interrupts 47b⟩

}
Uses if_state 383b.

e functions add_to_blocked_queuec and remove_from_blocked_queuea as well as
add_to_ready_queueb and remove_from_ready_queuec which handle the blocked queues
and the ready queue could use this feature.

11.6.4.3 Finding Critical Sections

As mentioned above, identifying critical sections is one of the major problems in inter-
ruptible kernels. It needs much experience to do this correctly, and doing it minimally is
more an art than a science. A best-practice approach is to invest much discipline during
development and for every new data structure investigate thoroughly whether this data
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structure is critical and, if yes, who accesses it. ese accesses must be declared as critical
sections.

We will now discuss these points using U code. For example, look at all the interrupt
handlers of U and search for data structures which are accessed elsewhere. For an
interruptible kernel we would have to make sure that interrupts are disabled whenever
such an access (outside interrupt handlers) occurs. Luckily, the number of handlers is
small—there are only five interrupt handlers:

• keyboard_handlerd served as our initial example and has already been dealt with.
• timer_handlerb periodically activates the scheduler—we will discuss it below.

e next three handlers deal with filesystem activity; you will only fully understand the
following discussion aer reading Chapters 12 (Filesystems) and 13 (Disk I/O).

• ide_handlerd modifies the global hd_bufa buffer and the hd_directiona variable
and deblocks a thread that has been waiting for the completion of a hard disk action.
Other than from the IDE handler, any access to these data will originate from a system
call handler initiated by a thread trying to read from or write to disk.
Since the implementation of the filesystem code does not allow multiple parallel ac-
cesses to the disk (once a transfer has been initiated, all other threads block on amutex
hd_locka), no thread will access the data before a current transaction has completed.
Similarly, the IDE controller will only generate an interrupt aer a (single) thread has
made a system call that accesses the disk.

• floppy_handlerb calls fdc_wakeupa which manipulates an entry in the thread list
(like ide_handlerd, it deblocks a thread that has been waiting for the floppy drive’s
action to complete).
Floppy access is also serialized for threads using an fdc_lockb variable (similar to
hd_locka). fdc_timera (which is called by the timer handler) checks the lock state
of fdc_lockb but does not change it.

• serial_hard_disk_handlerd also deblocks a thread which caused the recently fin-
ished action of the serial hard disk. Again, there is a serial_disk_lockb variable
which is used to serialize parallel accesses to the serial disk device.

For all hard disk, floppy disk and serial disk accesses the following order of execution
is enforced:

1. A thread initiates disk access which leads to acquisition of one of the locks hd_locka,
fdc_lockb or serial_disk_lockb. Eventually the threadwill block (andwait for the
disk operation to complete).

2. One or more interrupts are generated by the controller, thus the corresponding inter-
rupt handler will be executed. When U detects that the requested operation has
completed, it will wake up the thread.

3. When the scheduler selects the thread, it will unlock the lock. Only then can the
system start the next disk access (if other threads are waiting).
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us, we do not need one-sided synchronization in the disk I/O code. Access to different
devices (e. g., a hard disk and a floppy disk) can happen in parallel.

Note that the ready and blocked queues are manipulated by these interrupt handlers.
ese are critical regions because those queues are also modified via system calls (when
a new process or thread is created or exits or when a process asks to wait for termination
of a child process). us the functions

• u_forkc (forks a process; called by syscall_forkd)
• syscall_exitb (exits a process)
• u_pthread_createa (creates a new thread in the current process)
• syscall_waitpidc (makes a process wait for termination of a child)

(in an interruptible kernel) would have to disable interrupts while accessing the thread
table in order to ensure that they cannot be interrupted by one of the interrupt handlers.
(syscall_pthread_exita uses syscall_exitb to make the thread terminate.)

e timer handler calls the scheduler which also modifies the thread list. Since it runs
with deactivated interrupts it cannot conflict with the other functions that modify this list.

An earlier version of the U code (up to release 0.12) used a thread_list_lock mutex
for controlling access to the thread list (e. g., when creating a new thread or removing one
from the list). However, the scheduler (which is sometimes started from a thread when it
exits or yields, but typically runs on behalf of the timer interrupt handler) must not block
and thus cannot use the mutex.

11.6.4.4 Dealing With Complex Handlers

In more complex operating systems handling an interrupt can become time-intensive.
Since disabling interrupts should be limited to short time spans (see above), in those
cases the approach of spliing the handler code into a “first-level interrupt handler” and
a “second-level interrupt handler” can help.

• efirst-level1ˢ-level handler
(top hal)

interrupt handler (sometimes called top hal) is registered as the regular
handler and runs with other interrupts disabled. It performs only the most important
tasks (e. g., it acknowledges the interrupt and saves volatile data from a device’s inter-
nal buffer). As a last step it creates the lower half of the handler, re-enables interrupts
and terminates.

• e second-level2ⁿ-level handler
(boom hal)

interrupt handler (sometimes: boom hal) is not part of the in-
terrupt handler and runs while interrupts are enabled. It is somewhat similar to a
kernel thread but without an address space of its own (it only uses the kernel’s mem-
ory). e boom half could be activated by the scheduler (in that case boom halves
would need to have a higher priority than regular threads) or some other mechanism
could be used for making sure that the boom halves run as early as possible—as long
as no other top half has to be executed because new interrupts occurred.

e Linux kernel uses this concept and uses the terms top half (for the first-level hand-
ler) and boom half or tasklettasklet (for the second-level handler) [Lov03, pp. 81–106]. Tasklets
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in the Linux 2.6 kernel can have one of two priorities where the higher-priority tasklets
are always executed before the lower-priority ones and both run before the next thread is
scheduled. e top half of the interrupt handler registers a tasklet handler. ose tasklet
handlers must not block (just like the top halves, they cannot be scheduled, so it is not
possible for them to use locks or semaphores), and they must be able to cope with being
interrupted.

11.6.4.5 Spurious Interrupts

A spurious interrupt is an interrupt whose occurrence is faulty and unexpected. Yet, on
physical hardware it is a problem that needs to be dealt with. For example, the Intel 8259
PIC which U uses allows the discovery of a spurious interrupt:

“In both the edge and level triggered modes the IR inputs must remain high
until aer the falling edge of the first INTA. If the IR input goes low before this
time a DEFAULT IR7 will occur when the CPU acknowledges the interrupt.
is can be a useful safeguard for detecting interrupts caused by spurious
noise glitches on the IR inputs. To implement this feature the IR7 routine is
used for ‘clean up’ simply executing a return instruction, thus ignoring the
interrupt. If IR7 is needed for other purposes a default IR7 can still be detected
by reading the ISR. A normal IR7 interrupt will set the corresponding ISR bit,
a default IR7 won’t.” [Int88, p. 18]

(ISR is the In-Service Register.) us it is sufficient to modify handlers for interrupt num-
bers 7 (coming from the first PIC) and 15 (from the second PIC). In case of an interrupt
from the first PIC, no action is required; especially it is not necessary to acknowledge the
interrupt. However, if the interrupt comes from the second PIC, the first PIC (and only
the first PIC) needs to be sent the acknowledgement.

Certain spurious interrupts can be detected by the system because interrupts usually
provide services with prior demands. So if there is an interrupt which has no obvious
demand, then it probably is spurious. Other types of spurious interrupts are harder to
detect. Since U uses neither interrupt 7 (first parallel port) nor 15 (secondary IDE
controller), we fortunately need not deal with this situation.

11.6.4.6 Lost Wakeup

Blocking processes until an interrupt occurs introduces a problem that is called lost wakeup.
Lost wakeups can be caused by bad programming or unfortunate circumstances.

For example, if the interrupt that should deblock a thread is received before the thread
is actually blocked, the deblock operation is not triggered and the thread might never get
deblocked.

Lost wakeup situations are hard to deal with in practice since it is difficult to distinguish
the case where a wakeup is lost or merely very slow. Lost wakeups usually result in dead-
locks or threads being blocked forever. So in principle, techniques to discover deadlocks
or timeouts on the waiting times of threads can help resolve this issue.
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e same problem can occur with signals (see Chapter 14) which might be sent to a
process which is not yet waiting for them.

Lost wakeups could occur in a U version with an interruptible kernel whenever a
process or thread is blocked and the reason for blocking can disappear before the block
operation completes. ere are several such potential situations in the interruptible ver-
sion’s U code, but they cannot occur in our non-interruptible version. We have, how-
ever, marked the critical sections in some places so that these cases are already dealt with
(preparing again for the transition to an interruptible kernel).

As before, some of the following explanations will only make sense once you have read
later chapters, so we suggest you return here aer (for example) reading Chapter 13.5
which discusses the hard disk controller.

• syscall_waitpidc blocks a process so that it can wait for a child process to termi-
nate. In the interruptible version of U, running this function with interrupts dis-
abled would solve the possible situation of the child exiting aer the parent entered
syscall_waitpidc but before it blocked.

• hard disk access (see Chapter 13.5): before sending a request to the disk controller,
in the interruptible version of U, the code would disable the interrupts. It would
then check whether the request has already been completed and potentially block, re-
enabling the interrupts aer the thread has been moved to the blocked queue. is
concerns the functions writesector_hdd and readsector_hdc.

• floppy disk access (see Chapter 13.6): this is analogous to the hard disk case, but
disabling and enabling interrupts would occur in different functions.
e functions fdc_read_sectorc and fdc_write_sectorb call fdc_commandc which
would disable interrupts and send a control sequence to the floppy controller.
en fdc_commandc calls wait_fdc_interruptd (in ⟨fdc transfer 540c⟩) which in turn
calls fdc_sleepb where interrupts would be re-enabled aer blocking the thread.

• serial disk access (see Chapter 13.4): only read access can block, and this situation
would be handled in the same way as hard disk access: before sending a read request
to the serial disk, interrupts would be disabled.

• syscall_readcharb (as discussed above) reads from a keyboard buffer and blocks if
that is empty. Here, interrupts would be turned off between checking the buffer and
calling block.

• mutex_locka blocks when the mutex is already held elsewhere. Since this function
could be called in situations where interrupts may already be disabled, it saves the
current state (interrupts on or o) and restores it before returning (when the lock has
been acquired; see Section 11.6.4.2).

In all these cases, when a thread blocks, interrupts would be re-enabled aer moving a
thread to a blocked queue via block.
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11.7 Further Reading
An excellent collection of synchronization problems (and solutions) is “e Lile Book of
Semaphores” by Allen B. Downey [Dow08] which is freely available on the publisher’s
website. It presents both classical and less well-known problems, and solutions are not
simply given, but developed step by step—passing through several failed aempts and
explaining why they failed.

For details on the POSIX synchronization functions, take a look at “Programming with
POSIX reads” by David R. Butenhof [But97]. Its chapter 3 (which deals with synchro-
nization) is freely available online¹.

“e Art of Multiprocessor Programming” by Maurice Herlihy and Nir Shavit [HS12]
is a very thorough introduction to the synchronization problems, especially those that
occur on multiprocessor machines. As we mentioned earlier in Chapter 8.2, things get
much more complicated when more than one CPU is used. It contains a lot of code that
exemplifies the presented theory. at code is also available online.

A detailed discussion of top and boom halves (tasklets) in the Linux kernel can be
found in chapter 6 of Robert Love’s kernel development book [Lov03].

11.8 Exercises
30. Multiprocessor Kernel Synronization

is exercise deals with the implementation of critical sections on multiprocessor
systems, i. e., systems with multiple CPUs or CPUs with multiple cores. Assume you
have a kernel in which critical sections are correctly labelled with ENTER_MUTEX and
EXIT_MUTEX. For simplicity, assume that this holds for all interrupt handlers and all
system calls. Assume further that two kernel level threads A and B are running on
the system and that at least two CPUs execute these threads.
For each of the following cases discuss whether one of the following two situations
can arise:

a) violation of mutual exclusion, i. e., threads A and B concurrently execute critical
sections.

b) deadlock, i. e., at least one thread will never be scheduled again.

If one of these conditions can occur, construct a schedule of the system that ends in
the condition being true. If the conditions can never occur, argue why it is impossible.

• Case 1: single CPU, ENTER_MUTEX and EXIT_MUTEX are empty.
• Case 2: single CPU, ENTER_MUTEX disables the interrupts on that CPU, ENTER_MUTEX

enables the interrupts again.

¹ http://ptgmedia.pearsoncmg.com/images//samplepages/.pdf

http://ptgmedia.pearsoncmg.com/images/9780201633924/samplepages/0201633922.pdf
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• Case 3: single CPU, ENTER_MUTEX contains a spin lock on a global bit called busy
and assigns 1 when the lock is taken. EXIT_MUTEX assigns 0 to busy.

• Case 4: single CPU, ENTER_MUTEX and EXIT_MUTEX are implemented as follows, using
the definition of Lock from Section 11.2.2.2 (page 354):

[390a] ⟨synchronization exercises, case 4 390a⟩≡
Byte busy = false;

ENTER_MUTEX {
⟨disable interrupts 47a⟩
while (Lock() == true);

}
EXIT_MUTEX {

busy = false;
⟨enable interrupts 47b⟩

}
Uses busy, ENTER_MUTEX, and EXIT_MUTEX.

• Case 5: single CPU, ENTER_MUTEX and EXIT_MUTEX are implemented as follows:
[390b] ⟨synchronization exercises, case 5 390b⟩≡

Byte busy = false;

ENTER_MUTEX {
⟨disable interrupts 47a⟩
while (Lock() == true);
⟨enable interrupts 47b⟩

}
EXIT_MUTEX {
⟨disable interrupts 47a⟩
busy = false;
⟨enable interrupts 47b⟩

}
Uses busy, ENTER_MUTEX, and EXIT_MUTEX.

• Case 6: two CPUs, ENTER_MUTEX and EXIT_MUTEX are implemented as in case 1.
• Case 7: two CPUs, ENTER_MUTEX and EXIT_MUTEX are implemented as in case 2.
• Case 8: two CPUs, ENTER_MUTEX and EXIT_MUTEX are implemented as in case 3.
• Case 9: two CPUs, ENTER_MUTEX and EXIT_MUTEX are implemented as in case 4.
• Case 10: two CPUs, ENTER_MUTEX and EXIT_MUTEX are implemented as in case 5.

31. Nestable Critical Sections on Multiprocessor Systems

Does the implementation of nestable critical sections presented in chunks ⟨nestable
begin critical section 357d⟩ and ⟨nestable end critical section 357e⟩ work on multiproces-
sor systems?
Does it work if disabling the interrupts is accompanied by a spin lock?
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32. Kernel Level Semaphores as Critical Sections

Consider the implementation of wait_semaphorec and signal_semaphore in Sec-
tion 11.3.4 and assume it were not declared as a critical section (i. e., interrupts remain
on during execution of the code apart from within dispatcher operations). Is the im-
plementation then still correct? Try to construct an example where two threads use
a single semaphore, a context switch occurs and semaphore semantics are violated.

33. Implementing Kernel Level Semaphores

Consider the following implementation of wait_semaphorec and signal_semaphore
that use atomic counter manipulations instead of non-atomic ones as in the actual
implementation:

[391a]⟨function implementations (inactive) 391a⟩≡ 392a ▷
void wait_semaphore (kl_semaphore_id sid) {

kl_semaphore sem = ⟨semaphore structure with identifier sid 363e⟩;
⟨begin critical section in kernel 380a⟩
int count = __sync_sub_and_fetch (&sem.counter, 1); // atomic "--sem.counter"
if (count < 0) {

block (&sem.bq, TSTATE_LOCKED);
⟨resign 221d⟩

}
⟨end critical section in kernel 380b⟩

}

void signal_semaphore (kl_semaphore_id sid) {
kl_semaphore sem = ⟨semaphore structure with identifier sid 363e⟩;
⟨begin critical section in kernel 380a⟩
int count = __sync_add_and_fetch (&sem.counter, 1); // atomic "++sem.counter"
if (count < 1) {

blocked_queue *bq = &(sem.bq);
thread_id head = bq->next;
if (head != 0) {

deblock (head, bq);
}

}
⟨end critical section in kernel 380b⟩

}
Uses __sync_add_and_fetch 391b, __sync_sub_and_fetch 391b, blocked_queue 183a, deblock 186b,

kl_semaphore 360a, kl_semaphore_id 360b, signal_semaphore 362, thread_id 178a, TSTATE_LOCKED 180a,
and wait_semaphore 361c.

e atomic counter manipulation is done using the gcc compiler’s built-in functions
__sync_sub_and_fetchb and __sync_add_and_fetchb [Int01, section 7.4.1, p. 59] that
require that we add the option -march=i586 to the compiler flags (CFLAGS). e imple-
mentation of those functions is semantically equivalent to

[391b]⟨compiler-internal functions 354a⟩+≡ ◁ 354a
int __sync_sub_and_fetch (int *variable, int value) {

*variable -= value;
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return *variable;
}

int __sync_add_and_fetch (int *variable, int value) {
*variable += value;
return *variable;

}
Defines:

__sync_add_and_fetch, used in chunk 391a.
__sync_sub_and_fetch, used in chunk 391a.

but performs all steps atomically.
e question is whether this implementation is in any aspect beer than the one
given in Section 11.3.4. Would it change anything if the body of the function were
not protected as a critical section? (e laer question is an extension of exercise 32.)

34. Los as Critical Sections

Consider the following variation of the implementation of mutex_locka. e only
difference is that the ⟨begin critical section in kernel 380a⟩ is moved to within the loop.

[392a] ⟨function implementations (inactive) 391a⟩+≡ ◁ 391a 392b ▷
void mutex_lock (lock lockvar) {

if (current_task == 0) { return; } // no process
while ( lockvar->l == 1 ) {
⟨begin critical section in kernel 380a⟩
block (&(lockvar->bq), TSTATE_LOCKED); // put process to sleep
⟨resign 221d⟩

}
lockvar->l = 1;
⟨end critical section in kernel 380b⟩

}

Is this implementation correct? Does it maer if the kernel were interruptible?

35. Los as Critical Sections (Variation)

Here is another variation of the mutex_locka implementation. It uses the gcc-inter-
nal function __sync_lock_test_and_seta discussed in Section 11.2.2.1 to guarantee
that testing and seing are performed atomically.

[392b] ⟨function implementations (inactive) 391a⟩+≡ ◁ 392a
void mutex_lock (lock lockvar) {

if (current_task == 0) { return; } // no process
while ( __sync_lock_test_and_set (&(lockvar->l), 1) != 0 ) {
⟨begin critical section in kernel 380a⟩
block (&(lockvar->bq), TSTATE_LOCKED); // put process to sleep
⟨resign 221d⟩

}
⟨end critical section in kernel 380b⟩

}

Does this improve the correctness?
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Filesystems

In this chapter we describe how operating systems store files on hard disks and floppy
disks. e central concept for organizing directories and files is the filesystem: it is an
abstract description of the required data structures.

In Chapter 13 we will look at what is needed to actually talk to a physical drive, but for
now let’s just assume that there is some mechanism which enables us to read and write
“blocks”: these are small chunks of disk storage into which we partition a disk—quite
similar to the way that we’ve split memory into page frames.

We start with an overview of filesystem concepts in Section 12.1 that briefly discusses
CP/M, FAT, NTFS and Unix filesystems. Section 12.2 explains the concept of mounting
devices to mount points which is used on Unix operating systems. Aer this short theory
block we jump right into the implementation details: First, Section 12.3 shows how the
virtual filesystem (VFS) is organized in U. It provides some abstractions which allow
the OS to locate and use files on media which are formaed with various filesystems. In
Section 12.4 we present the new system calls that can be used by user mode programs.

en, in Sections 12.5 and 12.6 we introduce the Minix filesystem and show its imple-
mentation in U.

Section 12.7 presents a second filesystem (for accessing device files in /dev), so you will
see that the virtual filesystem layer is actually put to good use.

Finally, Section 12.8 gives a very short overview of the directory hierarchy that U
uses (which is modeled aer other Unix systems).
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12.1 Introduction to Filesystems
Every operating system needs to support one or more filesystems—at least one is required
so that the OS can store and retrieve data, load programs from the disk and enable them
to access files. Support for more than one filesystem makes sense when the OS wants to
read media from other systems, e. g. FAT-formaed media which can be used on most of
today’s systems.

Why is there no single filesystem which all operating systems could agree on? Surely,
this would make the cooperation of diverse systems much simpler.

If we want to understand why every OS has its own idea of how to store files (and
possibly directories) on disk we have to look back to the beginnings of external storage.

Card Readers Early computers used punch cards (see Figure 12.1) to store jobs and the
associated data: a card reader would be filled with a stack of such cards, the first
set of cards contained the binary program to be run, and the following cards held
the data. e system would read all these cards into memory and then run the job.
Aer completion, the results of the computation would be punched on empty cards
or sent to a connected printer. Data organization in such a card stack was strictly
serial, so there was no concept of a filesystem: the first card(s) would describe how
many program and data cards would follow and where to store their contents in
RAM.

Figure 12.1: Punch cards were used to store program code and data.

Tape enext stepwas the introduction ofmagnetic tape drives. ese live on until today
(as backup media, or third-level storage), and they are also strictly serial: Typically
tape drives can be sent a rewind command to move to the beginning of the tape and
read and write commands to read or write the tape sequentially. While it is possible
to store more than one file on a tape, accessing the third file requires skipping the
first two ones—which can only be achieved by reading them first. us, tapes have
no filesystem, either. Today, when people use a tape drive for backup, they typically
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generate an archive file (which may or may not contain a central listing of the files)
and write this single archive file onto the tape. e Unix tar tarprogram (tar: tape
archive) writes a file header for each contained file and then the file’s data; then the
next file header and data follow. e created archive file is wrien raw to the tape.

Disk e seriality of storage was changed with the introduction of disks: it does not
maer whether you think of floppy or hard disks, all of them allow random access random access,
that means you can store several files on one disk and read any file (or part of a
file) without looking at other data as long as you know where to find the file on the
disk. us, disks need some kind of directory directoryinformation so that the machine can
look up files on a previously unseen disk. e question of how and where to store
this directory information on the disk defines (most o) a filesystem, and many OS
developers have had their own ideas about the organization of files on a disk. Early
machines were not meant to be compatible with machines of other manufacturers,
and this led to various incompatible filesystems. We’ll look at some examples in the
next section.

12.1.1 Simple Filesystems
We assume throughout the rest of this chapter that a disk is divided into blocks physical blockof some
fixed size (typically 512 or 1024 bytes), and these blocks can be read and wrien using
some kind of readblock and writeblock commands which the disk drive controller supports.
We’re not going to delve into the details of how a hard disk is organized into plaers, cylin-
ders, sectors and tracks; instead we will assume that there is a logical ordering of blocks
and that the controller allows to access these logical blocks logical blockdirectly via some mechanism
that the OS can use.

12.1.1.1 Contiguous Filesystems

As long as you want to write files to a disk only once (and then continue using it in read-
only-mode), organizing files is rather simple: Assume you want to store 150 files on the
disk. You can then reserve one or more blocks at the beginning of the disk for a central
directory—just enough space to store filename, starting block and file length for each file
(see Table 12.1). en write each file to the disk, starting at the first unused block, and
update the directory aerwards.

All files are stored contiguously, which means that you can later read them sequentially
as long as you know where to start reading (see Figure 12.2). Opening and reading files
then means just looking up the filename in the directory and starting to read at the start
block number which is stored next to the filename.

e ISO-9660 ISO-9660 (CD)filesystem [ECM87] which is used for compact discs works in a similar
way, so this concept is still in use today. When we first implemented a disk driver for U
we used this approach as a quick hack to create a read-only filesystem.

Why is there a problem with this kind of organization? Imagine you want to enable
write-support for such a filesystem. As long as you only modify blocks inside a file, ev-
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Filename Size First Blo Blo Count
somefile.txt 3301 2 4
otherfile.txt 49152 6 48
test.txt 11147 54 11

Table 12.1: is is a simple directory of a contiguous filesystem. It stores both the number
of blocks as well as the actual file size which might be less than a multiple of
the block size (1024). e number of blocks could also be calculated from the
file size.

T T A A A A B B B B B B B B B B 00..15
B B B B B B B B B B B B B B B B 16..31
B B B B B B B B B B B B B B B B 32..47
B B B B B B C C C C C C C C C C 48..63
C (free) 64..79

(free) 80..95

Figure 12.2: Organization of disk blocks in a contiguous filesystem: e T blocks hold the
table of contents, and A, B and C represent the three sample files.

erything is fine: In the same fashion used for reading a file, you can calculate the block
number from the first block and the file offset and then change the right data block on the
disk to update the file’s contents. But what about appending to a file? Here’s where we
run into problems. Once you reach the end of the last block of a file, you cannot go on,
since the next block on the disk belongs to a different file. You would first have to move all
blocks of the following file to an unused region on the disk (and update the directory) be-
fore you can continue to write new blocks for the first file. But such a procedure will leave
holes in the disk: unused regions which may be used for new files but more oen than not
will be too small to store a complete file inside. is is calledexternal

fragmentation
external fragmentation.

e solution to this problem is to not store just a starting block and the file length, but a
collection of block numbers: with such a method any free block may be used to store file
contents, and the order of the blocks is irrelevant. Also, files can then be spread all over
the disk instead of being contiguous.

12.1.1.2 Non-contiguous Filesystems

Giving up the contiguousness makes file storage more flexible, but reading and writing
become harder: once you start reading or writing to a file, you can only read/write until
the end of the current block; to continue you need to first look up the block number of
the next data block (which can be found in some kind of directory, see Table 12.2 and
Figure 12.3). And again, this information is only good until the end of that block, when
you need to look up the next block number.
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Filename Size Blo List
somefile.txt 3301 2, 3, 16, 44
otherfile.txt 49152 4, 5, …, 15, 17, 18, …, 43, 55, 56, …, 63
test.txt 11147 45, 46, …, 54, 64

Table 12.2: is is the directory of a non-contiguous filesystem. Instead of start block and
block count it stores a block list for each entry.

T T A A B B B B B B B B B B B B 00..15
A B B B B B B B B B B B B B B B 16..31
B B B B B B B B B B B B A C C C 32..47
C C C C C C C B B B B B B B B B 48..63
C (free) 64..79

(free) 80..95

Figure 12.3: Organization of disk blocks in a non-contiguous filesystem: Files can use any
set of available blocks.

Most modern filesystems work in this way, so the question remains where to store the
block numbers.

e new flexibility comes at a cost: reading a disk sequentially is cheap because the
read/write heads are always positioned properly for reading the next block. When you
allow a file to spread over the disk, the disk must seek to the next block which costs time:
it slows down reading. A disk that holds lots of files which are spread over the disk blocks
in this fashion is called fragmented fragmented disk, and many operating systems provide defragmenting
tools which reorganize the files so that all blocks of a file occur in-order on the disk. How-
ever, a freshly defragmented disk becomes fragmented again once you start deleting files
and writing new ones.

12.1.1.3 CP/M

An early example for non-contiguous filesystems is that of CP/M, an operating system
whichwas popular in the 70s and early 80s. Actually, therewas a variety of non-compatible
CP/M filesystems, but they were at least all similar.

CP/M’s filesystem was flat, i. e., it did not implement the concept of subdirectories.
ere was one central directory that held the information about all files on the disk. For
bringing some order into a big list of files, CP/M introduced the concept of a user number:
each file’s metadata contained a number between 0 and 15 (standard: 0) and by chang-
ing the current user number to n the internal DIR command would only show files with
that user number n. at did not protect a user’s files from access by another user, but it
allowed cooperative and trusted users to share a disk.
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Block numbers for each file were stored in the directory entry (which was 32 bytes
long, with 16 bytes reserved for block numbers). If a file used more data blocks than
one directory entry could address, another directory entry for the same file was created
(and called an extent)extent (CP/M) . One directory entry could hold either 16 or eight block numbers,
depending on the total size of the disk: early floppy disks stored ≈  KByte, and the
blocksize was 1 KByte, thus on those floppies one byte was enough to reference a block
[JL83, pp. 19 ff.].

CP/M files have three aributes which may be set or unset: ‘read-only’, ‘system’ and
‘file changed’. ese are stored in the highest bits of three of the filename bytes—filenames
must be made of ASCII characters which use only seven bits of each byte. CP/M filenames
follow the “8.3” convention which was later picked up by MS-DOS: the first eight char-
acters named the file, the other three characters were used for the file extension which
defined the filetype (e. g. COM, C, PAS). Lower-case leers were forbidden. e dot in a file-
name such as TEST.COM was not stored in the directory entry, and you could not create
names like X.ENDING, since the filename and extension were treated separately (with their
eight characters / three characters limits).

12.1.1.4 MS-DOS FAT

e FAT filesystem (File Allocation Table) of MS-DOS and Windows uses a different ap-
proach for storing the block numbers. Instead of blocks, disks are divided into clusterscluster (FAT) ,
and the size of a cluster depends on the filesystem size. For example, with FAT16 the clus-
ter size is 512 bytes for filesystem sizes up to 32 MByte, it is 32 KByte for filesystems with
a size between 1 GByte and 2 GByte [Mic00b].

ere are three variants of FAT named FAT12, FAT16 and FAT32. For example, a FAT16
directory entry maps a filename to the first data cluster of the file. Further clusters can be
found via traversing a linked list, the file allocation table: it contains one 16-bit entry for
each cluster, and such an entry has one of the following values:

• 0x0000: Free cluster.
• 0x0002–0xFFEF: points to the next cluster in the linked list.
• 0xFFF0–0xFFF6: Reserved.
• 0xFFF7: Bad cluster (cannot be used).
• 0xFFF8–0xFFFF: is is the last cluster of the file. (Microso operating systems only

use the 0xFFFF value.)

(e size of the cluster number (16 bit) is what gives FAT16 its name. For FAT12 and
FAT32 there are similar conventions, e. g. 0x0FFFFFFF (28 1-bits) marks the end of the list on
FAT32, and 0xFFF (twelve 1-bits) on FAT12 media. As Microso’s specification [Mic00b]
notes, FAT32 is actually “FAT28” since only the lower 28 bits of a cluster number are
interpreted.)

is means that it is impossible to quickly access the end of a large file, for example a
file with FAT16’s maximum size (which uses 65522 clusters) requires reading 65522 FAT
entries in order to determine the last cluster number.
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12.1.2 Advanced Filesystems
Leaving FAT and other classical filesystems behind, we now look at two more advanced
specimens: the NTFS filesystem which was introduced with Microso Windows NT and
the Unix way of storing files.

12.1.2.1 NTFS

eNew Technology Filesystem (NTFS) is a successor to both FAT and theHigh Performance
Filesystem (HPFS) HPFS, OS/2that was developed for OS/2 by Microso and IBM. When the two com-
panies ended the cooperation on OS/2, IBM kept on using HPFS, and Microso developed
Windows NTwhich introduced NTFS.e central data structure of an NTFS volume is the
Master File Table (MFT ) MFTwhich contains entries for each file and each directory, including
itself (since the MFT is also a file). Filename and data are aributes of a file. e filename
is always part of the MFT entry, and the file data may also be if they are small enough.
Otherwise, the data are external to the MFT entry. In that case, NTFS stores information
about one or more cluster runs cluster run: A cluster run is a contiguous set of clusters, identified by a
starting cluster and the number of clusters. Each such cluster run description is encoded
so that is uses as few bytes as possible, it starts with a header byte in which the high half-
byte gives the size (in bytes) of the following start cluster number, and the low half-byte
tells how many bytes are used to describe the number of clusters (they follow behind the
first encoded number).

As an example, 32 EF CD AB 02 01 (all numbers are hexadecimal) describes a cluster run
with the following properties:

• 32: three bytes for the start cluster number
• 32: two bytes for the cluster count number
• EF CD AB: lile-endian encoding of the start cluster number, 0xabcdef
• 02 01: lile-endian encoding of the cluster count number, 0x0102

is means that the cluster starts at cluster 0xabcdef and ends at cluster 0x0xabcef0 (=
0xabcdef + 0x0102 − 1).

If this is the only cluster (i. e., the file is contiguous or non-fragmented), a further 0 byte
ends the description, otherwise the encoded form of the next cluster run follows; in any
case the last cluster run description is followed by a 0 byte, ending the entry. is may
degenerate into a classical list of used clusters where the cluster count number is always
1, but that is not normally the case.

In comparison to FAT, access to an arbitrary cluster is much faster because all the infor-
mation that is needed to find the nth cluster of a file is stored directly in the MFT entry,
whereas on a FAT volume half the cluster chain must be inspected (on average).

NTFS allows a file to have several names; it can store more than one filename aribute
in an MFT entry. For example, besides the regular name (as seen on Windows) files can
also have a short filename for compatibility with old MS-DOS applications.

Directories on NTFS are also files (again with an MFT entry) and their file entries are
organized as B-trees. Directory entries map a name to the MFT entry of the associated
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file, but also (redundantly) store the file size and time stamps that are also available via
each file’s MFT entry [Cus94, p. 28].

e organization into directories that map filenames to MFT entries somewhat resem-
bles the Unix filesystem structure where directories map filenames to inodes (see below).

NTFS provides several interesting features, for example it performs journaling and al-
lows more than one standard data streamdata stream : e file contents are considered the default
data stream, but there can be further, named data streams which can be accessed via a
filename:streamname syntax. ese extra streams could be used to implement versioning
of files (keeping several old version of a file).

12.1.2.2 Unix Filesystems

Where CP/M and MS-DOS link all data to a filename as the significant identifier in a di-
rectory entry, Unix filesystems work differently: ey assign numbers to files, not names.
ese numbers are called inode numbers and they point to entries in an inode table. Each
inodeinode (index node) stores metadata about a file, such as ownership, access permissions,
file creation and modification dates and some kind of pointers to the file’s data blocks.

Files get a name by writing that name and an inode number into a special directory file.
As an inode may occur several times in such directory files, any file can have more than
one name. us, filenames are not unique.

Like a CP/M directory entry, a Unix inode has a few fields which contain block num-
bers and lead to the first data blocks of a file. However, in order to support large files, a
different mechanism is needed because the inode has a fixed (and small) size. We have
already discussed in Section 3.2.4.9 (p. 81) that Unix filesystems work with several layers
of indirectionindirection —howmany depends on the concrete filesystem. With single indirection one
or more of the inode fields point to blocks which do not contain data but other block num-
bers. Double indirection introduces an extra layer of indirection, and triple indirection
goes yet one step further (Figure 12.4).

We will not discuss the general Unix filesystem characteristics in this overview since
you will see all the details in the upcoming sections which implement one of its variants
(the Minix filesystem).

12.2 Mounting: the Unix Way to Access
Many Volumes

Some operating systems dedicate a “drive identifier” to each volume that is in use. CP/M
was one of the earlier systems with a huge user base, and they used drive leersdrive leer (A, B) to
access more than one floppy drive. e idea was copied by MS-DOS and has been kept
alive to this day, withWindows drive leers always starting at C (A and B are still reserved
for floppy drives). Figure 12.5 shows howWindows accesses three volumes via three drive
leers.

In the Unix world drive leers are unknown. Instead, Unix combines all volumes into
one huge Unix directory tree (Figure 12.6). is means that parts of the tree can represent
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Figure 12.4: In Unix filesystems inodes store direct and single or mulitiple indirection
block addresses.

the contents of several volumes. e process of adding a new volume (and thus enlarging
the tree) is called mounting mounting. e root of the newly included filesystem will not appear as
the root of the overall tree, but as some node in the middle of the new tree. at node is
called the mount point mount point.

Originally, Unix used regular files as mount points. e idea was to look at the current
directory tree (before the mount operation), then pick a leaf in this tree (regular files
cannot have children in the tree) and aach the root of the new volume to this leaf [RT74].

Modern Unix-type systems use directories as mount points which can have the effect
of hiding files if the directory chosen as a mount point is not empty (i. e., it is not a leaf of
the tree).

A mount operation can be undone: the system can unmount unmounta volume which removes
the volume’s sub-tree from the directory tree. is is only possible when there are no
open files on the volume. Unix systems support mounting and unmounting via mount and
unmount system calls (and library functions of the same names), whereas the corresponding
command line tools are called mount and umount (without the “n” leer of unmount).

Whenmounting a volume, it is also possible to providemount options mount optionwhich are specific
to this volume, and special mount options may be available which depend on the filesys-
tem. A classical mount option is read only which completely forbids write operations to
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Figure 12.5: Windows uses separate drive leers for each volume.

Figure 12.6: Unix systems integrate all volumes in one tree. In this example, /, /mnt/dvd/
and /mnt/disk2/ are mount points.
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the volume. is is sometimes required by the device type (e. g. in case of a DVD), and
at other times it is just so desired by the user; for example, computer forensic examiners
need to mount media in read-only mode so that all data will remain in their original state.

12.3 The U Virtual Filesystem
U shall use a virtual filesystem (VFS) VFS. at means that several real filesystems might
be used, and the VFS provides an abstraction so that generic functions such as openb,
readb and writeb may be used for accessing these.

ere are several layers, as you can see in Figure 12.7:

• Starting at the lowest level, we need code that can interact with the controllers to
which floppy or hard disk drives are connected. ey will work with blocks of data,
i. e., they read or write a whole block (and not single bytes) each time. Chapter 13
will present the code necessary to talk to the devices and perform the data transfers
between memory and disk.

• One level above, we provide generic block read/write functions that will work with
any supported device. ey take a device ID as a parameter but otherwise let the next
level ignore specifics of the device in use.

• Yet higher in the driver hierarchy are the logical filesystem drivers logical
filesystem

. U only provides
one implementation of such a driver (we support the Minix filesystem), but we write
the code in such a way that we (or you) could easily add additional drivers. e logical
level is concerned with the organization of files, directories andmetadata metadataof a volume:
this is what this chapter is mainly about. Wewill give an introduction to all the details
of the Minix Minixfilesystem design.

• On the highest level there are the virtual file system functions. ey work with path-
names for accessing files or directories, and such pathnames will be translated into
(device, local pathname) pairs. If you split the mount point from an absolute path, the
remainder is the local (absolute) path on the volume which is mounted on that mount
point. is is also the code for which we provide a user mode interface via system
calls.

Whenever a file is being accessed, we want U to take the following steps:

1. Calculate the absolute path absolute pathof the file. Note that a filename may already be given as
an absolute path (e. g. /usr/bin/ps), but it may also be given as a relative path (e. g.
../ps). In the laer case we construct the absolute path from the current working
directory and the relative path relative path.

2. Scan the mount table to find out on which filesystem the file is located. is will re-
turn two values: a pointer to the filesystem and a path which is local to this filesystem.
In case of /mnt/tmp/file.txt this may lead to the number 1 (standing for filesystem
number 1 which is mounted on /mnt) and the path (/tmp/file.txt) within that filesys-
tem.
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Figure 12.7: e Virtual Filesystem has a layered design. For accessing files, the kernel
and processes use functions at the virtual filesystem level, and they will be
translated through the layers until they are finally turned into floppy or hard
disk access function calls.

3. Depending on the service function which was called (e. g. open), find a registered func-
tion that can talk to this kind of filesystem (e. g. mx_open for a Minix filesystem or
fat_open for a DOS/FAT filesystem) and call it.

e filesystem-specific functions should assume that they can access the filesystem as a
large, consecutive block of data. As already mentioned, U will provide generic func-
tions readblockb and writeblockc which can be used to access the raw data, be they
on a disk partition, a floppy disk or inside RAM.
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We will restrict the number of mounts to 16. A mount table entry mount tablelooks like this:
[405a]⟨type definitions 91⟩+≡ (44a) ◁ 365a 440c ▷

typedef struct {
char mountpoint[256];
short fstype; // filesystem type, e. g. Minix, device filesystem
short device; // e. g. DEV_FD0, DEV_HDA
short mount_flags; // always 0; we will not use mount flags

} mount_table_entry;
Defines:

mount_table_entry, used in chunk 405b.

We do not provide mount and umount functions in the kernel, but instead work with a fixed
table. is could easily be remedied since those functions would just add or remove an
entry to the following array and perform some checks:

[405b]⟨global variables 92b⟩+≡ (44a) ◁ 383b 410b ▷
mount_table_entry mount_table[16] = {

{ "/", FS_MINIX, DEV_HDA, 0 },
{ "/mnt/", FS_MINIX, DEV_FD1, 0 },
{ "/tmp/", FS_MINIX, DEV_HDB, 0 },
{ "/dev/", FS_DEV, DEV_NONE, 0 },
{ { 0 } }

};
short current_mounts = 4; // how many FSs are mounted?

Defines:
current_mounts, used in chunks 406, 408c, and 492.
mount_table, used in chunks 406, 408, and 492.

Uses DEV_FD1 508a, DEV_HDA 508a, DEV_HDB 508a, DEV_NONE 508a, FS_DEV 410a, FS_MINIX 410a,
and mount_table_entry 405a.

(e constants DEV_HDAa, DEV_HDBa and DEV_FD1a identify the first two hard disks and
the second floppy disk; we will define them in the next chapter.) e information in such
an entry corresponds roughly to the data you can observe in /etc/mtab on a Linux system:

[405c]⟨Linux mtab entry 405c⟩≡
/dev/sda2 / ext3 rw,errors=remount-ro 0 0

(is line shows the device filename, the mount point, the filesystem type, the mount
options (in this case: read-write, remount as read-only in case of errors) and dump and
filesystem check options which we will not deal with in U.)

A mount table entry is unused if its fstype element is 0. e mount flag value 0 calls for
standard mount options. (In our case that means readable and writeable, though we do
not provide alternatives such as read-only.) e following helper function

[405d]⟨function prototypes 45a⟩+≡ (44a) ◁ 373b 408b ▷
void print_mount_table ();

will be called during system startup and show the mount table:
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[406] ⟨function implementations 100b⟩+≡ (44a) ◁ 373c 408a ▷
void print_mount_table () {

int i, dev;
for (i=0; i<current_mounts; i++) {

dev = mount_table[i].device;
if (dev != 0) {

char *devname;
switch (dev) {

case DEV_HDA: devname = "hda"; break;
case DEV_HDB: devname = "hdb"; break;
case DEV_FD0: devname = "fd0"; break;
case DEV_FD1: devname = "fd1"; break;

}
printf ("mount: dev[%02x:%02x] = /dev/%s on %-5s type %-5s (options %d)\n",

devmajor (dev), devminor (dev), devname, mount_table[i].mountpoint,
fs_names[mount_table[i].fstype], mount_table[i].mount_flags);

} else
printf ("mount: none on %-5s type %-5s (options %d)\n",

mount_table[i].mountpoint,
fs_names[mount_table[i].fstype], mount_table[i].mount_flags);

}
}

Defines:
print_mount_table, used in chunks 45c and 405d.

Uses current_mounts 405b, DEV_FD0 508a, DEV_FD1 508a, DEV_HDA 508a, DEV_HDB 508a, devmajor 505b, devminor 505b,
fs_names 410b, mount_table 405b, and printf 601a.

e fs_namesb[] array contains strings describing the filesystems; its definition follows
on page 410.

We will provide two concrete implementations of filesystems:

• a Minix filesystemMinix implementation which describes how to (logically) read and write
Minix-formaed media

• and a /dev/dev filesystem filesystem, similar to Linux, which provides information about known
devices (such as /dev/fd0 for the first floppy drive).

e architecture will be such that it is possible to add support for other filesystems, for
example FAT (from MS-DOS/Windows). Since U belongs to the Unix family, we will
provide abstract Unix filesystem features (such as symbolic and hard links, user and group
information, classical Unix access permissions and timestamps) and have to map them to
the data which are available in a concrete filesystem (on a disk).

e other layer is the hardware: It shall be possible to use all supported filesystems on
any kind of device for which there are blockread and blockwrite functions. us, when
U tries to open a file and read from it, the system will start with executing the vir-
tual u_openc or u_readb function, then call (for example) Minix-related mx_openb or
mx_readb functions and finally end in calls to the hardware-specific readblockb func-
tions. e overall process of executing fd = openb("/mnt/tmp/test"); with the second
floppy drive mounted on /mnt/ is shown in Figure 12.8.
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u_open ("/mnt/tmp/test", O_RDONLY)             

get_dev_and_path ("/mnt/tmp/test", &dev, &fs,  
                  &localpath)

mx_open ("/tmp/test", DEV_FD1, O_RDONLY)       
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Figure 12.8: Opening a file via the user mode library function open().

On the hardware side, U will provide drivers for floppy disks and hard disks. us,
there will be support for Minix-formaed floppy disks and hard disks.

12.3.1 Finding the Device and Local Path
Let’s look at a possible scenario: Assumewe have two floppy disks (fda, fdb) and two RAM
disks (ram0, ram1) mounted like this:

/dev/fda on / (minix)
/def/fdb on /home (minix)
/dev/ram0 on /mnt (minix)
/dev/ram1 on /home/ramtest (minix)



408 12 Filesystems

Since the path /home/ramtest does not exist before fdb has been mounted on /home/, the
second RAM disk¹ must have been mounted aer the second floppy disk. us, if we
assume that we store the mount information in the order in which it was created by mount,
we can search the mount table backwards, starting with the last entry, and compare each
mount point to the leading chraracters of the absolute path name:

[408a] ⟨function implementations 100b⟩+≡ (44a) ◁ 406 409b ▷
⟨find device and local path 408c⟩

[408b] ⟨function prototypes 45a⟩+≡ (44a) ◁ 405d 409a ▷
int get_dev_and_path (char *path, short *dev, short *fs, char *localpath);

[408c] ⟨find device and local path 408c⟩≡ (408a) 408d ▷
int get_dev_and_path (char *path, short *dev, short *fs, char *localpath) {

int i, mount_entry;
for (i = current_mounts-1; i ≥ 0; i--) {

// standard case: file; mount point (e.g. "/mnt/" is head of path)
if (string_starts_with (path, mount_table[i].mountpoint)) {

mount_entry = i; break;
}
// second case: directory, path is mount point without /, e.g. "/mnt"
if ( strlen (path) == strlen (mount_table[i].mountpoint)-1 &&

string_starts_with (mount_table[i].mountpoint, path) ) {
mount_entry = i; break;

}
}

Defines:
get_dev_and_path, used in chunks 408b, 411e, 419, 588b, and 589a.

Uses current_mounts 405b, g, mount_table 405b, string_starts_with 409b, and strlen 594a.

Note that this loop cannot fail since the first mount entry always has the mount point
/, and every syntactically correct absolute path begins with /. is only works because
we search backwards: if we were searching forwards, we would always find the root
filesystem and ignore all further mounts.

Once we have found the relevant entry we can split off the leading mount point and
also know the device and filesystem type:

[408d] ⟨find device and local path 408c⟩+≡ (408a) ◁ 408c
split_mountpoint (mount_table[mount_entry].mountpoint, path, localpath);
if (strlen (localpath) == 0) {

// empty string
localpath[0] = '/'; localpath[1] = 0;

}
*dev = mount_table[mount_entry].device;
*fs = mount_table[mount_entry].fstype;
return 0;

}
Uses mount_table 405b, split_mountpoint 409c, and strlen 594a.

¹ is version of U does not implement RAM disks; if you want to see U RAM disk support, you can
read Liviu Beraru’s bachelor thesis [Ber13].
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at is really all there is to do. Every call of this function (with a syntactically correct
absolute path) must be successful, however that does not mean that the path truly exists:
Other functions must check whether the local part of the path (localpath) is available on
the device—but we know where to look now.

We need to implement the two helper functions string_starts_withb (which is similar
to strcmpa) and split_mountpointc:

[409a]⟨function prototypes 45a⟩+≡ (44a) ◁ 408b 411b ▷
int string_starts_with (char *str, char *start);
void split_mountpoint (char *mountpoint, char *path, char *localpath);

[409b]⟨function implementations 100b⟩+≡ (44a) ◁ 408a 409c ▷
int string_starts_with (char *str, char *prefix) {

if (strlen (prefix) > strlen (str)) { return false; } // cannot be a sub-string
while (*prefix != '\0') {

if (*prefix++ != *str++) { return false; } // found different character
};
return true; // parsed all of prefix; match!

}
Defines:

string_starts_with, used in chunks 408c and 409a.
Uses strlen 594a.

e function split_mountpointc expects that the path string does in fact start with
mountpoint. It does not check this property but only removes as many characters as nec-
essary:

[409c]⟨function implementations 100b⟩+≡ (44a) ◁ 409b 412b ▷
void split_mountpoint (char *mountpoint, char *path, char *localpath) {

// input: mountpoint, e.g. /home/
// path, e.g. /home/user/file.txt
// output: localpath, e.g. /user/file.txt
int len = strlen (mountpoint);
strncpy (localpath, path+len-1, 256);

}
Defines:

split_mountpoint, used in chunk 408d.
Uses g, strlen 594a, and strncpy 594b.

12.3.2 Constants for Filesystems
We declare some constants for the filesystems which are (or might be) supported by U:
In most cases we will work with FS_MINIXa since we provide a full implementation of
the Minix filesystem. e device filesystem FS_DEVa is also available, but FS_ERRORa
and als FS_FATa will only cause errors if they occur anywhere. We have included an
FS_FATa constant because we use it occasionally for explaining how FAT support could
be added to U.
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[410a] ⟨constants 112a⟩+≡ (44a) ◁ 365b 411c ▷
#define FS_ERROR 0
#define FS_MINIX 1
#define FS_FAT 2
#define FS_DEV 3

Defines:
FS_DEV, used in chunks 405b, 412c, 414b, 415a, 418, 420–22, 425c, 588b, and 589a.
FS_ERROR, used in chunks 412c, 414b, 415a, 418, 420–22, 425c, 588b, and 589a.
FS_FAT, used in chunks 412c, 414b, 415a, 418, 420–22, 425c, 588b, and 589a.
FS_MINIX, used in chunks 405b, 412c, 414b, 415a, 418–22, 425c, 588b, and 589a.

[410b] ⟨global variables 92b⟩+≡ (44a) ◁ 405b 459c ▷
char *fs_names[] = { "ERROR", "minix", "fat", "dev" };

Defines:
fs_names, used in chunks 406 and 492.

A definition of devices will follow in Chapter 13 on disk I/O.

12.3.3 Global File Descriptors
We will allow all filesystem drivers to manage their own sets of file descriptors since they
may use them as an index into a private table. us, when we open several files on Minix-
formaed media, file descriptors 0, 1, 2, 3, etc. will be in use. If another filesystem driver
(e. g. one for FAT) exists, it may use the same numbers.

Obviously just passing those file descriptor numbers to the calling process (or kernel
function) would create chaos with some numbers being used twice or more oen. We
avoid this problem by granting each filesystem a range of 256 numbers. For each filesys-
tem filesys and a filesystem-local file descriptor localfdwe calculate the global file descrip-
tor via fd = (filesys << 8) + localfd.

Open Minix files will have file descriptors in the range 256–511, and FAT files would
have descriptors in the range 512–767. When one of the functions u_readb, u_writea
etc. is called, it expects a global file descriptor as argument. By reversing the above calcu-
lation via filesys = fd >> 8; localfd = fd & 0xff; we can easily find out which filesystem
function we need to call and which local file descriptor we have to provide it.

So, in order to clear the terminology, here is an overview of the three types of file de-
scriptors we will use:

Global File Descriptor: Aglobal file descriptor is used by the kernel to identify a unique
open file—across all processes (and the kernel itsel).

Local File Descriptor: Each subsystem (such as the Minix or /dev subsystem) uses its
own set of file descriptors. ese are also global in that they are not associated with
any specific process, but no generic filesystem function is meant to use them.

Process File Descriptor: Each process keeps a list of its ownfile descriptors (in its thread
table entry). ose descriptors aremapped to global file descriptors via those entries.
ey only make sense when seen from a process’ point of view.
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12.3.4 Opening a File
We start with an implementation of the u_openc function which—in case of a file on
a Minix filesystem—will call mx_openb. All filesystem related functions on the virtual
filesystem layer will have a u_ prefix u_ prefixso that we can distinguish them from the user mode
library functions with the same names (e. g. u_openc and u_readb inside the kernel,
openb and readb in the user mode library).

e prototype for u_openc almost follows the Unix standards. We do not allow the
optional third argument of the POSIX standard,

[411a]⟨POSIX prototypes 411a⟩≡
int open (const char *pathname, int flags);
int open (const char *pathname, int flags, mode_t mode);

but instead expect a third parameter open_link thatwewill use to decidewhether u_openc
shall follow symbolic links or just open the link file itself. is option will not be avail-
able to the corresponding system call since we do not want processes to manually handle
symbolic links.

When creating a file, U always sets the standard access permissions 644o; they can
later be modified with u_chmoda. us the u_openc prototype is:

[411b]⟨function prototypes 45a⟩+≡ (44a) ◁ 409a 412a ▷
int u_open (char *path, int oflag, int open_link);

[411c]⟨constants 112a⟩+≡ (44a) ◁ 410a 415c ▷
// u_open parameter int open_link:
#define DONT_FOLLOW_LINK 1
#define FOLLOW_LINK 0

Uses DONT_FOLLOW_LINK, FOLLOW_LINK, and u_open 412c.

Before we start with the function implementation we note that there will be a recurring
paern in many of the following functions: Many of them start with converting a path
argument into an absolute path via relpath_to_abspathb, and then they look up the
device, the filesystem type and the local path via get_dev_and_pathc. ey will always
use variables named localpath, abspath, device and fs. us, we create two code chunks
for the variable declarations and the function calls:

[411d]⟨VFS functions: declare default variables 411d⟩≡ (412c 418b 421 422)
char localpath[256], abspath[256];
short device, fs;

[411e]⟨VFS functions: make absolute path, get device, fs and local path 411e⟩≡ (412c 418b 421 422)
if (*path != '/')

relpath_to_abspath (path, abspath);
else

strncpy (abspath, path, 256);
get_dev_and_path (abspath, &device, &fs, (char*)&localpath);

Uses get_dev_and_path 408c, relpath_to_abspath 412b, and strncpy 594b.
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[412a] ⟨function prototypes 45a⟩+≡ (44a) ◁ 411b 414a ▷
void relpath_to_abspath (const char *relpath, char *abspath);

[412b] ⟨function implementations 100b⟩+≡ (44a) ◁ 409c 412c ▷
void relpath_to_abspath (const char *relpath, char *abspath) {

if (strlen (thread_table[current_task].cwd) > 1) {
// combine cwd and relpath, add "/" in the middle
strncpy (abspath, thread_table[current_task].cwd, 256);

} else {
strncpy (abspath, "", 256);

}
strncpy (abspath + strlen (abspath) + 1, relpath, 256 - strlen (abspath) - 1);
abspath[strlen (abspath)] = '/';

}
Defines:

relpath_to_abspath, used in chunks 411e, 412a, 419, 432e, 488a, 588b, and 589a.
Uses current_task 192c, cwd, strlen 594a, strncpy 594b, and thread_table 176b.

e implementation of u_openc is rather short because the VFS layer forwards all the
real work the the corresponding functions in some subsystem (for the Minix or device
filesystem):

[412c] ⟨function implementations 100b⟩+≡ (44a) ◁ 412b 414b ▷
int u_open (char *path, int oflag, int open_link) {
⟨VFS functions: declare default variables 411d⟩
⟨VFS functions: make absolute path, get device, fs and local path 411e⟩
⟨u_open: handle symlink 413b⟩
if (scheduler_is_active) {
⟨u_open: check permissions 577c⟩ // see user/group chapter

}

int fd;
switch (fs) {

case FS_MINIX:
fd = mx_open (device, localpath, oflag);
if (fd == -1) return -1; // error (opening failed)
else return (fs << 8) + fd;

case FS_FAT: return -1; // not implemented
case FS_DEV:

fd = dev_open (localpath, oflag);
if (fd == -1) return -1; // error (opening failed)
else return (fs << 8) + fd;

case FS_ERROR: return -1; // error (wrong FS)
default: return -1; // error (wrong FS)

}
}

Defines:
u_open, used in chunks 190c, 229a, 293b, 411, 420, 426b, 488a, and 582a.

Uses dev_open 495c, FS_DEV 410a, FS_ERROR 410a, FS_FAT 410a, FS_MINIX 410a, mx_open 464b,
and scheduler_is_active 276e.
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is is all there is to do: the function first looks into the mount table in order to deter-
mine on which device the file resides and what filesystem that device is formaed with.
Since get_dev_and_pathc also calculates the local absolute path within the filesystem,
u_openc can immediately call mx_openb or dev_openc which do the real work. If we
were to add support for the Linux Ext3 filesystem, we would modify this code by adding
a case for fs == FS_EXT3:

[413a]⟨adding Ext3 support 413a⟩≡
case FS_EXT3:

fd = ext3_open (device, localpath, oflag);
if (fd == -1) return -1; // error (opening failed)
else return (fs << 8) + fd;

Note that we need not deal with special cases such as non-existing files or files which
do not have the necessary access permissions in this code: is will be handled in the
filesystem-specific functions, such as mx_openb. If these return an error code (instead of
a file descriptor), the result is just forwarded to the caller of u_openc.

In case that the file to open is a symbolic link symbolic link, we need to follow the link. We do this by
reading the link file and using the path found there:

[413b]⟨u_open: handle symlink 413b⟩≡ (412c)
struct stat st;
char link[256];
u_stat (abspath, &st);
if (((st.st_mode & S_IFLNK) == S_IFLNK) && (open_link == FOLLOW_LINK)) {

// open (how?), read_, then u_open (symlink)
int link_fd = u_open (abspath, O_RDONLY, DONT_FOLLOW_LINK); // open link file
u_read (link_fd, link, 256);
u_close (link_fd);
return u_open (link, oflag, FOLLOW_LINK); // recursion

}

is calls u_openc recursively, and our simple function does not check the recursion
level. us a simple sequence of ln -s xyz xyz and cat xyz in some directory will force
u_openc into an infinite recursion (and crash the system when the kernel stack exceeds
its boundary).

To see this mechanism in operation, consider that there is a file file and we have two
symbolic links, a and b, where a points to b and b points to file. Trying to open a will
cause the following recursion:

[413c]⟨example for recursive u_open calls 413c⟩≡
u_open ("/a", oflag, FOLLOW_LINK) // open "a", called from somewhere

st.st_mode == S_IFLNK // "a" is a symlink
u_open ("/a", O_RDONLY, DONT_FOLLOW_LINK) // open it read-only and...
u_read () -> "/b" // read the contents: it's "b"
u_close ("/a) // close "a"
u_open ("/b", oflag, FOLLOW_LINK) // open "b" (return its retval)

st.st_mode == S_IFLNK // "b" is also a symlink
u_open ("/b", O_RDONLY, DONT_FOLLOW_LINK) // open it RO and...
u_read () -> "/file" // read the contents: it's "file"
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u_close ("/b) // close b
u_open ("/file", oflag, FOLLOW_LINK) // open "file" (return its retval)

st.st_mode != S_IFLNK // no link; return file descriptor

12.3.5 Reading, Writing and Other Operations
e operations on open files are even simpler because we don’t have to find out what
filesystem to use: we get that information via the global file descriptor. For example, the
u_readb function extracts the filesystem type and the local file descriptor from the global
file descriptor (just like we have already described earlier); then it branches and calls one
of the *_read functions.

[414a] ⟨function prototypes 45a⟩+≡ (44a) ◁ 412a 421a ▷
int u_read (int fd, void *buf, int nbyte);
int u_write (int fd, void *buf, int nbyte);
int u_close (int fd);
int u_lseek (int fd, int offset, int whence);
int u_unlink (const char *path);
int u_link (const char *path, const char *path2);
int u_symlink (const char *path, const char *path2);
int u_truncate (const char *path, int length);
int u_ftruncate (int fd, int length);
int u_readlink (char *path, char *restrict buf, size_t bufsize);

u_readb simply requires the following code:
[414b] ⟨function implementations 100b⟩+≡ (44a) ◁ 412c 415a ▷

int u_read (int fd, void *buf, int nbyte) {
if (fd < -100) { ⟨read: standard I/O and pipes 416d⟩ }
⟨VFS functions: turn fd into (fs, localfd) pair or fail 414c⟩
switch (fs) {

case FS_MINIX: return mx_read (localfd, buf, nbyte);
case FS_FAT: return -1; // not implemented
case FS_DEV: return dev_read (localfd, buf, nbyte);
case FS_ERROR: return -1; // error
default: return -1;

}
}

Defines:
u_read, used in chunks 190c, 229a, 233b, 294, 413c, 420c, 426b, and 582a.

Uses dev_read 496d, FS_DEV 410a, FS_ERROR 410a, FS_FAT 410a, FS_MINIX 410a, and mx_read 470b.

with
[414c] ⟨VFS functions: turn fd into (fs, localfd) pair or fail 414c⟩≡ (414b 415a 418a 420b 425c)

if (fd < 0) return -1; // file not open
int fs = fd >> 8;
int localfd = fd & 0xff;
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(Again we create a separate code chunk for this check and the calculation which turns
a global file descriptor into a (filesystem, local file descriptor) pair since we will reuse it
several times.)

Negative file descriptors with fd < -100 deal with the special cases of standard I/Ostandard input/out-
put and pipes pipe(though pipes have not been implemented in this version); we will describe
that case soon. e code for writing is almost identical to that of u_readb:

[415a]⟨function implementations 100b⟩+≡ (44a) ◁ 414b 418a ▷
int u_write (int fd, void *buf, int nbyte) {

if (fd < -100) { ⟨write: standard I/O and pipes 417⟩ }
⟨VFS functions: turn fd into (fs, localfd) pair or fail 414c⟩
switch (fs) {

case FS_MINIX: return mx_write (localfd, buf, nbyte);
case FS_FAT: return -1; // not implemented
case FS_DEV: return dev_write (localfd, buf, nbyte);
case FS_ERROR: return -1; // error
default: return -1;

}
}

Defines:
u_write, used in chunks 293d, 414a, and 426b.

Uses dev_write 497, FS_DEV 410a, FS_ERROR 410a, FS_FAT 410a, FS_MINIX 410a, and mx_write 474c.

We define the file descriptors for stdin, stdout,
stderr

stdin, stdout and stderr (as they are valid inside pro-
cesses) and kernel-internal negative values for the three standard I/O streams:

[415b]⟨public constants 46a⟩+≡ (44a 48a) ◁ 328d 424b ▷
#define STDIN_FILENO 0
#define STDOUT_FILENO 1
#define STDERR_FILENO 2

Defines:
STDIN_FILENO, used in chunks 431 and 432b.
STDOUT_FILENO, used in chunks 431 and 598c.

[415c]⟨constants 112a⟩+≡ (44a) ◁ 411c 440a ▷
#define DEV_STDIN (-101)
#define DEV_STDOUT (-102)
#define DEV_STDERR (-103)

Defines:
DEV_STDERR, used in chunks 190a, 416d, 417, and 421b.
DEV_STDIN, used in chunks 190a, 416d, 417, and 421b.
DEV_STDOUT, used in chunks 190a, 416d, 417, and 421b.

In order to read from standard input, we make a system call which in turn will execute
syscall_readcharb, our function for reading from the keyboard:

[415d]⟨ulix system calls 206e⟩+≡ (205a) ◁ 372e 428b ▷
#define __NR_readchar 525

Defines:
__NR_readchar, used in chunk 416c.
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[416a] ⟨syscall prototypes 173b⟩+≡ (202a) ◁ 372c 426a ▷
void syscall_readchar (context_t *r);

Uses context_t 142a and syscall_readchar 416b.

e implementation lets the current process block if no new character is available in
the keyboard buffer:

[416b] ⟨syscall functions 174b⟩+≡ (202b) ◁ 372d 426b ▷
void syscall_readchar (context_t *r) {

char c;
int t = thread_table[current_task].terminal;
terminal_t *term = &terminals[t];

// get character, return 0 if there is no new character in the buffer
⟨begin critical section in kernel 380a⟩ // access the thread table
if (term->kbd_count > 0) {

term->kbd_count--;
term->kbd_lastread = (term->kbd_lastread+1) % SYSTEM_KBD_BUFLEN;
c = term->kbd[term->kbd_lastread];

} else {
c = 0;
if ((current_task > 1) && scheduler_is_active) {

block (&keyboard_queue, TSTATE_WAITKEY);
⟨end critical section in kernel 380b⟩
⟨resign 221d⟩

}
};
r->ebx = c; // return value in ebx
⟨end critical section in kernel 380b⟩

};
Defines:

syscall_readchar, used in chunk 416.
Uses context_t 142a, current_task 192c, keyboard_queue 323d, scheduler_is_active 276e,

SYSTEM_KBD_BUFLEN 318a, terminal_t 318b, terminals 318c, thread_table 176b, and TSTATE_WAITKEY 180a.

As usual, we need to add the new system call handler to the table:
[416c] ⟨initialize syscalls 173d⟩+≡ (44b) ◁ 373a 428a ▷

install_syscall_handler (__NR_readchar, syscall_readchar);
Uses __NR_readchar 415d, install_syscall_handler 201b, and syscall_readchar 416b.

Reading from standard output or standard error is not allowed and causes an error. Also
there are no pipes in this U version, but the idea is to let the kernel create an internal
buffer for each pipe and associate two negative file descriptors with it.

[416d] ⟨read: standard I/O and pipes 416d⟩≡ (414b)
byte c = 0;
unsigned int u;
switch (fd) {

case DEV_STDIN:
for (int i = 0; i < nbyte; i++) {

// read one character from the keyboard
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__asm__ ("\
.intel_syntax noprefix; \
mov eax, 525; \
int 0x80; \
mov %0, ebx; \
.att_syntax"
:
"=r"(u)

);
c = (byte) u;
((byte*) buf)[i] = c;

};
break;

case DEV_STDOUT:
case DEV_STDERR:

printf ("(ERROR: reading from stdout or stderr)\n");
return (-1); // error, cannot read from output

default: return (-1); // pipes not implemented yet
}

Uses DEV_STDERR 415c, DEV_STDIN 415c, DEV_STDOUT 415c, and printf 601a.

Simlilarly, writing to standard output or standard error dumps data on the terminal
using the kputchb function, whereas writing to standard input (or pipes) is forbidden:

[417]⟨write: standard I/O and pipes 417⟩≡ (415a)
byte c;
switch (fd) {

case DEV_STDIN:
printf ("(ERROR: writing to stdin)\n");
return (-1); // error, cannot write to input

case DEV_STDOUT:
case DEV_STDERR:

for (int i = 0; i < nbyte; i++) {
c = ((char*)buf)[i];
if (c > 31 || c == '\n' || c == 0x08) {

kputch (c); // regular characters: 32..255, \n, \b
} else {

kputch ('^'); kputch (c+64); // control characters: <32
}

}

default: return (-1); // pipes not implemented yet
}

Uses DEV_STDERR 415c, DEV_STDIN 415c, DEV_STDOUT 415c, kputch 335b, and printf 601a.

Closing an open file or performing a seek operationwork like reading, in that u_closea
and u_lseeka simply call the corresponding mx_* or dev_* functions:
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[418a] ⟨function implementations 100b⟩+≡ (44a) ◁ 415a 418b ▷
int u_close (int fd) {
⟨VFS functions: turn fd into (fs, localfd) pair or fail 414c⟩
switch (fs) {

case FS_MINIX: return mx_close (localfd);
case FS_FAT: return -1; // not implemented
case FS_DEV: return dev_close (localfd);
case FS_ERROR: return -1; // error
default: return -1;

}
}

int u_lseek (int fd, int offset, int whence) {
⟨VFS functions: turn fd into (fs, localfd) pair or fail 414c⟩
switch (fs) {

case FS_MINIX: return mx_lseek (localfd, offset, whence);
case FS_FAT: return -1; // not implemented
case FS_DEV: return dev_lseek (localfd, offset, whence);
case FS_ERROR: return -1; // error
default: return -1;

}
}

Defines:
u_close, used in chunks 190c, 216b, 229a, 233b, 420, 426b, 488a, and 582a.
u_lseek, used in chunks 233b, 293, 294, and 426b.

Uses dev_close 496b, dev_lseek 498a, FS_DEV 410a, FS_ERROR 410a, FS_FAT 410a, FS_MINIX 410a, mx_close 467b,
and mx_lseek 469c.

e implementation of u_unlinkb is similar to that of u_openc since in both cases we
get a pathname as argument:

[418b] ⟨function implementations 100b⟩+≡ (44a) ◁ 418a 419a ▷
int u_unlink (const char *path) {
⟨VFS functions: declare default variables 411d⟩
⟨VFS functions: make absolute path, get device, fs and local path 411e⟩
switch (fs) {

case FS_MINIX: return mx_unlink (device, localpath);
case FS_FAT: return -1; // not implemented
case FS_DEV: return -1; // no unlink support in device FS
case FS_ERROR: return -1; // error
default: return -1;

}
}

Defines:
u_unlink, used in chunks 426b and 488a.

Uses FS_DEV 410a, FS_ERROR 410a, FS_FAT 410a, FS_MINIX 410a, and mx_unlink 480c.

On the other hand, creating a new hard linkhard link with u_linka requires some extra work:
e function takes two pathnames, one of which is for a name that does not yet exist. It
must check that both reside on the same volume because hard links cannot cross volumes.
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e rest is similar, but we work without the switch statement since hard links only exist
on Unix filesystems (of which U only supports Minix):

[419a]⟨function implementations 100b⟩+≡ (44a) ◁ 418b 419b ▷
int u_link (const char *path, const char *path2) {

char localpath[256], abspath[256]; short device, fs;
char localpath2[256], abspath2[256]; short device2, fs2;
char dir2[256], base2[256], localdir2[256];

if (*path != '/') relpath_to_abspath (path, abspath); // source
else strncpy (abspath, path, 256);
get_dev_and_path (abspath, &device, &fs, (char*)&localpath);

if (*path2 != '/') relpath_to_abspath (path2, abspath2); // target
else strncpy (abspath2, path2, 256);
splitpath (abspath2, dir2, base2); // get dirname
get_dev_and_path (dir2, &device2, &fs2, (char*)&localdir2);

if (device != device2) return -1; // error: link across volumes
if (fs != FS_MINIX) return -1; // error: not Minix

strncpy (localpath2, localdir2, 256); // localpath2 = localdir2
int len = strlen(localpath2);
if (len == 1) len = 0; // special case "/"
localpath2[len] = '/'; // localpath2 += "/"
strncpy (localpath2 + len + 1, base2, 256); // localpath2 += base2
return mx_link (device, localpath, localpath2);

}
Defines:

u_link, used in chunk 426b.
Uses dirname 455b, FS_MINIX 410a, get_dev_and_path 408c, mx_link 480a, relpath_to_abspath 412b,

splitpath 455a, strlen 594a, and strncpy 594b.

e u_symlinkb function only checks the target since it is allowed to write invalid
paths (and paths to different volumes) into a symbolic link:

[419b]⟨function implementations 100b⟩+≡ (44a) ◁ 419a 420a ▷
int u_symlink (const char *path, const char *path2) {

char localpath2[256], abspath2[256]; short device2, fs2;
if (*path2 != '/') relpath_to_abspath (path2, abspath2); // target
else strncpy (abspath2, path2, 256);
get_dev_and_path (abspath2, &device2, &fs2, (char*)&localpath2);
if (fs2 != FS_MINIX) return -1; // error: not Minix
return mx_symlink (device2, (char*)path, localpath2);

}
Defines:

u_symlink, used in chunk 426b.
Uses FS_MINIX 410a, get_dev_and_path 408c, mx_symlink 484b, relpath_to_abspath 412b, and strncpy 594b.

For truncating a file we only need to think about the the u_ftruncateb variant which
works on an open file; the other function can just open the file and call u_ftruncateb:
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[420a] ⟨function implementations 100b⟩+≡ (44a) ◁ 419b 420b ▷
int u_truncate (const char *path, int length) {

int fd = u_open ((char*)path, O_WRONLY, FOLLOW_LINK);
int retval = u_ftruncate (fd, length);
u_close (fd);
return retval;

}
Defines:

u_truncate, used in chunk 426b.
Uses FOLLOW_LINK, O_WRONLY 460b, u_close 418a, u_ftruncate 420b, and u_open 412c.

e u_ftruncateb function looks like all the other u_* functions that have a file de-
scriptor as their first argument, but we only allow the Minix filesystem:

[420b] ⟨function implementations 100b⟩+≡ (44a) ◁ 420a 421b ▷
int u_ftruncate (int fd, int length) {
⟨VFS functions: turn fd into (fs, localfd) pair or fail 414c⟩
switch (fs) {

case FS_MINIX: return mx_ftruncate (localfd, length);
case FS_FAT: return -1; // not implemented
case FS_DEV: return -1; // forbidden
case FS_ERROR: return -1; // error
default: return -1;

}
}

Defines:
u_ftruncate, used in chunks 420a and 426b.

Uses FS_DEV 410a, FS_ERROR 410a, FS_FAT 410a, FS_MINIX 410a, and mx_ftruncate 484e.

e function u_readlinkc reads a link file and retrieves the link target:
[420c] ⟨minix filesystem implementation 420c⟩≡ (440b) 443b ▷

int u_readlink (char *path, char *restrict buf, size_t bufsize) {
struct stat st;
u_stat (path, &st);
if ((st.st_mode & S_IFLNK) != S_IFLNK) {

return -1; // error: no symlink
}
int link_fd = u_open (path, O_RDONLY, DONT_FOLLOW_LINK); // open the link file
u_read (link_fd, buf, bufsize);
u_close (link_fd);
return 0; // success

}
Defines:

u_readlink, used in chunk 426b.
Uses DONT_FOLLOW_LINK, O_RDONLY 460b, S_IFLNK 457c, size_t 46b, stat 429b 489b, u_close 418a, u_open 412c,

u_read 414b, and u_stat 421d.

12.3.6 Detect Terminals
Sometimes a process needs to find out whether it is reading from or writing to a file or one
of the standard I/O streams. For that purpose it can call the user mode function isattyb
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which returns true if the file descriptor is connected to a terminal. In case of files or pipes
it returns false. In order to implement the kernel function

[421a]⟨function prototypes 45a⟩+≡ (44a) ◁ 414a 421c ▷
boolean u_isatty (int fd);

we simply checkwhether the file descriptor is DEV_STDINc, DEV_STDOUTc or DEV_STDERRc:
[421b]⟨function implementations 100b⟩+≡ (44a) ◁ 420b 421d ▷

boolean u_isatty (int fd) {
return ((fd == DEV_STDIN) || (fd == DEV_STDOUT) || (fd == DEV_STDERR));

}
Uses DEV_STDERR 415c, DEV_STDIN 415c, and DEV_STDOUT 415c.

12.3.7 Status
e u_statd function fills a struct statb entry with the status information about a
file which can be queried with mx_stata or dev_statd:

[421c]⟨function prototypes 45a⟩+≡ (44a) ◁ 421a 421e ▷
int u_stat (const char *path, struct stat *buf);

[421d]⟨function implementations 100b⟩+≡ (44a) ◁ 421b 422a ▷
int u_stat (const char *path, struct stat *buf) {
⟨VFS functions: declare default variables 411d⟩
⟨VFS functions: make absolute path, get device, fs and local path 411e⟩
switch (fs) {

case FS_MINIX: return mx_stat (device, localpath, buf);
case FS_FAT: return -1; // not implemented
case FS_DEV: return dev_stat (localpath, buf);
case FS_ERROR: return -1; // error
default: return -1;

}
}

Defines:
u_stat, used in chunks 413b, 420c, 421c, 426b, 432e, 576, and 577.

Uses dev_stat 499d, FS_DEV 410a, FS_ERROR 410a, FS_FAT 410a, FS_MINIX 410a, mx_stat 490a, and stat 429b 489b.

12.3.8 Directories
We also need to handle directories: it is possible to create and remove them via the

[421e]⟨function prototypes 45a⟩+≡ (44a) ◁ 421c 422b ▷
int u_mkdir (const char *path, int mode);
int u_rmdir (const char *path);

functions and to read their entries via u_getdent. e u_mkdira and u_rmdira imple-
mentations are just rewrites of u_openc and u_unlinkb:
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[422a] ⟨function implementations 100b⟩+≡ (44a) ◁ 421d 422c ▷
int u_mkdir (const char *path, int mode) {
⟨VFS functions: declare default variables 411d⟩
⟨VFS functions: make absolute path, get device, fs and local path 411e⟩
switch (fs) {

case FS_MINIX: return mx_mkdir (device, localpath, mode);
case FS_FAT: return -1; // not implemented
case FS_DEV: return -1; // not allowed
case FS_ERROR: return -1; // error
default: return -1;

}
}

int u_rmdir (const char *path) {
⟨VFS functions: declare default variables 411d⟩
⟨VFS functions: make absolute path, get device, fs and local path 411e⟩
switch (fs) {

case FS_MINIX: return mx_rmdir (device, abspath, localpath); // two path args
case FS_FAT: return -1; // not implemented
case FS_DEV: return -1; // no rmdir support in device FS
case FS_ERROR: return -1; // error
default: return -1;

}
}

Defines:
u_mkdir, used in chunk 426b.
u_rmdir, used in chunks 421e and 426b.

Uses FS_DEV 410a, FS_ERROR 410a, FS_FAT 410a, FS_MINIX 410a, mx_mkdir 487a, and mx_rmdir 488a.

For reading a directory we provide the
[422b] ⟨function prototypes 45a⟩+≡ (44a) ◁ 421e 424a ▷

int u_getdent (const char *path, int index, struct dir_entry *buf);

function which reads single entries and writes them into a struct dir_entryb buffer:
[422c] ⟨function implementations 100b⟩+≡ (44a) ◁ 422a 424d ▷

int u_getdent (const char *path, int index, struct dir_entry *buf) {
⟨VFS functions: declare default variables 411d⟩
⟨VFS functions: make absolute path, get device, fs and local path 411e⟩
switch (fs) {

case FS_MINIX: return mx_getdent (device, localpath, index, buf);
case FS_FAT: return -1; // not implemented
case FS_DEV: return dev_getdent (localpath, index, buf);
case FS_ERROR: return -1; // error
default: return -1;

}
}

Uses dev_getdent 500, dir_entry 490b, FS_DEV 410a, FS_ERROR 410a, FS_FAT 410a, FS_MINIX 410a, mx_getdent 490d,
and u_getdent.
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12.4 System Calls for File Access
We have already discussed the three types of file descriptors which are used in U. All
the functions of the virtual filesystem layer which you have seen so far use global file
descriptors which uniquely identify an open file across all processes. But this information
should be hidden from individual processes—aer all, operating systems are all about ab-
straction, and from a process’ point of view only its own open files are relevant, thus a
process can expect that its internal file descriptor numbers do not depend on the activities
of other processes (or the kernel). Also, we want to support the Unix tradition of reserving
file descriptor numbers 0, 1 and 2 for the standard I/O streams.
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Figure 12.9: Relationship between the various file descriptors.
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e u_* functions in the kernel use global file descriptors which do not recognize pro-
cess affiliation. Since we do not want to export these numbers to the processes, we must
convert them to process file descriptors.

We provide the following two functions gfd2pfd and pfd2gfd which convert global to
process and process to global file descriptors. Figure 12.9 shows the relationship between
process, local and global file descriptors.

[424a] ⟨function prototypes 45a⟩+≡ (44a) ◁ 422b 425b ▷
int gfd2pfd (int gfd);
int pfd2gfd (int pfd);

Processes may open up to 16 files; we add a new field to the TCBwhich stores that many
file descriptors.

[424b] ⟨public constants 46a⟩+≡ (44a 48a) ◁ 415b 457c ▷
#define MAX_PFD 16 // up to 16 open files per process

Defines:
MAX_PFD, used in chunks 190a, 216b, and 424–26.

[424c] ⟨more TCB entries 158c⟩+≡ (175) ◁ 326d 432c ▷
int files[MAX_PFD];

Uses MAX_PFD 424b.

If we start with a process file descriptor, the translation is simpler: we just look it up in
the process’ file descriptor table.

[424d] ⟨function implementations 100b⟩+≡ (44a) ◁ 422c 424e ▷
int pfd2gfd (int pfd) {

if (pfd == -1) return -1;
thread_id pid = thread_table[current_task].pid;
if (pfd ≥ 0 && pfd < MAX_PFD)

return thread_table[pid].files[pfd];
else return -1;

}
Uses current_task 192c, MAX_PFD 424b, pfd2gfd, thread_id 178a, and thread_table 176b.

(Note that thread_tableb[current_taskc].files[pfd] may also be -1 which is the stan-
dard value for an unused local file descriptor.)

Turning a global file descriptor into a process one is a bit more complicated: if there is
no mapping (yet), we need to find a free place in the process’ descriptor list files. But we
start with searching for a mapping:

[424e] ⟨function implementations 100b⟩+≡ (44a) ◁ 424d 425c ▷
int gfd2pfd (int gfd) {

int pfd;
if (gfd == -1) return -1;
thread_id pid = thread_table[current_task].pid;
for (pfd = 0; pfd < MAX_PFD; pfd++) {

if (thread_table[pid].files[pfd] == gfd)
return pfd;

}
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// found none, create it
for (pfd = 0; pfd < MAX_PFD; pfd++) {

if (thread_table[pid].files[pfd] == -1) {
thread_table[pid].files[pfd] = gfd;
return pfd;

}
}
// no free entry
return -1; // error

}
Uses current_task 192c, gfd2pfd, MAX_PFD 424b, thread_id 178a, and thread_table 176b.

We need to copy file descriptors when we create a new process: e following chunk
completes the TCB initialization in the u_forkc function.

[425a]⟨u_fork: copy the file descriptors 425a⟩≡ (210b)
if (t_new->pid != t_old->pid) {

for (int pfd = 0; pfd < MAX_PFD; pfd++) {
int gfd = t_old->files[pfd];
if (gfd ≥ 0)

t_new->files[pfd] = u_reopen (gfd); // get new gfd
else

t_new->files[pfd] = gfd; // use old gfd (stdio)
}

}
Uses MAX_PFD 424b, t_new 276c, t_old 276c, and u_reopen.

e function u_reopen creates a copy of a file descriptor. We cannot simply give the
newly forked process access to the same (globally visible) file descriptor because the cur-
rent read/write position in the file is associated with that descriptor. If one of the two
processes changes that position, the modification must not be visible in the other process.

[425b]⟨function prototypes 45a⟩+≡ (44a) ◁ 424a 432d ▷
int u_reopen (int fd);

[425c]⟨function implementations 100b⟩+≡ (44a) ◁ 424e 432e ▷
int u_reopen (int fd) {
⟨VFS functions: turn fd into (fs, localfd) pair or fail 414c⟩
switch (fs) {

case FS_MINIX: return (fs << 8) + mx_reopen (localfd);
case FS_FAT: return -1; // not implemented
case FS_DEV: return -1;
case FS_ERROR: return -1; // error
default: return -1;

}
}

Uses FS_DEV 410a, FS_ERROR 410a, FS_FAT 410a, FS_MINIX 410a, mx_reopen 468b, and u_reopen.

As usual, the real work is done my mx_reopenb. (ere is no such function for the
device filesystem.)
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We can now implement the system calls:
[426a] ⟨syscall prototypes 173b⟩+≡ (202a) ◁ 416a 433a ▷

void syscall_open (context_t *r);
void syscall_stat (context_t *r);
void syscall_close (context_t *r);
void syscall_read (context_t *r);
void syscall_write (context_t *r);
void syscall_lseek (context_t *r);
void syscall_isatty (context_t *r);
void syscall_mkdir (context_t *r);
void syscall_rmdir (context_t *r);
void syscall_getdent (context_t *r);
void syscall_truncate (context_t *r);
void syscall_ftruncate (context_t *r);
void syscall_link (context_t *r);
void syscall_unlink (context_t *r);
void syscall_symlink (context_t *r);
void syscall_readlink (context_t *r);

For syscall_getdent we will use the __NR_readdirc syscall number but it should be
noted that readdir accesses directory entries differently (and U does not implement
readdir).

[426b] ⟨syscall functions 174b⟩+≡ (202b) ◁ 416b 433b ▷
void syscall_open (context_t *r) {

eax_return ( gfd2pfd (u_open ((char*) r->ebx, r->ecx, 0) ) ); };

void syscall_stat (context_t *r) {
eax_return ( u_stat ((char*) r->ebx, (struct stat*) r->ecx) ); };

void syscall_getdent (context_t *r) {
// ebx: path, ecx: index, edx: dir_entry buffer
eax_return ( u_getdent ((char*) r->ebx, r->ecx, (struct dir_entry*) r->edx) ); };

void syscall_close (context_t *r) {
// ebx: fd
int pfd = r->ebx;
thread_id pid = thread_table[current_task].pid;
r->eax = u_close (pfd2gfd (pfd)); // close (globally)
if (pfd ≥ 0 && pfd < MAX_PFD)

thread_table[pid].files[pfd] = -1; }; // close (locally)

void syscall_read (context_t *r) {
// ebx: fd, ecx: *buf, edx: nbytes
eax_return ( u_read (pfd2gfd (r->ebx), (byte*) r->ecx, r->edx) ); };

void syscall_write (context_t *r) {
// ebx: fd, ecx: *buf, edx: nbytes
eax_return ( u_write (pfd2gfd (r->ebx), (byte*) r->ecx, r->edx) ); };
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void syscall_lseek (context_t *r) {
// ebx: fd, ecx: offset, edx: whence
eax_return ( u_lseek (pfd2gfd (r->ebx), r->ecx, r->edx) ); };

void syscall_isatty (context_t *r) {
// ebx: file descriptor
eax_return ( pfd2gfd (u_isatty (r->ebx)) ); }

void syscall_mkdir (context_t *r) {
// ebx: name of new directory, ecx: mode
eax_return ( u_mkdir ((char*)r->ebx, r->ecx) ); }

void syscall_rmdir (context_t *r) {
// ebx: name of directory that we want to delete
eax_return ( u_rmdir ((char*)r->ebx) ); }

void syscall_truncate (context_t *r) {
// ebx: filename, ecx: length
eax_return ( u_truncate ((char*)r->ebx, r->ecx) ); }

void syscall_ftruncate (context_t *r) {
// ebx: file descriptor, ecx: length
eax_return ( u_ftruncate ( pfd2gfd (r->ebx), r->ecx) ); }

void syscall_link (context_t *r) {
// ebx: original name, ecx: new name
eax_return ( u_link ((char*)r->ebx, (char*)r->ecx) ); }

void syscall_unlink (context_t *r) {
// ebx: pathname
eax_return ( u_unlink ((char*)r->ebx) );

}

void syscall_symlink (context_t *r) {
// ebx: target file name, ecx: symbolic link name
eax_return ( u_symlink ((char*)r->ebx, (char*)r->ecx) ); }

void syscall_readlink (context_t *r) {
// ebx: file name
// ecx: buffer for link target
// edx: buffer length
eax_return ( u_readlink ((char*)r->ebx, (char*)r->ecx, r->edx) );

}
Defines:

syscall_close, used in chunk 428a.
syscall_ftruncate, used in chunk 428a.
syscall_isatty, used in chunk 428a.
syscall_link, used in chunk 428a.
syscall_lseek, used in chunk 428a.
syscall_mkdir, used in chunk 428a.
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syscall_open, used in chunk 428a.
syscall_read, used in chunk 428a.
syscall_readlink, used in chunk 428a.
syscall_rmdir, used in chunk 428a.
syscall_symlink, used in chunk 428a.
syscall_truncate, used in chunk 428a.
syscall_unlink, used in chunk 428a.
syscall_write, used in chunks 426a and 428a.

Uses context_t 142a, current_task 192c, dir_entry 490b, eax_return 174a, gfd2pfd, MAX_PFD 424b, pfd2gfd,
stat 429b 489b, syscall_getdent, syscall_stat, thread_id 178a, thread_table 176b, u_close 418a,
u_ftruncate 420b, u_getdent, u_link 419a, u_lseek 418a, u_mkdir 422a, u_open 412c, u_read 414b,
u_readlink 420c, u_rmdir 422a, u_stat 421d, u_symlink 419b, u_truncate 420a, u_unlink 418b,
and u_write 415a.

As a last step we create syscall table entries for the new system call handlers:
[428a] ⟨initialize syscalls 173d⟩+≡ (44b) ◁ 416c 434a ▷

install_syscall_handler (__NR_open, syscall_open);
install_syscall_handler (__NR_stat, syscall_stat);
install_syscall_handler (__NR_close, syscall_close);
install_syscall_handler (__NR_read, syscall_read);
install_syscall_handler (__NR_write, syscall_write);
install_syscall_handler (__NR_lseek, syscall_lseek);
install_syscall_handler (__NR_isatty, syscall_isatty);
install_syscall_handler (__NR_mkdir, syscall_mkdir);
install_syscall_handler (__NR_rmdir, syscall_rmdir);
install_syscall_handler (__NR_readdir, syscall_getdent);
install_syscall_handler (__NR_truncate, syscall_truncate);
install_syscall_handler (__NR_ftruncate, syscall_ftruncate);
install_syscall_handler (__NR_link, syscall_link);
install_syscall_handler (__NR_unlink, syscall_unlink);
install_syscall_handler (__NR_symlink, syscall_symlink);
install_syscall_handler (__NR_readlink, syscall_readlink);

Uses __NR_close 204c, __NR_ftruncate, __NR_isatty 428b, __NR_link 204c, __NR_lseek 204c, __NR_mkdir 204c,
__NR_open 204c, __NR_read 204c, __NR_readdir 204c, __NR_readlink 204c, __NR_rmdir 204c, __NR_stat 204c,
__NR_symlink 204c, __NR_truncate 204c, __NR_unlink 204c, __NR_write 204c, install_syscall_handler 201b,
syscall_close 426b, syscall_ftruncate 426b, syscall_getdent, syscall_isatty 426b, syscall_link 426b,
syscall_lseek 426b, syscall_mkdir 426b, syscall_open 426b, syscall_read 426b, syscall_readlink 426b,
syscall_rmdir 426b, syscall_stat, syscall_symlink 426b, syscall_truncate 426b, syscall_unlink 426b,
and syscall_write 426b.

We need a system call number for syscall_isattyb:
[428b] ⟨ulix system calls 206e⟩+≡ (205a) ◁ 415d 493c ▷

#define __NR_isatty 521
Defines:

__NR_isatty, used in chunks 428a and 429b.
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12.4.1 Library Functions
Here we define the user mode library functions for our collection of new system calls:

[429a]⟨ulixlib function prototypes 174c⟩+≡ (48a) ◁ 373d 430 ▷
int open (const char *path, int oflag, ...);
int stat (const char *path, struct stat *buf);
int close (int fildes);
int read (int fildes, void *buf, size_t nbyte);
int write (int fildes, const void *buf, size_t nbyte);
int lseek (int fildes, int offset, int whence);
boolean isatty (int fd);
int mkdir (const char *path, int mode);
int rmdir (const char *path);
int getdent (const char *path, int index, struct dir_entry *buf);
int ftruncate (int fd, int length);
int truncate (const char *path, int length);
int link (const char *path1, const char *path2);
int unlink (const char *path);
int symlink (const char *path1, const char *path2);
int readlink (char *path, char *buf, int bufsize);

[429b]⟨ulixlib function implementations 174d⟩+≡ (48b) ◁ 373e 431 ▷
int open (const char *path, int oflag, ...) {

return syscall3 (__NR_open, (uint)path, oflag); }

int stat (const char *path, struct stat *buf) {
return syscall3 (__NR_stat, (uint)path, (uint)buf); }

int close (int fildes) { return syscall2 (__NR_close, fildes); }

int read (int fd, void *buf, size_t nbyte) {
return syscall4 (__NR_read, fd, (uint)buf, nbyte); }

int write (int fd, const void *buf, size_t nbyte) {
return syscall4 (__NR_write, fd, (uint)buf, nbyte); }

int lseek (int fildes, int offset, int whence) {
return syscall4 (__NR_lseek, fildes, offset, whence); }

boolean isatty (int fd) { return syscall2 (__NR_isatty, fd); }

int mkdir (const char *path, int mode) {
return syscall3 (__NR_mkdir, (uint)path, mode); }

int rmdir (const char *path) {
return syscall2 (__NR_rmdir, (uint)path); }

int getdent (const char *path, int index, struct dir_entry *buf) {
return syscall4 (__NR_readdir, (uint)path, index, (uint)buf); }
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int ftruncate (int fd, int length) {
return syscall3 (__NR_ftruncate, fd, length); }

int truncate (const char *path, int length) {
return syscall3 (__NR_truncate, (uint)path, length); }

int link (const char *path1, const char *path2) {
return syscall3 (__NR_link, (uint) path1, (uint) path2); }

int unlink (const char *path) {
return syscall2 (__NR_unlink, (unsigned int) path); }

int symlink (const char *path1, const char *path2) {
return syscall3 (__NR_symlink, (uint) path1, (uint) path2); }

int readlink (char *path, char *buf, int bufsize) {
return syscall4 (__NR_readlink, (uint)path, (uint)buf, bufsize); }

Defines:
close, used in chunks 467b and 585b.
lseek, used in chunk 498a.
mkdir, used in chunk 618.
open, used in chunks 411a, 414c, 467b, 475a, and 585b.
read, used in chunks 294, 431, 432b, 456, 475a, 477b, 490a, 503, 543a, 552c, and 585b.
stat, used in chunks 420c, 421d, 426b, 432e, 489, 490, 499, 576, 577c, and 608a.
write, used in chunks 35b, 123b, 170c, 199, 204, 213b, 429a, 431, 460b, 475a, 525a, 528a, 539c, 543a, 575,

598c, and 624.
Uses __NR_close 204c, __NR_ftruncate, __NR_isatty 428b, __NR_link 204c, __NR_lseek 204c, __NR_mkdir 204c,

__NR_open 204c, __NR_read 204c, __NR_readdir 204c, __NR_readlink 204c, __NR_rmdir 204c, __NR_stat 204c,
__NR_symlink 204c, __NR_truncate 204c, __NR_unlink 204c, __NR_write 204c, dir_entry 490b, size_t 46b,
syscall2 203c, syscall3 203c, and syscall4 203b.

12.4.2 Reading from Standard Input
e functions

[430] ⟨ulixlib function prototypes 174c⟩+≡ (48a) ◁ 429a 434b ▷
int ureadline (char *s, int maxlength, boolean echo);
byte ureadchar ();

use readb with the standard input file descriptor STDIN_FILENOb to read one or more
characters. Writing to standard output will be handled by ulixlib_printcharc which just
writebs to the standard output (via file descriptor STDOUT_FILENOb) and is implemented
where we discuss the printfa function.

ureadline takes three arguments: a buffer, a maximum length and an echo flag. If the
length parameter is negative then pressing [Enter] to complete the input will not cause
the newline character to be displayed. If echo is not set, output will be disabled completely
which is useful for password queries: e /bin/login and /bin/su programs use that fea-
ture.



12.4 System Calls for File Access 431

[431]⟨ulixlib function implementations 174d⟩+≡ (48b) ◁ 429b 432b ▷
int ureadline (char *s, int maxlength, boolean echo) {

// if maxlength is negative, dont print \n at the end
char print_newline = 1;
if (maxlength < 0) {

print_newline = 0;
maxlength = -maxlength;

}
int pos=0;
for (;;) {

startlabel:
if (pos < 0) { printf ("ERROR: pos < 0\n"); return; }
byte c = 0;
int nbytes = read (STDIN_FILENO, &c, 1); // read one char. from stdin
if (nbytes == 0) return -1;

if (c == 0 || c == 27 || c > 190) // Esc, cursor and other keys
goto startlabel;

if (c == 3) { // Strg-C, kill command
pos = 0; s[0] = 0;
if (echo) printf ("\n");
return 0;

}

if (c == 4 && pos == 0) { // Strg-D in first column
strncpy (s, "ex" "it", 5);
if (echo) printf ("ex" "it\n");
return 0;

}

if ((c == 0x08) && (pos>0)) { // backspace
pos--;
if (echo) write (STDOUT_FILENO, "\010 \010", 3);

} else if ( c == '\n' ) { // newline, end of input
if ((print_newline == 1) && echo) write (STDOUT_FILENO, "\n", 1);
s[pos] = '\0';
return 0;

} else if ( (c != 0x08) && (pos < maxlength) ) { // other character
if (echo) write (STDOUT_FILENO, &c, 1);
s[pos++] = c;

};
};

};
Defines:

ureadline, used in chunks 214, 430, 432a, and 586b.
Uses kill 568b, print 600, printf 601a, read 429b, STDIN_FILENO 415b, STDOUT_FILENO 415b, strncpy 594b,

and write 429b.
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Since getsagets is a traditional Unix function for reading from standard input, we provide
it as a macro that uses ureadline with a maximum string length of 9999 characters. Note
that using getsa is deprecated since an application cannot control the length of the input
which is likely to cause problems when the reserved buffer overflows due too overly long
input.

[432a] ⟨ulixlib macro definitions 432a⟩≡ (48a)
#define gets(s) ((ureadline(s,9999,true)), s)

Uses ureadline 431.

e ureadcharb function reads just one single character. It is used by the /bin/vi,
/bin/keys and /bin/hexdump programs:

[432b] ⟨ulixlib function implementations 174d⟩+≡ (48b) ◁ 431 434c ▷
byte ureadchar () {

byte b;
read (STDIN_FILENO, &b, 1);
return b;

};
Uses read 429b and STDIN_FILENO 415b.

12.4.3 Working Directory, Relative Paths
Wewant processes to have a “current working directory”, so we add an entry to the thread
control block structure:

[432c] ⟨more TCB entries 158c⟩+≡ (175) ◁ 424c 560b ▷
char cwd[256];

To query and set this value, we will need two functions u_getcwde and u_chdire
which can also be accessed by user mode functions getcwdc and chdirc via system
calls.

Now u_getcwde just copies a string, while chdirc needs to check whether the argu-
ment is a valid directory:

[432d] ⟨function prototypes 45a⟩+≡ (44a) ◁ 425b 443a ▷
char *u_getcwd (char *buf, int size);
int u_chdir (const char *path);

Uses u_chdir 432e and u_getcwd 432e.

[432e] ⟨function implementations 100b⟩+≡ (44a) ◁ 425c 440b ▷
char *u_getcwd (char *buf, int size) {

strncpy (buf, thread_table[current_task].cwd, size);
return buf;

}

int u_chdir (const char *path) {
char abspath[256], dir[256], base[256], localpath[256];
if (strequal (path, "..")) { // special case ".."

if (strequal (thread_table[current_task].cwd, "/"))
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return 0; // already at root directory
// change to ..
strncpy (abspath, thread_table[current_task].cwd, 256);
splitpath (abspath, dir, base);
strncpy (thread_table[current_task].cwd, dir, 256);
return 0;

}

// check relative/absolute path
if (*path != '/') relpath_to_abspath (path, abspath);
else strncpy (abspath, path, 256);

// check if abspath is directory
struct stat st;
u_stat (abspath, &st);
if ((st.st_mode & S_IFDIR) == S_IFDIR) {

strncpy (thread_table[current_task].cwd, abspath, 256);
return 0;

} else {
return -1; // error

}
}

Defines:
u_chdir, used in chunks 432d, 433b, 488a, and 582a.
u_getcwd, used in chunks 432d, 433b, and 488a.

Uses current_task 192c, cwd, relpath_to_abspath 412b, S_IFDIR 457c, splitpath 455a, stat 429b 489b,
strequal 596a, strncpy 594b, thread_table 176b, and u_stat 421d.

As usual, we define and register system call functions …
[433a]⟨syscall prototypes 173b⟩+≡ (202a) ◁ 426a 493a ▷

void syscall_getcwd (context_t *r);
void syscall_chdir (context_t *r);

[433b]⟨syscall functions 174b⟩+≡ (202b) ◁ 426b 493b ▷
void syscall_getcwd (context_t *r) {

// ebx: buffer for directory
// ecx: maximum length of path
eax_return ( u_getcwd ((char*)r->ebx, r->ecx) );

}

void syscall_chdir (context_t *r) {
// ebx: new directory
eax_return ( u_chdir ((char*)r->ebx) );

}
Defines:

syscall_chdir, used in chunk 434a.
syscall_getcwd, used in chunks 433a and 434a.

Uses context_t 142a, eax_return 174a, u_chdir 432e, and u_getcwd 432e.
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[434a] ⟨initialize syscalls 173d⟩+≡ (44b) ◁ 428a 493d ▷
install_syscall_handler (__NR_getcwd, syscall_getcwd);
install_syscall_handler (__NR_chdir, syscall_chdir);

Uses __NR_chdir 204c, __NR_getcwd 204c, install_syscall_handler 201b, syscall_chdir 433b,
and syscall_getcwd 433b.

…and provide user mode library functions:
[434b] ⟨ulixlib function prototypes 174c⟩+≡ (48a) ◁ 430 493e ▷

char *getcwd (char *buf, int size);
int chdir (const char *path);

[434c] ⟨ulixlib function implementations 174d⟩+≡ (48b) ◁ 432b 493f ▷
char *getcwd (char *buf, int size) {

syscall3 (__NR_getcwd, (unsigned int) buf, size);
}

int chdir (const char *path) {
return syscall2 (__NR_chdir, (unsigned int) path);

}
Defines:

getcwd, used in chunk 434b.
Uses __NR_chdir 204c, __NR_getcwd 204c, syscall2 203c, and syscall3 203c.
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12.5 The Minix Filesystem
We have chosen to use the Minix [Tan87] filesystem as the native filesystem for U for
two reasons:

• While Minix has all the properties of a Unix filesystem, it is very simple. at also
means that explaining and implementing its function is fit for an introductory book.
ere is no redundancy (for example, Minix does not create backup copies of the
superblock, like other Unix filesystems do), so the code does not become complex.

• Minix was the first filesystem that Linux used, and it is still supported. us, on a
Linux machine the commands mkfs.minix and fsck.minix are available for creating
and checking Minix volumes. e last tool is especially helpful because it allowed us
to check the correctness of our implementation: Whenever earlier revisions of the
U code wrote wrong data to the volume, fsck.minix detected that.

Conceptually, the Minix filesystem uses data structures which can also be found in all
other Unix filesystems:

Superblock: A superblock contains general information about the whole filesystem. For
example it tells how large the volume is. In the Minix case it also lists the maximum
numbers of data blocks and inodes as well as where the first data block starts (aer
the metadata).

Inode: For every file on the volume there is an inode (index node) that describes the file.
You can find the file size, owner and group IDs, access permissions, timestamps and
some pointer to the data blocks in an inode. How these data are organized and
how exactly the data blocks can be found aer inspecting the inode depends on the
specific filesystem.

Directory: In order to have a hierarchic filesystem, directories are used. In all Unix filesys-
tems a directory is a simple file that maps filenames to inode numbers. e version
of theMinix filesystem that wewill look at uses 32 bytes for each directory entry: 30
bytes for the file name and two bytes for a 16-bit inode number. Note again: Direc-
tories are files, too (if of a special kind), so when we create a new directory we also
need a new inode that describes this directory (file). A freshly created filesystem
already contains the root directory.

Bitmaps: Inodes are reserved on the volume when it is created. While it would be pos-
sible to scan the inode table for a free inode, this would take too long on larger
filesystems. So there is also a bitmap that holds a bit for each inode that indicates
if it is free or not. Similarly there is a second bitmap which describes the free/used
status of the data blocks.

We will first look at the Minix filesystem by creating one on a Linux machine and trying
to understand some of its properties. For that purpose we format a floppy image with the
Minix filesystem. We create a 1440 KByte image file with dd:
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[436a] ⟨create 1.4 MB disk file 436a⟩≡
$ dd if=/dev/zero of=minixfs.img bs=1k count=1440
1440+0 records in
1440+0 records out
1474560 bytes (1,5 MB) copied, 0.219079 s, 6.7 MB/s

and then format it with mkfs.minix:
[436b] ⟨format the disk image with minix fs 436b⟩≡

$ /sbin/mkfs.minix -2 minixfs.img
480 inodes
1440 blocks
Firstdatazone=34 (34)
Zonesize=1024
Maxsize=2147483647

e option -2 creates a version 2 filesystem with “long” filenames (up to 30 characters;
the option -n 14 would enable “short” filenames that have only up to 14 characters). As
a next step, hexdump will show that there is not much data on a freshly formaed Minix
filesystem. (We removed lines that displayed only 0x00 bytes from the output.)

[436c] ⟨look at the image with hexdump 436c⟩≡
$ hexdump -C minixfs.img
00000400 e0 01 00 00 01 00 01 00 22 00 00 00 ff ff ff 7f |........".......|
00000410 78 24 01 00 a0 05 00 00 00 00 00 00 00 00 00 00 |x$..............|
00000800 03 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000830 00 00 00 00 00 00 00 00 00 00 00 00 fe ff ff ff |................|
00000840 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff |................|
*
00000c00 03 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000ca0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 80 |................|
00000cb0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff |................|
*
00001000 ed 41 02 00 e8 03 e8 03 40 00 00 00 66 89 eb 53 |.A......@...f..S|
00001010 66 89 eb 53 66 89 eb 53 22 00 00 00 00 00 00 00 |f..Sf..S".......|
00008800 01 00 2e 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00008820 01 00 2e 2e 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00008830 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00008840 00 00 2e 62 61 64 62 6c 6f 63 6b 73 00 00 00 00 |...badblocks....|

We cannot interpret the output without knowledge of the internal data structures; we
will explain them in the next section where we present the implementation.

Next we ask fsck.minix to display as much information as it can. e file command
also recognizes the file type:

[436d] ⟨fsck on an empty minix filesystem 436d⟩≡
$ /sbin/fsck.minix -sfv minixfs.img
Forcing filesystem check on minixfs.img
480 inodes
1440 blocks

Firstdatazone=34 (34)
Zonesize=1024
Maxsize=2147483647
Filesystem state=1
namelen=30
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1 inodes used (0%)
35 zones used (2%)

0 regular files
1 directories
0 character device files
0 block device files

0 links
0 symbolic links

------
1 files

$ file minixfs.img
minixfs.img: Minix filesystem, V2,
30 char names, 0 zones

Now we want to see what happens when we write a file onto that filesystem. For that
purpose we mount the image and then create a file. We then print a new hexdump; the
output only shows the changed or new lines:

[437]⟨write file to disk image 437⟩≡
$ sudo mount -o loop minixfs.img /mnt
$ sudo echo "Hello World" > /mnt/hello.txt
$ sudo umount /mnt
$ hexdump -C minixfs.img # only changed lines are shown
00000800 07 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000c00 07 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00001000 ed 41 02 00 e8 03 e8 03 60 00 00 00 cf 8b eb 53 |.A......`......S|
00001010 d8 8b eb 53 d8 8b eb 53 22 00 00 00 00 00 00 00 |...S...S".......|
00001040 a4 81 01 00 e8 03 e8 03 0c 00 00 00 d8 8b eb 53 |...............S|
00001050 d8 8b eb 53 d8 8b eb 53 23 00 00 00 00 00 00 00 |...S...S#.......|
00008840 02 00 68 65 6c 6c 6f 2e 74 78 74 00 00 00 00 00 |..hello.txt.....|
00008c00 48 65 6c 6c 6f 20 57 6f 72 6c 64 0a 00 00 00 00 |Hello World.....|
$ /sbin/fsck.minix -sfv minixfs.img
[...]

2 inodes used (0%)
36 zones used (2%)

1 regular files
1 directories

[...]

So what happened here? First of all, fsck.minix tells us that one more inode and one
more zone zoneare used and that we have one regular file. Zones are blocks (of size 1 KByte);
the original Minix filesystem implementation (onMinix) allows zones to have a larger size,
but the Linux mkfs.minix tool cannot create such volumes. So from now on, whenever you
read “zone”, think “block”.

As you can see, the filename hello.txt and the file contents Hello World show up in the
new hexdump, and some of the other locations have new values, for example at addresses
0x800 and 0xc00 the bytes have changed from 0x03 to 0x07. In binary these numbers are
00000011b and 00000111b: One bit was flipped from 0 to 1 in both locations. We will soon
see that these newly set bits refer to a new inode and a new zone—which makes sense
since we created a new file which is so small that it fits in one block.

We perform another test (with a freshly dd’ed and mkfs.minix-formaed filesystem) and
populate it with more than one file:
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• We copy the file testfile1.txt (6144 bytes, hex.: 0x1800, exactly six blocks) onto the
filesystem.

• With sed -e 's/file1/file2' < testfile1.txt > testfile2.txt we create a slightly
modified copy (testfile2.txt),

• and then use ln to create a hard link (Hardlink.txt)
• and ln -s to create a symbolic link Symlink.txt (of testfile1.txt).

When listing the filesystem’s root directory with ls, we get:

$ ls -il
2 -rw-r--r-- 2 root root 6144 2014-06-04 23:32 Hardlink.txt
4 lrwxrwxrwx 1 root root 14 2014-06-04 23:33 Symlink.txt -> testfile1.txt
2 -rw-r--r-- 2 root root 6144 2014-06-04 23:32 testfile1.txt
3 -rw-r--r-- 1 root root 6144 2014-06-04 23:32 testfile2.txt
$ ls -ild /mnt
1 drwxr-xr-x 2 root root 192 2012-06-04 23:33 /mnt

Every inode has an internal number. e output shows that the inodes with numbers 1–
4 are in use (see first column of the ls output). Looking at the image again with hexdumpc
would reveal the root directory’s table of contents and the contents of the two files.

e following blocks are in use:

• e root directory / uses block 34.
• e file testfile1.txt uses blocks 35–40.
• e file testfile2.txt uses blocks 41–46.
• e symbolic link Symlink.txt uses block 47. (Symbolic links need data blocks as

well!)
• No further blocks are in use, the hard link is just a further entry in the root directory.

e inode bitmapinode bitmap starts at position 0x800 in the image file and has the following contents
which we display with our bindump tool (see p. 630) that works like hexdump but displays
bytes as binary numbers:

# bindump -r < minixfs.img
[...]
00000800 11111000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 ........
00000808 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 ........
00000810 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 ........
[...]

ose five ones represent inode numbers 0–4—however, there is no inode 0. is is
what the zone bitmapzone bitmap (that starts at offset 0xc00 in the image) looks like:
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# bindump -r < minixfs.img
[...]
00000c00 11111111 11111110 00000000 00000000 00000000 00000000 00000000 00000000 ........
00000c08 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 ........
00000c10 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 ........
[...]

e 15 set bits refer to block numbers 33–47. Block 33 is used by the inodes and is not
a data block! So this represents 14 used data blocks (which fits what we told you above:
e 14 blocks 34–46 are in use.)

In comparison, when looking at a freshly created (empty) Minix filesystem (with no files
and an empty root directory) the inode and zone bitmaps look like this:
# bindump -r < minix-empty.img
[...]
00000800 11000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 ........
00000808 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 ........
[...]
00000c00 11000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 ........
00000c08 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 ........
[...]

Two inodes (with numbers 0, 1) and two blocks (numbers 33, 34) are marked as used.
Inode 0 does not exit, and inode 1 stores information about the root directory. A directory
is never empty, since it always contains . and .. entries.

It is now time to properly introduce the data structures that Minix filesystems use; they
will shed light on the hexdump we’ve shown earlier.

12.6 The U Implementation of the
Minix Filesystem

ere are five variants of the Minix filesystem which differ in the sizes of inodes and block
numbers (leading to different maximum file sizes) and the maximum length of filenames
(14, 30 or 60). For any Minix filesystem image you can find out its version. Our imple-
mentation allows access to version 2 of the filesystem with a filename length of up to
30 characters. e Linux tool mkfs.minix will create a Minix version 1 filesystem (with
30-character filenames and a theoretical maximum file size of 256 MByte) by default, but
this can be changed by supplying the options -v or -2 (for version 2 with an approximate
maximum filesize of 2 GByte) or -3 (for version 3). For version 1 and 2, the filename length
can be set to 14 with the -n 14 option which reduces the size of a directory entry from
32 bytes to 16 bytes, whereas version 3 only supports a filename length of 60 characters.
is leads to the characteristics shown in Table 12.3.

e standard zone size of a Minix filesystem is 1 KByte (1024 bytes). It is possible to
increase this size to  × n bytes (for some n), but not with the Linux tool mkfs.minix.
e first block in the filesystem contains the boot sector (which we will ignore), the sec-
ond block is the superblock superblockwhich contains the setup information of a specific filesystem,
including two magic bytes which tell the filesystem version number.
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Minix version inode number directory entries
size entry size per blo

Version 1 (filenames: 14) 2 bytes 16 bytes 64
Version 1 (filenames: 30) 2 bytes 32 bytes 32
Version 2 (filenames: 14) 2 bytes 16 bytes 64
Version 2 (filenames: 30) 2 bytes 32 bytes 32
Version 3 (filenames: 60) 4 bytes 64 bytes 16

Table 12.3: Characteristics of the Minix filesystem versions.

Since the Minix filesystem is the standard filesystem for U, we will always work with
KByte-sized blocks—even in functions that work on a lower level. We define:

[440a] ⟨constants 112a⟩+≡ (44a) ◁ 415c 444a ▷
#define BLOCK_SIZE 1024

Defines:
BLOCK_SIZE, used in chunks 451a, 453b, 471–73, 475, 476b, 480c, 484e, 496d, 497, 508–10, 515a, 518b, 521a,

and 582a.

12.6.1 The Minix Superblock
Every Unix filesystem has a superblock: that is a block which stores global information
about a specific volume, and it must always be visited upon first interaction with a volume.
It is created when the volume is formaed. In the case of Minix its contents are immutable;
they remain the same over the lifetime of that volume.

We start our Minix filesystem implementation with a look at the superblock. All func-
tions will appear inside the ⟨minix filesystem implementation 420c⟩ code chunk:

[440b] ⟨function implementations 100b⟩+≡ (44a) ◁ 432e 495c ▷
⟨minix filesystem implementation 420c⟩

e superblock (i. e., the absolute bytes 1024–2047 of the image file) contains only the
following few entries, with the rest of the block being ignored:

[440c] ⟨type definitions 91⟩+≡ (44a) ◁ 405a 442a ▷
struct minix_superblock {

uint16_t s_ninodes; uint16_t s_nzones;
uint16_t s_imap_blocks; uint16_t s_zmap_blocks;
uint16_t s_firstdatazone; uint16_t s_log_zone_size;
uint32_t s_max_size; uint16_t s_magic;
uint16_t s_state; uint32_t s_zones;

};
Defines:

minix_superblock, used in chunks 443b, 448, and 492.

e uint16_t and uint32_t types are defined in /usr/include/stdint.h (on a Linux sys-
tem). ey are 16 bit and 32 bit wide unsigned integers, respectively. us, the superblock
only uses 24 bytes.
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Figure 12.10: A Minix filesystem consists of boot block, superblock, inode and zone
bitmaps, an inode table and the data blocks.

When you copy the superblock into a struct minix_superblockc variable, you can
check (or print) the values; an analysis of these values is a first step towards properly
accessing the filesystem. e s_magic field tells what version of the Minix filesystem was
used when the medium was formaed. ere are five possible cases:

• Minix v1 (14 characters per filename): 0x137F
• Minix v1 (30 characters per filename): 0x138F
• Minix v2 (14 characters per filename): 0x2468
• Minix v2 (30 characters per filename): 0x2478
• Minix v3 (60 characters per filename): 0x4D5A (but stored elsewhere since the v3

superblock has a different layout)

Without checking the version it is impossible to access the filesystem since the versions
differ in size and content of the inodes and the directory entries. A version 1 superblock
stores the number of blocks in the s_nzones entry, whereas a version 2 superblock uses the
s_zones entry. e unused value is set to 0.

As mentioned before, instead of blocks, Minix uses “zones” zoneas the smallest allocatable
unit. Typically a zone contains just one block, but theoretically a zone may consist of a
collection of blocks if s_log_zone_size is non-zero; the following formula expresses the
relationship between zone size and block size:

zone size = block size× s_log_zone_size

(With a default seing of s_log_zone_size = 0 that formula reads: zone size = block size,
since  = .) In our implementation we only support the case where block size = zone
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size = 1024, and so we will oen use the terms zone and block interchangeably. Some
filesystems use the name clustercluster to discuss smallest allocatable units, thus a zone is also a
cluster.

e s_imap_blocks and s_zmap_blocks fields note how many blocks are reserved for the
inode bitmap and the zone bitmap. ose bitmaps store a single bit for each inode or data
block, respectively, and the bits showwhether an inode/a data block is free (0) or occupied
(1). s_ninodes is the number of inodes from which we can calculate the size of the inode
table.

e inode bitmap and the zone bitmap follow directly aer the superblock (see Fig-
ure 12.10). Aer that the filesystem contains the inode table and finally the data blocks.

e zone bitmap starts with a 1 bit (which does not represent any zone); the second
bit (bit 1) refers to the first data zone that contains (the start o) the filesystem’s root
directory. Blocks before the data blocks area are not available for data storage, thus they
are not represented in the zone bitmap.

An inode of a Minix (version 2) filesystem has the following form:
[442a] ⟨type definitions 91⟩+≡ (44a) ◁ 440c 452b ▷

struct minix2_inode { ⟨external minix2 inode 442b⟩ };
Defines:

minix2_inode, used in chunks 451–53, 456, 457b, 461d, 466–68, 475c, 478–80, 484c, 487a, 488a, 490a, 589d,
607a, and 610d.

[442b] ⟨external minix2 inode 442b⟩≡ (442a 459a)
uint16_t i_mode; uint16_t i_nlinks;
uint16_t i_uid; uint16_t i_gid;
uint32_t i_size; uint32_t i_atime;
uint32_t i_mtime; uint32_t i_ctime;
uint32_t i_zone[10];

We’re placing the minix2_inodea entries in a separate code chunk since we will later
define another inode data structure for the in-memory management of open files; there
we will also need these fields.

us, we can calculate the size of an inode: it uses sizeof(struct minix2_inodea)
= + ×  =  bytes, which lets / =  inodes fit inside one inode table block.
When we look at a 1.44 MByte floppy disk that was formaed with the Minix version 2
filesystem (using mkfs.minix -v), we find that the superblock contains the following values:

[442c] ⟨example minix super block 442c⟩≡
s_ninodes: 480
s_nzones: 0
s_imap_blocks: 1
s_zmap_blocks: 1
s_firstdatazone: 34
s_log_zone_size: 0
s_max_size: 2147483647
s_magic: 9336
s_state: 1
s_zones: 1440
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at tells us:
• ere are 480 inodes. With 16 inodes per block the inode table requires / = 

blocks.
• e inode bitmap consists of only 480 bits (=  bytes) and fits in one block, with the

rest of the block remaining unused. During filesystem creation the unused bits are
filled with 1s.

• 1440 blocks require 1440 bits (=  bytes) for the zone bitmap which (again) fit in
one block. is bitmap also fills the unused bits with 1s.

is leads to the layout shown in Table 12.4.

Blos Usage Absolute Bytes Absolute Bytes (hex)
0 unused (boot sector) 0–1023 0x0000 – 0x03ff
1 superblock 1024–2047 0x0400 – 0x07ff
2 inode bitmap 2048–3071 0x0800 – 0x0bff
3 zone bitmap 3072–4095 0x0c00 – 0x0fff
4–33 inode table (30 blocks) 4096–34815 0x1000 – 0x87ff
34–1439 data blocks (zones) 34816–… 0x8800 –…

Table 12.4: e layout of a Minix version 2 floppy disk formaed with mkfs.minix -v.

From calculating the sizes of the bitmaps and the inode table we know that the first
data block is block 34, but this information is also stored (redundantly) in the superblock’s
s_firstdatazone field.

We provide a function which extracts specific values from the superblock, e. g, the num-
ber of inodes. Since we do not want to write several similar functions we combine this in
one function called mx_query_superblockb that expects a device identifier and a constant
which refers to some specific property:

[443a]⟨function prototypes 45a⟩+≡ (44a) ◁ 432d 447b ▷
int mx_query_superblock (int device, char index);

[443b]⟨minix filesystem implementation 420c⟩+≡ (440b) ◁ 420c 444b ▷
int mx_query_superblock (int device, char index) {

byte block[1024];
struct minix_superblock *sblock;
readblock (device, 1, (byte*)block); // superblock = block 1
sblock = (struct minix_superblock*) &block;
switch (index) {

case MX_SB_NINODES: return sblock->s_ninodes;
case MX_SB_NZONES: return sblock->s_nzones;
case MX_SB_IMAP_BLOCKS: return sblock->s_imap_blocks;
case MX_SB_ZMAP_BLOCKS: return sblock->s_zmap_blocks;
case MX_SB_FIRSTDATAZONE: return sblock->s_firstdatazone;
case MX_SB_LOG_ZONE_SIZE: return sblock->s_log_zone_size;
case MX_SB_MAX_SIZE: return sblock->s_max_size;
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case MX_SB_MAGIC: return sblock->s_magic;
case MX_SB_STATE: return sblock->s_state;
case MX_SB_ZONES: return sblock->s_zones;
default: return -1; // error

}
}

Defines:
mx_query_superblock, used in chunks 443a, 445, 451a, and 492.

Uses minix_superblock 440c and readblock 506b.

ese constants can be declared as follows:
[444a] ⟨constants 112a⟩+≡ (44a) ◁ 440a 459b ▷

enum { MX_SB_NINODES, MX_SB_NZONES, MX_SB_IMAP_BLOCKS, MX_SB_ZMAP_BLOCKS,
MX_SB_FIRSTDATAZONE, MX_SB_LOG_ZONE_SIZE, MX_SB_MAX_SIZE,
MX_SB_MAGIC, MX_SB_STATE, MX_SB_ZONES };

12.6.2 Zone and Inode Bitmaps

Going
where?

Now that we know how to access the su-
perblock, our next task is to deal with the
zone and inode bitmaps properly. This re-

quires some fiddling to extract or modify
single bits of a byte.

We need ways to access single bits in the inode and zone bitmaps. Reading is simple, be-
cause we only need to find the right byte and then perform a bit-shi operation, followed
by a modulo operation to isolate a specific bit.

Let’s start with the inode bitmap: One block stores 1024 bytes = 8192 bits, and the inode
bitmap begins in block 2. us if i is the number of the bit we want to read, we must read
in block 2 + i/8192. Inside that block we need to read byte number (i%8192) / 8.

[444b] ⟨minix filesystem implementation 420c⟩+≡ (440b) ◁ 443b 445a ▷
byte mx_get_imap_bit (int device, int i) {

byte block[1024];
byte thebyte;
readblock (device, 2 + i/8192, (byte*)&block);
thebyte = block[(i%8192)/8];
return (thebyte >> (i%8)) % 2;

};
Defines:

mx_get_imap_bit, used in chunk 451a.
Uses readblock 506b.

For the zone map, we need to consider that the inode map (which is located just before
it) may be larger than one block (if we have more than 8192 inodes). We can query the
superblock to find out how many blocks are used.

Again, the zone map may be larger than one block, so we have to find out which block
we need to read via a similar calculation.
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[445a]⟨minix filesystem implementation 420c⟩+≡ (440b) ◁ 444b 445b ▷
byte mx_get_zmap_bit (int device, int i) {

byte block[1024];
byte thebyte;
unsigned int zmap_start = 2 + mx_query_superblock (device, MX_SB_IMAP_BLOCKS);
readblock (device, zmap_start + i/8192, (byte*)&block);
thebyte = block[(i%8192)/8];
return (thebyte >> (i%8)) % 2;

};
Uses mx_query_superblock 443b and readblock 506b.

In order to fetch the bit number i of an integer number n we use the formula (n >> i) % 2
which performs a right shi (by i positions) and then cuts out the lowest bit with % 2.

We also need to set and clear individual bits. Since the code for accessing and changing
a bit is almost identical for seing and clearing, we write two functions mx_set_clear_*
which can both set and clear; they are called by the four mx_set_* and mx_clear_* functions
with appropriate arguments:

[445b]⟨minix filesystem implementation 420c⟩+≡ (440b) ◁ 445a 446 ▷
void mx_set_clear_imap_bit (int device, int i, int value) {

byte block[1024];
byte thebyte;
readblock (device, 2 + i/8192, (byte*)&block);
⟨set bit i from block block to value 445c⟩
writeblock (device, 2 + i/8192, (byte*)&block);

};

void mx_set_clear_zmap_bit (int device, int i, int value) {
byte block[1024];
byte thebyte;
unsigned int zmap_start = 2 + mx_query_superblock (device, MX_SB_IMAP_BLOCKS);
readblock (device, zmap_start + i/8192, (byte*)&block);
⟨set bit i from block block to value 445c⟩
writeblock (device, zmap_start + i/8192, (byte*)&block);

};
Defines:

mx_set_clear_imap_bit, used in chunk 446.
mx_set_clear_zmap_bit, used in chunk 446.

Uses mx_query_superblock 443b, readblock 506b, and writeblock 507c.

where seing the bit from a block looks like this in both cases:
[445c]⟨set bit i from block block to value 445c⟩≡ (445b)

thebyte = block[(i%8192)/8];
if (value==0) {

thebyte = thebyte & ~(1<<(i%8)); // Clear bit
} else {

thebyte = thebyte | 1<<(i%8); // Set bit
};
block[(i%8192)/8] = thebyte;
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If the shi (<<), modulo (%), bitwise “and” (&), bitwise “or” (|) and bitwise negation (~)
operations seem like magic to you, consider the following example calculations:

• For clearing bit 3 of 00101100b:
byte = 00101100
1<<3 = 00001000
~(1<<3) = 11110111
00101100 & 11110111 = 00100100

• For seing bit 3 of 00100100b:
byte = 00100100
1<<3 = 00001000
00100100 | 00001000 = 00101100

is should explain seing and clearing a bit in a single byte well enough. e extra
code which reads and writes block[(i%8192)/8] is necessary because we do not deal with
a single byte but an array of such bytes.

Now the mx_set_* and mx_clear_* functions simply provide the right value (0 or 1) to the
more general mx_set_clear_* function:

[446] ⟨minix filesystem implementation 420c⟩+≡ (440b) ◁ 445b 447c ▷
void mx_set_imap_bit (int device, int i) { mx_set_clear_imap_bit (device, i, 1); };
void mx_clear_imap_bit (int device, int i) { mx_set_clear_imap_bit (device, i, 0); };
void mx_set_zmap_bit (int device, int i) { mx_set_clear_zmap_bit (device, i, 1); };
void mx_clear_zmap_bit (int device, int i) { mx_set_clear_zmap_bit (device, i, 0); };

Defines:
mx_clear_imap_bit, used in chunk 483.
mx_clear_zmap_bit, used in chunks 477, 481, 482, and 484e.
mx_set_zmap_bit, used in chunk 447a.

Uses mx_set_clear_imap_bit 445b and mx_set_clear_zmap_bit 445b.

Note: An optimized implementation will not do this calculation every single time, in-
stead when mounting the filesystem, we should copy the superblock to memory and also
memorize where the zone bitmap starts. Early versions of U suffered from very slow
disk access because reading blocks was not buffered—this led to actually reading the su-
perblock from disk whenever we wanted to query the zone bitmap. With buffered read
operations this is no longer a problem but still highly inefficient. It is, however, the sim-
plest implementation and thus easy to grasp. Yet, you will see on the next pages that we
did not stick with it because a slightly optimized version improved performance a lot.

Requesting a free inode or a free block means searching the corresponding bitmap for
a zero bit. We start with the simple implementation of two mx_request_inode() and
mx_request_block() functions which just loop over the whole bitmaps and check the
bits with mx_get_*_bit. If all inodes or blocks are in use, these functions return -1.

Note that (as described above) the zone bitmap does not start with an entry for block 0,
but with a fixed 1 entry, followed by the bit that describes the first data zone. In order to
query the state of data zone n we need to call mx_get_zmap_bit (device, n-s_firstdatazone
+1). If this is unclear, go back to the example filesystem where s_firstdatazone is 34, then
evaluate the expression for n=34.
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[447a]⟨old minix filesystem implementation 447a⟩≡
int mx_request_inode (int device) {

int no_inodes = mx_query_superblock (device, MX_SB_NINODES); // floppy: 480
for (int i = 0; i < no_inodes; i++) {

if (mx_get_imap_bit (device, i) == 0) {
// found a free inode
mx_set_imap_bit (device, i); // mark as used
return i;

}
}
return -1; // found nothing

};

int mx_request_block (int device) {
int no_zones = mx_query_superblock (device, MX_SB_ZONES); // floppy: 1440
int first_data = mx_query_superblock (device, MX_SB_FIRSTDATAZONE);
for (int i = 0; i < no_zones - first_data - 2; i++) {

if (mx_get_zmap_bit (device, i) == 0) {
mx_set_zmap_bit (device, i); // mark as used
return i + first_data - 1; // floppy example: i+33

}
}
return -1; // found nothing

};

While the above implementations of mx_request_inode and mx_request_block are
correct, they are also highly inefficient. us, we will provide a second implementation
which has a beer performance. Normally, we do not focus on performance issues, but
these functions are very slow which makes writing a new file unbearable.

We start with a helper function
[447b]⟨function prototypes 45a⟩+≡ (44a) ◁ 443a 450b ▷

int findZeroBitAndSet (byte *block, int maxindex);

which finds the first 0 bit in a block, changes it to 1 and returns its (bit) position
[447c]⟨minix filesystem implementation 420c⟩+≡ (440b) ◁ 446 448 ▷

int findZeroBitAndSet (byte *block, int maxindex) {
int i, j;
byte b;
for (i = 0; i < 1024; i++) {

b = block[i];
if (b != 0xFF) {

// at least one bit in this byte is 0, find the first one
for (j = 0; j < 8; j++) {

if ( ((b >> j) % 2 == 0) // bit is 0
&& (i*8 + j < maxindex) ) // bit position is ok

{
block[i] = b | (1 << j); // set bit
return i*8 + j;
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}
}

}
}
return -1; // not found

}
Defines:

findZeroBitAndSet, used in chunks 447b and 448.

We need to provide a maxindex argument since the last block of the bitmap may not always
be fully used. In the floppy example from above, only 480 bits of the inode bitmap and
only less than 1440 bits of the inode bitmap have to be considered.

e implementations of mx_request_inode and mx_request_block that we actually
use start with manually reading the superblock (since they need to access several of its
entries). e optimization is reached via checking a whole block for a 0 bit with the helper
function:

[448] ⟨minix filesystem implementation 420c⟩+≡ (440b) ◁ 447c 451a ▷
int mx_request_inode (int device) {

byte block[1024];
struct minix_superblock *sblock;
readblock (device, 1, (byte*)block); // superblock = block 1
sblock = (struct minix_superblock*) &block;

int no_inodes = sblock->s_ninodes; // floppy: 480
int imap_start = 2;

int i, index;
for (i = 0; i < sblock->s_imap_blocks; i++) { // all IMAP blocks

readblock (device, imap_start + i, (byte*)&block);
index = findZeroBitAndSet ((byte*)&block, no_inodes);
if (index != -1) { // found one!

writeblock (device, imap_start + i, (byte*)&block);
return i*8192 + index;

}
}
return -1; // found nothing

};

int mx_request_block (int device) {
byte block[1024];
struct minix_superblock *sblock;
readblock (device, 1, (byte*)block); // superblock = block 1
sblock = (struct minix_superblock*) &block;

int no_zones = sblock->s_zones; // floppy: 1440
int zmap_start = 2 + sblock->s_imap_blocks;
int zmap_blocks = sblock->s_zmap_blocks;
int data_start = sblock->s_firstdatazone;
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int i, index;
for (i = 0; i < zmap_blocks; i++) { // all ZMAP blocks

readblock (device, zmap_start + i, (byte*)&block);
index = findZeroBitAndSet ((byte*)&block, no_zones);
if (index != -1) { // found one!

writeblock (device, zmap_start + i, (byte*)&block);
return i*8192 + index + data_start - 1; // convert to zone number

}
}
return -1; // found nothing

};
Defines:

mx_request_block, used in chunks 454a, 476, and 477.
mx_request_inode, used in chunk 478b.

Uses findZeroBitAndSet 447c, minix_superblock 440c, readblock 506b, and writeblock 507c.

Note that mx_request_inode simply returns the bit position of a free entry. On the other
hand, mx_request_block returns a block number which is not identical to the bit position
since the zone bitmap holds no bits for the early blocks in the filesystem.

12.6.3 Reading and Writing Inodes

Going
where?

We’re now able to query the superblock
and read and write the two bitmaps.
Our next goal is to create (empty) files.

Since empty files use no data blocks, this
requires being able to read and write
inodes.

Creating a new (empty) file consists of the following steps:

1. Reserve an inode with mx_request_inode.
2. Write the inode.
3. Create an entry in the file’s directory, i. e., create the (filename → inode number)

mapping.

Before we start, remember how pointer arithmetic pointer
arithmetic

works; wewill sometimes use memcpyc
to move data from a block around. If that block is declared as char block[1024]; and you
want to write a 32 byte chunk to position 512, then the code

[449a]⟨pointer arithmetic test 1 449a⟩≡
offset = 512; size = 32;
memcpy (&block + offset, &data, size);

will fail. On the other hand, if the block was declared via char *block; then the similar
code

[449b]⟨pointer arithmetic test 2 449b⟩≡
offset = 512; size = 32;
memcpy (block + offset, &data, size);

works as expected. e following example program offset-test.c shows the difference:
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[450a] ⟨offset-test.c 450a⟩≡
#include <stdio.h>
int main () {

char block[1024]; char *block2=(char*)&block; char data[]="Test";
int size = sizeof (data); int offset = 512; long diff;

printf ("&block: %p \n", &block);
printf ("&block + offset: %p \n", &block + offset);
diff = (long)(&block+offset)-(long)&block;
printf ("difference: %ld \n", diff);

printf ("block2: %p \n", block2);
printf ("block2 + offset: %p \n", block2 + offset);
diff = (long)(block2+offset)-(long)block2;
printf ("difference: %ld \n", diff);

};

generates the following output:

$ ./offset-test
&block: 0x7ffff31802b0
&block + offset: 0x7ffff32002b0
difference: 524288 // that is 512 x 1024 !
block2: 0x7ffff31802b0
block2 + offset: 0x7ffff31804b0
difference: 512 // that's what we want

In the first aempt, &block creates a pointer to block that “knows” the size of block (which
is a whole kilobyte). When adding the offset (512) the program actually adds that offset
multiplied with the size (resulting in a 512 KByte offset). So in order to perform correct
pointer arithmetic, it is necessary to first perform a cast to a (char*) pointer; otherwise
you would access wrong memory areas (see also Appendix A.5).

We continue the implementation with two functions
[450b] ⟨function prototypes 45a⟩+≡ (44a) ◁ 447b 450c ▷

int mx_read_inode (int device, int i, struct minix2_inode *inodeptr);
int mx_write_inode (int device, int i, struct minix2_inode *inodeptr);

which copy an inode from disk to memory or vice versa. ey shall return 0 when an
error occurs and the inode number i otherwise—this lets us write code of the form if
(!mx_read_inodeb(...) { /* error */ }. Trying to read an unused inode shall also
generate an error.

Since reading and writing an inode are similar tasks we write a combined function
[450c] ⟨function prototypes 45a⟩+≡ (44a) ◁ 450b 453a ▷

int mx_read_write_inode (int device, int i, struct minix2_inode *inodeptr,
int wr_flag);

which can do both; the flag wr_flag decides about the direction.
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[451a]⟨minix filesystem implementation 420c⟩+≡ (440b) ◁ 448 451b ▷
int mx_read_write_inode (int device, int i, struct minix2_inode *inodeptr,

int wr_flag) {
i--; // first inode is No. 1, but has position 0 in table
if ((i < 0) || (i ≥ mx_query_superblock (device, MX_SB_NINODES))) {

return 0; // illegal inode number
}
if (mx_get_imap_bit (device, i+1) == 0) {

return 0; // attempt to read unused inode; forbidden
}
const int inodesize = sizeof (struct minix2_inode);
const int inodesperblock = BLOCK_SIZE / inodesize;
int blockno = i / inodesperblock + 2

+ mx_query_superblock (device, MX_SB_IMAP_BLOCKS)
+ mx_query_superblock (device, MX_SB_ZMAP_BLOCKS);

int blockoffset = i % inodesperblock;
// we need to read the block, even if this is a write operation
byte block[1024];
readblock (device, blockno, (byte*)&block);
byte *addr = (byte*)&block; // add offset, beware of pointer arithmetic
addr += blockoffset * inodesize;
if (!wr_flag) { // read or write_?

memcpy (inodeptr, addr, inodesize);
} else {

memcpy (addr, inodeptr, inodesize);
writeblock (device, blockno, (byte*)&block); // write whole block to disk

};
return (i+1); // return original number

};
Defines:

mx_read_write_inode, used in chunks 450–52.
Uses BLOCK_SIZE 440a, memcpy 596c, minix2_inode 442a, mx_get_imap_bit 444b, mx_query_superblock 443b,

readblock 506b, and writeblock 507c.

eonly statement that needs some explanation is the calculation of blocknowhich queries
the superblock twice to find out about the layout of the filesystem; the first block of the
inode table is placed behind the zone bitmap. Block 2 is where the inode bitmap starts, and
adding mx_query_superblockb (device, MX_SB_IMAP_BLOCKS) and mx_query_superblockb
(device, MX_SB_ZMAP_BLOCKS) brings us right behind the zone bitmap. We need to add i /
inodesperblock in order to pick the right block within the inode table.

As explained above, mx_read_inodeb and mx_write_inodea simply call the function
mx_read_write_inodea with wr_flag set to 0 or 1:

[451b]⟨minix filesystem implementation 420c⟩+≡ (440b) ◁ 451a 452a ▷
int mx_read_inode (int device, int i, struct minix2_inode *inodeptr) {

return mx_read_write_inode (device, i, inodeptr, 0); // 0 = false
}

Defines:
mx_read_inode, used in chunks 453b, 456, 457b, 466a, 479b, 480c, 484c, 487a, 490a, 589d, 607a, and 610d.

Uses minix2_inode 442a and mx_read_write_inode 451a.
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[452a] ⟨minix filesystem implementation 420c⟩+≡ (440b) ◁ 451b 453b ▷
int mx_write_inode (int device, int i, struct minix2_inode *inodeptr) {

return mx_read_write_inode (device, i, inodeptr, 1); // 1 = true
}

Defines:
mx_write_inode, used in chunks 450b, 454a, 456, 457b, 467b, 468c, 475c, 478b, 480c, 484c, 487a, and 589d.

Uses minix2_inode 442a and mx_read_write_inode 451a.

12.6.4 Directory Entries

Going
where?

Reserving and writing inodes is only the
first half of creating a new file; we
also need to create directory entries (in
the directory where we want to place

a file). Our goal is to write a func-
tion mx_write_link that takes an inode
number and a pathname and creates the
link between them.

at task consists of several smaller tasks: We need to be able to read and write single
entries in the directory (file), find a free entry in the directory, split a pathname (such as
/home/user/dir/file) into its base namebase name,

directory name
(file) and its directory name (/home/user/dir). e

directory name will lead us to the directory where we need to place the link.
Let’s look at the task step by step. In order to read the root directory of a volume, we

need to know that Minix always uses inode number 1 for it, and it also starts counting
inodes with 1. us, inode 1 is the first (not the second) inode, stored at position 0 of the
inode table, but the corresponding bitmap entry is bit 1 (not 0), see further below.

Looking at the root directory’s inode brings up a special case of file access (before read-
ing the first regular file): Directories are a special kind of file whichmap filenames to inode
numbers. We can read a directory block by block, and the first zone number is stored in
i_zone[0]. We just need to know how to interpret the data: A directory file is an array of
structures of type minix_dir_entryb:

[452b] ⟨type definitions 91⟩+≡ (44a) ◁ 442a 459a ▷
struct minix_dir_entry {

uint16_t inode;
char name[30];

};
Defines:

minix_dir_entry, used in chunks 453b, 456, 461d, 480c, 487a, 488a, 490d, and 494b.

Each such entry has a size of + =  bytes und starts with the 16-bit inode number,
followed by the filename. Such filenames are normally null-terminated (as is standard for
all strings on Unix systems), but when a filename uses the maximum allowed size of 30
characters, there is no space for the terminating \0 character. us, simply copying an
entry with strncpyb will fail on filenames with maximum length. When dealing with
Minix filenames internally, they should be stored in a char[31] string whose last byte is
manually set to \0.

A block can hold / =  such directory entries. If there are more than 32 entries
in a directory, an additional block is used (whose block number can be found in the next
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entry, i_zone[1]. e total size of the directory is found by inspecting the inode entry
i_size.

Now we start the work on the function mx_write_link() that can add a (filename 7→
inode number) mapping to a directory. As already mentioned, directories are special files
and the root directory has the inode number 1. Each of the associated data blocks contains
32 directory entries of type struct minix_dir_entryb (since  ·  = ). An unused
entry has the inode field set to 0. We provide two functions

[453a]⟨function prototypes 45a⟩+≡ (44a) ◁ 450c 455c ▷
int mx_read_dir_entry (int device, int inodenr, int entrynr,

struct minix_dir_entry *entry);
int mx_write_dir_entry (int device, int inodenr, int entrynr,

struct minix_dir_entry *entry);

for reading or writing individual entries of a directory.
We will use the same trick that we applied to reading and writing inodes by providing

a common function mx_read_write_dir_entryb that can do both and decides via an extra
flag wr_flag whether it shall read or write. e other arguments are the device, the inode
number of the directory (file) and a pointer to a struct minix_dir_entryb variable.

Since only 32 entries fit in one block, we might have to reserve a new block and enter
its location in the directory’s inode; then we can go on writing entries in the new block.
Similarly, when we later delete entries, we might want to remove additional blocks that
are no longer needed.

In each inode’s i_zone array only the first seven entries refer directly to data blocks, so
using these we can work with up to · =  directory entries. Aer that an indirection
block must be used, but we will restrict our Minix implementation to a maximum of 224
entries for a directory.

[453b]⟨minix filesystem implementation 420c⟩+≡ (440b) ◁ 452a 456 ▷
int mx_read_write_dir_entry (int device, int inodenr, int entrynr,

struct minix_dir_entry *entry, int wr_flag) {
if (entrynr ≥ 32 * 7) { // 7 direct blocks, 32 entries per block

return false;
}

struct minix2_inode inode;
mx_read_inode (device, inodenr, &inode); // read directory inode
int blockno;
blockno = inode.i_zone[entrynr/32]; // number of block that holds the entry
if (blockno == 0) {

if (wr_flag) { ⟨reserve a block and map it in the directory inode 454a⟩ }
else return false;

}

char block[1024];
readblock (device, blockno, (byte*)&block);

int offset = (32*entrynr) % BLOCK_SIZE;
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if (!wr_flag) {
memcpy (entry, ((char*)&block)+offset, 32); // reading
return (entry->inode != 0); // true if entry non-empty

} else {
memcpy (((byte*)&block)+offset, entry, 32); // writing
writeblock (device, blockno, (byte*)&block);
return true;

};
};

int mx_read_dir_entry (int device, int inodenr, int entrynr,
struct minix_dir_entry *entry) {

return mx_read_write_dir_entry (device, inodenr, entrynr, entry, false);
};

int mx_write_dir_entry (int device, int inodenr, int entrynr,
struct minix_dir_entry *entry) {

return mx_read_write_dir_entry (device, inodenr, entrynr, entry, true);
};

Defines:
mx_read_dir_entry, used in chunks 456, 462a, 480c, and 490d.
mx_write_dir_entry, used in chunks 453a, 456, and 480c.

Uses BLOCK_SIZE 440a, memcpy 596c, minix2_inode 442a, minix_dir_entry 452b, mx_read_inode 451b,
readblock 506b, and writeblock 507c.

If the block which should hold the directory entry does not yet exist (and we’re trying
to write to it), we create it and enter it in the directory inode:

[454a] ⟨reserve a block and map it in the directory inode 454a⟩≡ (453b)
blockno = mx_request_block (device);
char empty_block[1024] = { 0 };
writeblock (device, blockno, (byte*)&empty_block);
inode.i_zone[entrynr/32] = blockno;
mx_write_inode (device, inodenr, &inode); // update directory inode

Uses mx_request_block 448, mx_write_inode 452a, and writeblock 507c.

For dealing with pathnames we will sometimes need two helper functions: dirnameb
and basenameb can be used to split a path into a directory (path) and a file or directory
name, for example dirname ("/usr/bin/vi") = "/usr/bin" and basename ("/usr/bin/vi")
= "vi". isworks similarly for relative paths, and the special case of a pathname xwithout
any slashes is handled by dirname ("x") = "." and basename ("x") = "x".

We will also recycle these functions in the user mode library, since it does not maer
whether the kernel or a program wants to split a pathname. Instead of parsing the path
in two separate functions, we write a combined function splitpatha and call that one
from basenameb and dirnameb.

[454b] ⟨public function prototypes 454b⟩≡ (44a 48a) 593 ▷
void splitpath (const char *path, char *dirname, char *basename);
char *basename (char *path);
char *dirname (char *path);
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[455a]⟨public function implementations 455a⟩≡ (44a 48b) 455b ▷
void splitpath (const char *path, char *dirname, char *basename) {

if (strlen (path) == 1 && path[0] == '/') { // special case "/"
strncpy (dirname, "/", 1); strncpy (basename, "/", 1); return;

}
char p[256]; strncpy (p, path, 256); // work on copy
int pos = strlen (p) - 1;
if (p[pos] == '/') { p[pos] = 0; pos--; } // strip trailing '/'

for (;;) { // search for / (from back to front)
pos--;
if (pos == -1) { // no single slash found

strncpy (dirname, ".", 2); strncpy (basename, p, 256); return;
}
if (p[pos] == '/') { // slash found

if (pos==0)
strncpy (dirname, "/", 2); // special case /

else {
memcpy (dirname, p, pos);
dirname[pos] = 0; // remove trailing '/'

}
strncpy (basename, p + pos + 1, 30);
return;

}
}

}
Defines:

splitpath, used in chunks 419a, 432e, 454–56, 480c, 487a, 488a, and 577.
Uses basename 455b, dirname 455b, memcpy 596c, strlen 594a, and strncpy 594b.

In the implementations of basenameb and dirnameb we declare bname and dname as
static so that they are not stored on the stack; that way we can return a pointer.

[455b]⟨public function implementations 455a⟩+≡ (44a 48b) ◁ 455a 594a ▷
char *basename (char *path) {

static char bname[30]; static char dname[256];
splitpath (path, dname, bname); return (char *)bname;

}

char *dirname (char *path) {
static char bname[30]; static char dname[256];
splitpath (path, dname, bname); return (char *)dname;

}
Defines:

basename, used in chunks 455a and 577b.
dirname, used in chunks 419a, 455a, 456, and 577.

Uses splitpath 455a.

e implementation of the
[455c]⟨function prototypes 45a⟩+≡ (44a) ◁ 453a 457a ▷

void mx_write_link (int device, int inodenr, const char *filename);
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function is complex:

• First, we check whether the directory already contains an entry for the filename—it
is not possible to have the same filename twice in a directory.

• en we split the path into the directory name and the base filemame.
• We locate the inode that belongs to the directory file using mx_pathname_to_inod (a

function that we still have to implement; this follows a few pages later).
• en we read all the directory entries (using mx_read_dir_entryb from above) until

we find a free entry. If we don’t, we have to abort because the directory is full.
• Once we’ve found a free entry, we prepare a directory entry and write it to the free

location.
• As a last thought, we must not forget to increase the link count of the inode: It counts

how many links to the inode exist. For a freshly created file we could always set that
value to 1, but we will also use this function when we create a hard link.

• Finally we update the size of the directory (it may have grown by 32 bytes unless
we’ve found a free entry between other, used entries) and write back the modified
directory inode.

[456] ⟨minix filesystem implementation 420c⟩+≡ (440b) ◁ 453b 457b ▷
void mx_write_link (int device, int inodenr, const char *path) {

if (mx_file_exists (device, path)) { // check if filename already exists
printf ("ERROR: filename %s exists!\n", path); return;

};
struct minix_dir_entry dentry; struct minix2_inode inode;
char dirname[256]; char filename[30];
splitpath (path, dirname, filename);
int dir_inode_no = mx_pathname_to_ino (device, dirname);
// find free location and enter it
mx_read_inode (device, dir_inode_no, &inode); // read directory inode
for (int i = 0; i < 32 * 7; i++) {

mx_read_dir_entry (device, dir_inode_no, i, &dentry);
if (dentry.inode==0 || i * 32 ≥ inode.i_size) {

dentry.inode = inodenr; // found an empty entry
memcpy ((char*)dentry.name, filename, 30);
mx_write_dir_entry (device, dir_inode_no, i, &dentry);
mx_increase_link_count (device, inodenr); // link count for file
if (inode.i_size < 32*(i+1)) { // modify dir. inode size

mx_read_inode (device, dir_inode_no, &inode); // must read again
inode.i_size = 32*(i+1);
mx_write_inode (device, dir_inode_no, &inode);

};
return; // success

};
};
printf ("ERROR: no free entry in directory\n"); // search failed

};
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Defines:
mx_write_link, used in chunks 455c, 478b, and 480a.

Uses dirname 455b, memcpy 596c, minix2_inode 442a, minix_dir_entry 452b, mx_file_exists 479b,
mx_increase_link_count 457b, mx_pathname_to_ino 461d, mx_read_dir_entry 453b, mx_read_inode 451b,
mx_write_dir_entry 453b, mx_write_inode 452a, printf 601a, read 429b, and splitpath 455a.

In the last few lines we need to read the directory inode from disk again (even though
we did so just nine lines ago, but calling mx_write_dir_entryb may have modified it if a
new block was added to the directory—we must not overwrite this change.

is function uses mx_increase_link_countb() which adds 1 to the number of links for
a given inode:

[457a]⟨function prototypes 45a⟩+≡ (44a) ◁ 455c 461c ▷
int mx_increase_link_count (int device, int inodenr);

It simply reads an inode, increments the i_nlinks entry and writes it back:
[457b]⟨minix filesystem implementation 420c⟩+≡ (440b) ◁ 456 461d ▷

int mx_increase_link_count (int device, int inodenr) {
struct minix2_inode inode;
mx_read_inode (device, inodenr, &inode);
inode.i_nlinks++;
mx_write_inode (device, inodenr, &inode);
return inode.i_nlinks;

};
Defines:

mx_increase_link_count, used in chunks 456 and 457a.
Uses minix2_inode 442a, mx_read_inode 451b, and mx_write_inode 452a.

12.6.5 The i_mode Entry of the Inode
Each inode contains an i_mode entry that describes the file type and the access permis-
sions. Since we will need to query this information in some of the following functions,
we provide a few standard constants that make it easier to check for a specific property.

[457c]⟨public constants 46a⟩+≡ (44a 48a) ◁ 424b 460b ▷
#define S_IRWXU 0000700 // RWX mask for owner
#define S_IRUSR 0000400 // R for owner
#define S_IWUSR 0000200 // W for owner
#define S_IXUSR 0000100 // X for owner

#define S_IRWXG 0000070 // RWX mask for group
#define S_IRGRP 0000040 // R for group
#define S_IWGRP 0000020 // W for group
#define S_IXGRP 0000010 // X for group

#define S_IRWXO 0000007 // RWX mask for other
#define S_IROTH 0000004 // R for other
#define S_IWOTH 0000002 // W for other
#define S_IXOTH 0000001 // X for other
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#define S_ISUID 0004000 // suid bit (set user ID)
#define S_ISGID 0002000 // sgid bit (set group ID)
#define S_ISVTX 0001000 // save swapped text even after use

#define S_IFMT 0170000 // mask the file type part
#define S_IFIFO 0010000 // named pipe (fifo)
#define S_IFCHR 0020000 // character special
#define S_IFDIR 0040000 // directory
#define S_IFBLK 0060000 // block special
#define S_IFREG 0100000 // regular
#define S_IFLNK 0120000 // symbolic link
#define S_IFSOCK 0140000 // socket

Defines:
S_IFBLK, used in chunk 499d.
S_IFDIR, used in chunks 432e, 479b, 487a, and 499d.
S_IFLNK, used in chunks 420c and 484c.
S_IFREG, used in chunk 478b.

Some of these constants can be used for direct comparisons, for example, in order to
check whether a file has the read access bit for the file owner set, you could check whether
(i_mode & S_IRUSRc) != 0. We assume that you’re aware of the standard access permis-
sions on Unix systems—if not, here’s a brief summary:

e standard access permissionsaccess
permissions

encompass nine bits grouped in three groups of three
bits each. e first group describes the permissions granted to the file owner who may
or may not read, write or execute the file. In the output of the ls -l command, these are
represented by the characters in the second to fourth column and shown as rwxrwx (owner) (or some of
those leers replaced with - if a permission is not set. For example, rw- in that place says:
owner can read and write, but not execute (those are the standard seings for a document
file). e next grouprwx (group,

other users)
describes the corresponding permissions for the members of the

group that the file belongs to, and the third group shows permissions for all other users.
ere are two further interesting bits which can be set: e Set User ID bitSet User ID bit (suid), when

set on an executable file, changes the effective user ID of a program to the file owner,
regardless of who started it. Similarly the Set Group ID bitSet Group

ID bit
(sgid) sets the effective group

ID to the file’s group. Owner and group are also stored in the inode (in the i_uid and i_gid
fields).

e last block of constants can be used for identifying the type of a file. is does not
refer to properties like “Word document” and “C source file”, but to whether a file is a
“classical” file or something else, like a directory, a block or character device file (only the
block variety is implemented in U, see Section 12.7), a symbolic link or a socket (not
available, either). Since a file cannot be in more than one of these categories, you can
check for a specific file type with an expression like (i_mode & S_IFMTc) == S_IFDIRc.
is is an example for using amaskmask (to mask out the irrelevant bits of the i_mode field): We
used S_IFMTc to remove the access permissions. Similarly, S_IRWXUc, S_IRWXGc and
S_IRWXOc are masks for the owner, group and others parts of the permissions.

We will explain this in more detail in Chapter 15 where we discuss users and groups
and also add permission checking code to the filesystem functions from this chapter.
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12.6.6 Opening and Closing Files

Going
where?

We’re geing closer to actually opening
files. First, we need to introduce some
new data structures, including an inter-
nal inode representation and a file sta-

tus structure. Next up is a function that
gets the inode number when given a path.
Then we can start work on the implemen-
tation of the mx_openb function.

e goal is to provide the kernel functions which will be called when a process uses the
standard filesystem functions openb, readb, writeb lseekb and closeb. In the
Minix subsystem we need the functions mx_openb, mx_readb, mx_writec, mx_lseekc
and mx_closeb (and they are called by the corresponding u_* functions).

We have to introduce some new data structures that will help the kernel stay aware of
the states of open files:

Internal Inode: is will be an enhanced copy of the inode (as it is stored on the filesys-
tem), but with extra elements, e. g. a reference counter refcount that takes notice of
how oen the associated file is opened. Whenever we open a file we reserve such an
internal inode. All changes to the inode will first be made in the internal copy only;
when closing the file we will write the information back to disk. (For immediate
writing there will be an mx_syncc function.) One of the new fields is clean: It is
set to 1 as long as no changes were made to the internal inode. A change resets it,
and calling my_sync will set it again (aer saving the changes to disk).

[459a]⟨type definitions 91⟩+≡ (44a) ◁ 452b 460a ▷
struct int_minix2_inode {
⟨external minix2 inode 442b⟩ // fields from the external inode
int ino; // inode number
unsigned int refcount; // how many users?
unsigned short clean; // 0: changed; 1: unchanged (as on disk)
short device; // file resides on which device?

};
Defines:

int_minix2_inode, used in chunks 459c, 460a, 464d, 467–71, 473a, 475a, 476b, 484e, and 607b.

We create an internal inode table that can store up to 256 records on open files:
[459b]⟨constants 112a⟩+≡ (44a) ◁ 444a 461a ▷

#define MAX_INT_INODES 256
Uses MAX_INT_INODES 459c.

[459c]⟨global variables 92b⟩+≡ (44a) ◁ 410b 461b ▷
struct int_minix2_inode mx_inodes[MAX_INT_INODES] = {{ 0 }};

Defines:
MAX_INT_INODES, used in chunks 459b, 462c, and 464d.
mx_inodes, used in chunks 462c, 464d, and 466a.

Uses int_minix2_inode 459a.

Local File Descriptor: e LFD is a non-negative integer returned by mx_openb which
the other mx_* functions use for accessing an open file. It has the same function as
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the process file descriptor in user mode programs, however the local file descriptor
is valid in the whole Minix subsystem, whereas each process counts file descriptors
separately. When we later allow processes to work with files (via system calls),
we will map process-local file descriptors to global file descriptors which are more
general than the local ones. For a reminder of how global, local and process file
descriptors are connected, go back to Section 12.3.3 (p. 410).

File Status: is is a structure that points to an internal inode. (If there’s a null pointer,
then this specific file status structure is not in use.) Additionally, it stores the current
read/write position and the access mode (see below).

[460a] ⟨type definitions 91⟩+≡ (44a) ◁ 459a 494d ▷
struct mx_filestat {

struct int_minix2_inode *int_inode;
int pos;
short mode;

};
Defines:

mx_filestat, used in chunks 461b, 467–70, 475a, and 484e.
Uses int_minix2_inode 459a.

us, if a file is opened twice, there will be one internal inode, referenced by the
(Minix-subsystem-)local file descriptor, and two mx_filestata structures, since ac-
cess mode and read/write position may be different.
We support the following modes for opening:

[460b] ⟨public constants 46a⟩+≡ (44a 48a) ◁ 457c 469b ▷
#define O_RDONLY 0x0000 // read only
#define O_WRONLY 0x0001 // write only
#define O_RDWR 0x0002 // read and write
#define O_APPEND 0x0008 // append mode
#define O_CREAT 0x0200 // create file

Defines:
O_APPEND, used in chunks 465, 469c, and 470c.
O_CREAT, used in chunks 464c, 484b, 487a, 495c, and 576d.
O_RDONLY, used in chunks 190c, 420c, 475a, 488a, 579c, 582a, and 585b.
O_RDWR, used in chunks 293b and 579c.
O_WRONLY, used in chunks 420a, 470c, 484b, 487a, and 579c.

• O_RDONLYb and O_WRONLYb are used when the file shall be used exclusively
for reading or writing, respectively.

• Using the O_RDWRb mode allows read and write access.
• e mode O_APPENDb can be supplied in addition to O_WRONLYb (by calculat-

ing the mode as O_WRONLYb | O_APPENDb). In that case all write operations
append to the file, and lseekb calls are ignored.

• O_CREATb allows the creation of new files. Trying to open a non-existing
file without O_CREATb will fail. On the other hand, using O_CREATb with an
already existing file does not change anything (specifically: it does not truncate
the file).



12.6 The U Implementation of the Minix Filesystem 461

Status List: is is an array that holds 256 file status entries, so we allow the Minix sub-
system to open up to 256 files simultaneously—the same limit holds for all subsys-
tems since we defined the global file descriptors in a way that allows the local com-
ponent of the number to lie between 0 and 255.

[461a]⟨constants 112a⟩+≡ (44a) ◁ 459b 472 ▷
#define MX_MAX_FILES 256

Defines:
MX_MAX_FILES, used in chunks 461b, 463a, 467–70, 475a, 484e, and 607b.

[461b]⟨global variables 92b⟩+≡ (44a) ◁ 459c 464a ▷
struct mx_filestat mx_status[MX_MAX_FILES] = { { 0 } };

Defines:
mx_status, used in chunks 463a, 465, 467–70, 475a, 484e, and 607b.

Uses mx_filestat 460a and MX_MAX_FILES 461a.

We need a function that looks up a filename in the directory and returns the inode number.
Assume we want to look up the path /etc/passwd: We can assume that this is an absolute
path (because the virtual filesystem layer already took care of that). en we scan the
path until we reach the next / (or the string terminator \0) which gives us a directory to
search for. We can then look up its inode and continue the search with the next directory
element. Eventually we reach the last part of the pathname and return its inode number.

e search begins in the volume’s root directory that always has inode number 1 on a
Minix filesystem.

[461c]⟨function prototypes 45a⟩+≡ (44a) ◁ 457a 462b ▷
int mx_pathname_to_ino (int device, const char *path);

[461d]⟨minix filesystem implementation 420c⟩+≡ (440b) ◁ 457b 462c ▷
int mx_pathname_to_ino (int device, const char *path) {

struct minix2_inode dirinode, inode;
struct minix_dir_entry dentry;
char subpath[31]; // maximum name length: 30
char searchbuf[256];
char *search = (char*)searchbuf;
strncpy (search, path, 256); // do not modify original path
int dirinode_no = 1; // inode number of / directory
int next_dirinode_no;
short final = 0; // final = 1 if looking at final part

search++;
if (*search == '\0') { return 1; } // searching for / : inode 1
while (*search != '\0') { // work until end of path reached
⟨mx_pathname_to_ino: search loop 462a⟩

}
return next_dirinode_no;

};
Defines:

mx_pathname_to_ino, used in chunks 456, 461c, 464c, 479, 480, 484c, 487a, 490, and 589d.
Uses minix2_inode 442a, minix_dir_entry 452b, and strncpy 594b.
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Inside the loop we pick the next sub-path and perform the inode lookup. We know that
we’re done when search points to the '\0' character (the end of the pathname):

[462a] ⟨mx_pathname_to_ino: search loop 462a⟩≡ (461d)
int i = 0;
while (*search != '\0' && *search != '/') {

subpath[i] = *search;
search++; i++;

}
subpath[i] = '\0'; // terminate subpath string

if (*search == '\0') final = 1; // looking at final part of path

next_dirinode_no = -1; // look up subpath
for (i = 0; i < 32*7; i++) { // max. 32 * 7 entries

mx_read_dir_entry (device, dirinode_no, i, &dentry);
if (dentry.inode != 0) {

if (strequal (dentry.name, subpath)) {
next_dirinode_no = dentry.inode; // found it!
break; // leave for loop

}
}

}

// now next_dirinode_no is either -1 (not found) or points to next step
if (next_dirinode_no == -1) { return -1; } // not found!

dirinode_no = next_dirinode_no;
if (*search != '\0') search++;
else break; // finished, leave while loop

Uses mx_read_dir_entry 453b and strequal 596a.

We also need two helper functions that give us the index of a free mx_inodesc[] and
a free mx_statusb[] entry. e code is similar: We loop over the respective array and
check whether an entry is free. mx_inodesc[i] is free if its refcount element is 0; the file
status entry mx_statusb[i] is free if its int_inode element is a NULLa pointer.

[462b] ⟨function prototypes 45a⟩+≡ (44a) ◁ 461c 463b ▷
int mx_get_free_inodes_entry ();
int mx_get_free_status_entry ();

[462c] ⟨minix filesystem implementation 420c⟩+≡ (440b) ◁ 461d 463a ▷
int mx_get_free_inodes_entry () {

for (int i = 0; i < MAX_INT_INODES; i++) { // returns internal inode no.
if (mx_inodes[i].refcount == 0) return i;

}
return -1;

}
Defines:

mx_get_free_inodes_entry, used in chunk 464d.
Uses MAX_INT_INODES 459c and mx_inodes 459c.
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[463a]⟨minix filesystem implementation 420c⟩+≡ (440b) ◁ 462c 464b ▷
int mx_get_free_status_entry () {

for (int i = 0; i < MX_MAX_FILES; i++) { // returns an MFD
if (mx_status[i].int_inode == NULL) return i;

}
return -1;

}
Defines:

mx_get_free_status_entry, used in chunks 462b, 464d, and 468b.
Uses MX_MAX_FILES 461a, mx_status 461b, and NULL 46a.

We’re about to show the implementation of the mx_openb function
[463b]⟨function prototypes 45a⟩+≡ (44a) ◁ 462b 467a ▷

int mx_open (int device, const char *path, int oflag);

that will use many of the functions we’ve already discussed (and also some new ones).
Figure 12.11 shows the function call graph for mx_openb, so you can see that opening a
file is a rather complex task.

mx_open

mx_creat_empty_filemx_get_free_status_entry

mx_read_inode

mx_write_link

mx_write_dir_entry mx_increase_link_count

mx_get_imap_bitmx_query_superblock

mx_pathname_to_ino

mx_read_dir_entry

mx_request_inode

mx_file_exists

mx_read_write_inode

mx_get_free_inodes_entry

mx_write_inode

mx_read_write_dir_entry

Figure 12.11: Minix subsystem functions called my mx_open.
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12.6.6.1 mx_open

We define two variables
[464a] ⟨global variables 92b⟩+≡ (44a) ◁ 461b 494b ▷

int count_open_files = 0; // number of open files
int count_int_inodes = 0; // number of internal inodes in use

Defines:
count_int_inodes, used in chunks 466c and 467b.
count_open_files, used in chunks 464d, 466c, and 467b.

to keep track of the open files and the used internal inodes and we dedicate a separate
code chunk ⟨mx_open 464c⟩ to the implementation:

[464b] ⟨minix filesystem implementation 420c⟩+≡ (440b) ◁ 463a 467b ▷
int mx_open (int device, const char *path, int oflag) {
⟨mx_open 464c⟩

}
Defines:

mx_open, used in chunks 412c, 463b, 484b, and 487a.

We start with checking whether the file exists—if it does not, but the O_CREATb flag
was used, we will call mx_creat_empty_fileb to make a new file. In both cases ext_ino is
set to the number of the external inode.

[464c] ⟨mx_open 464c⟩≡ (464b) 464d ▷
int ext_ino = mx_pathname_to_ino (device, path);
if (ext_ino == -1) {

// file not found
if ((oflag & O_CREAT) != 0) {

ext_ino = mx_creat_empty_file (device, path, 0644);
}
else {

return (-1); // file not found and no O_CREAT
}

}
Uses mx_creat_empty_file 478b, mx_pathname_to_ino 461d, and O_CREAT 460b.

In int_ino we will store the index into the internal inode table. e file may already be
open, because another process (or even the same one) opened it earlier. In that case a valid
internal inode is in place and can be recycled; otherwise we create a fresh one. We find
out if the file is open by checking the ino and device fields of all our mx_inodesc array
entries.

[464d] ⟨mx_open 464c⟩+≡ (464b) ◁ 464c 465 ▷
short file_already_open = false;
int mfd = mx_get_free_status_entry ();

int int_ino = -1; // number of internal inode for this file
int i;
if (count_open_files == 0) {

int_ino = 0; // first file to be opened
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} else {
for (i = 0; i < MAX_INT_INODES; i++) {

if (mx_inodes[i].ino == ext_ino && mx_inodes[i].device == device) {
// same inode number and same device: this is the same file!
file_already_open = true;
int_ino = i;
break;

}
}
// reached end of the loop: file is not open
if (int_ino == -1) int_ino = mx_get_free_inodes_entry ();

}

if (int_ino == -1) {
return -1; // error: no free internal inode available

}

struct int_minix2_inode *inode = &(mx_inodes[int_ino]);
Uses count_open_files 464a, int_minix2_inode 459a, MAX_INT_INODES 459c, mx_get_free_inodes_entry 462c,

mx_get_free_status_entry 463a, and mx_inodes 459c.

Now int_ino is either set to 0 (we’re just opening the first file), to an index of an
already existing internal inode or to the index of a fresh internal inode (provided by
mx_get_free_inodes_entryc) and inode points to that entry.

mfd is the local file descriptor (an index into the mx_statusb file status table. We can
start filling that entry:

[465]⟨mx_open 464c⟩+≡ (464b) ◁ 464d 466c ▷
mx_status[mfd].int_inode = inode;
mx_status[mfd].pos = 0;
mx_status[mfd].mode = oflag;

if (file_already_open) { ⟨mx_open case: file already open 466b⟩ }
else { ⟨mx_open case: file not open 466a⟩ }

if ((oflag & O_APPEND) != 0)
mx_status[mfd].pos = inode->i_size; // append: set pos to end of file

Uses mx_status 461b and O_APPEND 460b.

mx_statusb[mfd].pos is set to the current read/write position—normally that is 0 when
freshly opening a file, but if the O_APPENDb flag was given, we set it to the the file size so
that writing will begin at the end of the file. In mx_statusb[mfd].mode we remember the
oflag argument of the mx_openb call. is will later be used to determine whether it is
acceptable to read from or write to the file. e current read/write position and the mode
field are our reasons for having separate mx_statusb[] entries, since both can differ for
several opening operations on the file.

Now there are two cases that we need to treat differently. If the file is not yet open, we
copy the inode from disk to memory. We can simply use the mx_read_inodeb function
because we declared the two inode types (on-disk inode: struct minix2_inodea, internal
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inode: struct int_minix2_inodea) so that they both start with the same fields—that lets
us cast the pointer to the internal inode to a normal inode pointer; here are both types for
a quick comparison:

struct minix2_inode {
uint16_t i_mode;
uint16_t i_nlinks;
uint16_t i_uid;
uint16_t i_gid;
uint32_t i_size;
uint32_t i_atime;
uint32_t i_mtime;
uint32_t i_ctime;
uint32_t i_zone[10];

};

struct int_minix2_inode {
uint16_t i_mode;
uint16_t i_nlinks;
uint16_t i_uid;
uint16_t i_gid;
uint32_t i_size;
uint32_t i_atime;
uint32_t i_mtime;
uint32_t i_ctime;
uint32_t i_zone[10];
int ino;
uint32_t refcount;
uint16_t clean;
short device;

};

[466a] ⟨mx_open case: file not open 466a⟩≡ (465)
// copy diskinode[ext_ino] to mx_inodes[int_ino]
mx_read_inode (device, ext_ino, (struct minix2_inode*) inode);
inode->ino = ext_ino; // number of external inode
inode->device = device; // what device is the file on?
inode->refcount = 1; // one user
inode->clean = true; // inode is clean (just copied from disk)

Uses minix2_inode 442a, mx_inodes 459c, and mx_read_inode 451b.

If the file is already open, we have less work: We simply increase the inode’s refcount
field, because the inode is gaining an additional user:

[466b] ⟨mx_open case: file already open 466b⟩≡ (465)
inode->refcount++; // file is opened once more

We set clean to true and refcount to 1, and we take note of the external inode and the
device. Note that it is important to remember what device the file resides on because the
inode number alone is not enough to identify a file when more than one filesystem is
mounted.

When opening fails we return − (earlier in the code). Otherwise we increment the
counters for open files and (possibly) used inodes and return the new local file descriptor.
(e variable mfd that we use in this function is short for “Minix file descriptor”.)

[466c] ⟨mx_open 464c⟩+≡ (464b) ◁ 465
count_open_files++;
if (!file_already_open) count_int_inodes++;
return mfd;

Uses count_int_inodes 464a and count_open_files 464a.
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Note that we do not check access permissions—this is handled one layer further up in
the virtual filesystem.

12.6.6.2 mx_close

Closing an open file with
[467a]⟨function prototypes 45a⟩+≡ (44a) ◁ 463b 468a ▷

int mx_close (int mfd);

is a comparatively simple task. We set the int_inode pointer in the file status entry to
NULLa and decrement count_open_filesa. We also check if this was the last user of the
internal inode—if that is true and the internal inode is not clean, we write it back to disk.
We don’t have to explicitly mark the inode as unused—seing its refcount to 0 does the
job since that property is what we use to find a free one.

[467b]⟨minix filesystem implementation 420c⟩+≡ (440b) ◁ 464b 468b ▷
int mx_close (int mfd) {

if (mfd < 0 || mfd ≥ MX_MAX_FILES) return -1; // wrong mfd number
struct mx_filestat *st = &mx_status[mfd];
struct int_minix2_inode *inode = st->int_inode;
if (inode == NULL) return -1; // no open file
short device = inode->device;

// close file
inode->refcount--;
st->int_inode = NULL;

if (inode->refcount == 0) { // usage count down to 0? Then synchronize inode
if (inode->clean == 0) {

int ext_ino = inode->ino;
mx_write_inode (device, ext_ino, (struct minix2_inode*) inode);

}
count_int_inodes--;

}

count_open_files--;
return 0;

}
Defines:

mx_close, used in chunks 418a, 467a, 484b, and 487a.
Uses close 429b, count_int_inodes 464a, count_open_files 464a, int_minix2_inode 459a, minix2_inode 442a,

mx_filestat 460a, MX_MAX_FILES 461a, mx_status 461b, mx_write_inode 452a, NULL 46a, and open 429b.

12.6.6.3 Helpers: mx_reopen and mx_sync

We provide an mx_reopenb function that is used when file descriptors are duplicated by
forkg, it is then called by u_reopen:
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[468a] ⟨function prototypes 45a⟩+≡ (44a) ◁ 467a 469a ▷
int mx_reopen (int mfd);

It makes a copy of the mx_statusb[] entry so that the original process and its child can
work with different values for the read/write position—if we simply let the child process
use the same mx_statusb[] entry, every read or write operation would also update the
position for the other process. u_reopen also increments the usage counter of the file; when
one of the two processes closes (its copy o) the file, the counter is reset to the original
value.

[468b] ⟨minix filesystem implementation 420c⟩+≡ (440b) ◁ 467b 468c ▷
int mx_reopen (int mfd) {

if (mfd < 0 || mfd ≥ MX_MAX_FILES) return -1; // wrong mfd number
struct mx_filestat *st = &mx_status[mfd];
struct int_minix2_inode *inode = st->int_inode;
inode->refcount++; // increase reference count

int new_mfd = mx_get_free_status_entry ();
memcpy (&mx_status[new_mfd], &mx_status[mfd], sizeof (struct mx_filestat));

return new_mfd;
}

Defines:
mx_reopen, used in chunks 425c and 468a.

Uses int_minix2_inode 459a, memcpy 596c, mx_filestat 460a, mx_get_free_status_entry 463a, MX_MAX_FILES 461a,
and mx_status 461b.

e mx_syncc function saves changes to the internal inode by writing it back to disk;
aer that it sets the clean flag.

[468c] ⟨minix filesystem implementation 420c⟩+≡ (440b) ◁ 468b 469c ▷
int mx_sync (int device, int mfd) {

if (mfd < 0 || mfd ≥ MX_MAX_FILES) return -1; // wrong mfd number
struct mx_filestat *st = &mx_status[mfd];
struct int_minix2_inode *inode = st->int_inode;
if (inode == NULL) return -1; // no open file

if (inode->clean == 0) {
int ext_ino = inode->ino;
mx_write_inode (device, ext_ino, (struct minix2_inode*) inode);
inode->clean = 1; // now it is clean

}
return 0;

}
Uses int_minix2_inode 459a, minix2_inode 442a, mx_filestat 460a, MX_MAX_FILES 461a, mx_status 461b,

mx_write_inode 452a, and NULL 46a.

12.6.6.4 mx_lseek

Seeking is a very simple operation: Since the file is open we know its size and the current
read/write position; so
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[469a]⟨function prototypes 45a⟩+≡ (44a) ◁ 468a 470a ▷
int mx_lseek (int mfd, int offset, int whence);

will only check if the request makes sense and then update the internal inode. As usual,
we support the following three SEEK_* constants for the whence parameter which decide
how the offset is to be interpreted:

[469b]⟨public constants 46a⟩+≡ (44a 48a) ◁ 460b 561a ▷
#define SEEK_SET 0 // absolute offset
#define SEEK_CUR 1 // relative offset
#define SEEK_END 2 // EOF plus offset

Defines:
SEEK_CUR, used in chunks 469c and 498a.
SEEK_END, used in chunks 293b, 469c, and 498a.
SEEK_SET, used in chunks 233b, 293, 294, 469c, and 498a.

When the file is opened in append mode, we must not change the position; otherwise
we either set the position, add the offset to the current location or add it to the end of file
position. For the last two cases negative values are OK.

[469c]⟨minix filesystem implementation 420c⟩+≡ (440b) ◁ 468c 470b ▷
int mx_lseek (int mfd, int offset, int whence) {

if (mfd < 0 || mfd ≥ MX_MAX_FILES) return -1; // wrong mfd number
struct mx_filestat *st = &mx_status[mfd];
struct int_minix2_inode *inode = st->int_inode;
if (inode == NULL) return -1; // no open file
if (whence < 0 || whence > 2) return -1; // wrong lseek option
if ((st->mode & O_APPEND) != 0) return st->pos; // append mode, ignore lseek

switch (whence) {
case SEEK_SET: st->pos = offset; break; // set absolute
case SEEK_CUR: st->pos += offset; break; // relative to current loc.
case SEEK_END: st->pos = inode->i_size + offset; // relative to EOF

};

if (st->pos < 0) st->pos = 0; // sanity check
return st->pos;

}
Defines:

mx_lseek, used in chunks 418a and 469a.
Uses int_minix2_inode 459a, mx_filestat 460a, MX_MAX_FILES 461a, mx_status 461b, NULL 46a, O_APPEND 460b,

SEEK_CUR 469b, SEEK_END 469b, and SEEK_SET 469b.

12.6.7 Reading and Writing
With all these preparations we can now approach the read and write operations which
work on open files.
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12.6.7.1 mx_read

We start with the function
[470a] ⟨function prototypes 45a⟩+≡ (44a) ◁ 469a 471b ▷

int mx_read (int mfd, void *buf, int nbyte);

that reads nbyte bytes from an open file identified by mfd into a buffer buf.
Since mx_readb is a bit longer, we use a code chunk ⟨mx_read 470c⟩ for displaying the

code:
[470b] ⟨minix filesystem implementation 420c⟩+≡ (440b) ◁ 469c 473a ▷

int mx_read (int mfd, void *buf, int nbyte) {
⟨mx_read 470c⟩

}
Defines:

mx_read, used in chunks 414b and 470a.

We start with the usual variable initialization so that we have access to both the internal
inode and the file status entry. If mfd has an invalid value or we aempt to read a file in
write-only or append mode, we return − at once.

[470c] ⟨mx_read 470c⟩≡ (470b) 470d ▷
if (mfd < 0 || mfd ≥ MX_MAX_FILES) return -1; // wrong mfd number

struct mx_filestat *st = &mx_status[mfd];
struct int_minix2_inode *inode = st->int_inode;
short device = inode->device;

if (inode == NULL) return -1; // no open file
if (st->mode == O_WRONLY || st->mode == O_APPEND)

return -1; // reading is forbbiden
Uses int_minix2_inode 459a, mx_filestat 460a, MX_MAX_FILES 461a, mx_status 461b, NULL 46a, O_APPEND 460b,

and O_WRONLY 460b.

Next we look at the current read/write position and determine which logical blocks of
the file must be read—even if wewant just a single byte from the file, wemust read a whole
block since that’s the only way that we can access the hardware. (With “logical block” we
mean the enumeration of the file’s blocks. A file always starts with logical block 0 (unless
it is empty).

Note that as a worst case, even reading two bytes can result in reading two blocks, if
those bytes are placed precisely on a block boundary.

[470d] ⟨mx_read 470c⟩+≡ (470b) ◁ 470c 471a ▷
int startbyte = st->pos;
if (startbyte ≥ inode->i_size) { return 0; } // nothing to read
int endbyte = st->pos + nbyte - 1;
if (endbyte ≥ inode->i_size) {

nbyte -= (endbyte - inode->i_size + 1);
endbyte = inode->i_size - 1;

}

With startbyte and endbyte set, we can easily calculate the logical blocks:
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[471a]⟨mx_read 470c⟩+≡ (470b) ◁ 470d 471c ▷
int startblock = startbyte / BLOCK_SIZE;
int endblock = endbyte / BLOCK_SIZE;
int curblock = startblock;

Uses BLOCK_SIZE 440a.

We need to loop over all the logical blocks and read them. In order to read a logical
block curblock from the file we must find out where it is located on the device (i. e., find
the physical block where it is stored); we put the lookup of that block number into a
separate function

[471b]⟨function prototypes 45a⟩+≡ (44a) ◁ 470a 474b ▷
int fileblocktozone (int device, int blockno, struct int_minix2_inode *inode);

that we will implement aerwards.
[471c]⟨mx_read 470c⟩+≡ (470b) ◁ 471a

int read_bytes = 0;
while (nbyte > 0) {

int zone = fileblocktozone (device, curblock, inode); // where is the block?
if (zone == -1) {

printf ("ERROR, fileblocktozone() = -1\n");
return -1;

};

byte block[BLOCK_SIZE]; readblock (device, zone, (byte*) block);
int offset, length;
if (curblock == startblock) {

offset = startbyte % BLOCK_SIZE;
length = MIN (nbyte, BLOCK_SIZE - offset);

} else {
offset = 0;
length = MIN (nbyte, BLOCK_SIZE);

}
memcpy (buf, block+offset, length);

nbyte -= length; buf += length;
read_bytes += length; curblock++;
st->pos += length; // update current location in inode

}

return read_bytes; // return the read bytes, might be != nbyte
Uses BLOCK_SIZE 440a, fileblocktozone 473a, memcpy 596c, MIN 471d, printf 601a, and readblock 506b.

is code uses the MINd macro that we have not defined yet:
[471d]⟨macro definitions 35a⟩+≡ (44a) ◁ 340a 597a ▷

#define MIN(a,b) ((a) ≤ (b) ? (a) : (b))
#define MAX(a,b) ((a) ≥ (b) ? (a) : (b))

Defines:
MIN, used in chunks 471c, 475c, 496d, and 497.
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  uint32_t i_ctime;
  uint32_t i_zone[10];
}
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Single and double indirection in the Minix filesystem

Figure 12.12: A Minix inode stores seven direct block numbers and two block numbers for
single and double indirection blocks; i_zone[9] is unused.

Now we need to show how to translate a logical block number to a physical block num-
ber (or zone number). is may require looking at single and double indirectionindirection blocks.
e Minix V2 filesystem uses four byte long integers as zone addresses, so one indirection
block has space for BLOCK_SIZEa / 4 = 256 such addresses. We’ll define this number as
a constant:

[472] ⟨constants 112a⟩+≡ (44a) ◁ 461a 494a ▷
#define BLOCKADDRESSES_PER_BLOCK (BLOCK_SIZE / 4)

Defines:
BLOCKADDRESSES_PER_BLOCK, used in chunks 473a, 474a, 476b, and 477c.

Uses BLOCK_SIZE 440a.

Writing fileblocktozonea is straightforward if we know how single and double in-
direction blocks are organized. Figure 12.12 once more shows how Minix uses indirect
blocks. You have already seen a bigger version of that figure on page 82, here we only
show the single and double indirection that we implement for U; triple indirection was
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not part of the original implementation in Minix either, but the inode entry i_zone[9] is
reserved for triple indirection.

us, the physical block numbers of the first seven logical blocks (number 0–6) can
be found directly in the inode. For the 256 blocks with numbers 7–262 we must load
the indirection block (whose address is in i_zone[7], and any block number beyond 262
requires us to first load the double indirection block (via i_zone[8]) and then search for
the address of the right single indirection block, so locating such a block always requires
reading two indirection blocks which is one of the reasons why it is so helpful to use
a caching cachingmechanism: When reading consecutive blocks beyond block number 262, the
indirection blocks will remain in the cache once the first of those blocks has been accessed.

[473a]⟨minix filesystem implementation 420c⟩+≡ (440b) ◁ 470b 474c ▷
int fileblocktozone (int device, int blockno, struct int_minix2_inode *inode) {

int zone; int *zone_ptr; byte indirect_block[BLOCK_SIZE];
if (blockno < 7) {

// the first 7 zone numbers (0..6) are in the inode:
zone = inode->i_zone[blockno];

} else if (blockno ≥ 7 && blockno < 7+BLOCKADDRESSES_PER_BLOCK) {
// inode holds the address of an indirection block
⟨fileblocktozone: single indirect 473b⟩

} else {
// inode holds the address of a double indirection block
⟨fileblocktozone: double indirect 474a⟩

}
return zone;

}
Defines:

fileblocktozone, used in chunks 471c, 475c, and 484e.
Uses BLOCK_SIZE 440a, BLOCKADDRESSES_PER_BLOCK 472, and int_minix2_inode 459a.

For the two indirection cases (singly indirect, doubly indirect) we provide two code
chunks which are increasingly complex. Single indirection works like this:

[473b]⟨fileblocktozone: single indirect 473b⟩≡ (473a)
int indirect_zone = inode->i_zone[7];
if (indirect_zone == 0) {

return -2; // no indirection block found
}
readblock (device, indirect_zone, (byte *) indirect_block);
zone_ptr = (int *) indirect_block;
zone_ptr += (blockno - 7);
zone = *zone_ptr;

Uses readblock 506b.

Here we set zone_ptr to the start address of the loaded indirection block. en we need to
add an offset to find the right block number inside that block. We don’t add blockno but
blockno - 7 because the first seven block addresses are already found in the inode and not
repeated in the indirection block which starts with the block number of block 7.

Resolving a double indirection works similarly, but consists of two steps.
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• First, (blockno - 7 - BLOCKADDRESSES_PER_BLOCK) / BLOCKADDRESSES_PER_BLOCK is
the index into the first indirection block—instead of blockno - 7 (as in the single
indirection case) we must also subtract BLOCKADDRESSES_PER_BLOCK since the first 7
+ BLOCKADDRESSES_PER_BLOCK blocks can be found via the direct addresses and the
single indirection block. en we also need to divide by BLOCKADDRESSES_PER_BLOCK
as each address in the first indirection block points to a whole block of addresses.

• In the second step, we take (blockno - 7) % BLOCKADDRESSES_PER_BLOCK as an index
into the second indirection block: Note that the equation

(blockno - 7 - BLOCKADDRESSES_PER_BLOCK) % BLOCKADDRESSES_PER_BLOCK
== (blockno - 7) % BLOCKADDRESSES_PER_BLOCK

holds; the le side is the original formula, but n % n == 0 for all n.

[474a] ⟨fileblocktozone: double indirect 474a⟩≡ (473a)
int double_indirect_zone = inode->i_zone[8];
if (double_indirect_zone == 0) {

return -2; // no double indirection block found
}
readblock (device, double_indirect_zone, (byte *) indirect_block);
zone_ptr = (int *) indirect_block;
zone_ptr += (blockno - 7 - BLOCKADDRESSES_PER_BLOCK) / BLOCKADDRESSES_PER_BLOCK;
int indirect_zone = *zone_ptr;

readblock (device, indirect_zone, (byte *) indirect_block);
zone_ptr = (int *) indirect_block;
zone_ptr += (blockno - 7) % BLOCKADDRESSES_PER_BLOCK;
zone = *zone_ptr;

Uses BLOCKADDRESSES_PER_BLOCK 472 and readblock 506b.

12.6.7.2 mx_write

e mx_writec function works similar to mx_readb, but it must also read blocks which
are only partly modified so that writing the block does not erase the parts which are not
modified.

[474b] ⟨function prototypes 45a⟩+≡ (44a) ◁ 471b 476a ▷
int mx_write (int mfd, void *buf, int nbyte);

e structure is the same as in mx_readb, and again we use a separate code chunk
⟨mx_write 475a⟩.

[474c] ⟨minix filesystem implementation 420c⟩+≡ (440b) ◁ 473a 476b ▷
int mx_write (int mfd, void *buf, int nbyte) {
⟨mx_write 475a⟩

}
Defines:

mx_write, used in chunks 415a, 474b, 484b, and 487a.
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We start with some checks:
[475a]⟨mx_write 475a⟩≡ (474c) 475b ▷

if (mfd < 0 || mfd ≥ MX_MAX_FILES) return -1; // wrong mfd number
struct mx_filestat *st = &mx_status[mfd];
struct int_minix2_inode *inode = st->int_inode;
short device = inode->device;
if (inode == NULL) return -1; // no open file
if (st->mode == O_RDONLY) return -1; // cannot write to read-only file

Uses int_minix2_inode 459a, mx_filestat 460a, MX_MAX_FILES 461a, mx_status 461b, NULL 46a, O_RDONLY 460b,
open 429b, read 429b, and write 429b.

e calculation of start and end positions (and blocks) is the same as well, but without
the checks: writing does not require the data to be available.

[475b]⟨mx_write 475a⟩+≡ (474c) ◁ 475a 475c ▷
int startbyte = st->pos;
int endbyte = st->pos + nbyte - 1;
int startblock = startbyte / BLOCK_SIZE;
int endblock = endbyte / BLOCK_SIZE;
int curblock = startblock;

Uses BLOCK_SIZE 440a.

e code for actually writing the blocks is just a lile more complex than that of the
mx_readb function:

[475c]⟨mx_write 475a⟩+≡ (474c) ◁ 475b
byte block[BLOCK_SIZE];
int offset, length;
int written_bytes = 0;
while (nbyte > 0) {

int zone = fileblocktozone (device, curblock, inode);
if (zone == -2 || zone == 0) {

zone = mx_create_new_zone (device, curblock, inode); // block doesn't yet exist
};
if (zone == -1) return -1;

if (curblock == startblock) {
offset = startbyte % BLOCK_SIZE;
length = MIN (nbyte, BLOCK_SIZE - offset);

} else {
offset = 0;
length = MIN (nbyte, BLOCK_SIZE);

}

if (offset != 0 || length != BLOCK_SIZE) {
// writing a partial block -- read first!
readblock (device, zone, (byte*) block);

}
memcpy (block+offset, buf, length);
writeblock (device, zone, (byte*) block);
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nbyte -= length; buf += length;
written_bytes += length; curblock++;

st->pos += length;
if (st->pos > inode->i_size) inode->i_size = st->pos; // update size

}

inode->i_mtime = system_time; // update mtime
mx_write_inode (device, inode->ino, (struct minix2_inode*) inode);
return written_bytes;

Uses BLOCK_SIZE 440a, fileblocktozone 473a, memcpy 596c, MIN 471d, minix2_inode 442a, mx_create_new_zone 476b,
mx_write_inode 452a, readblock 506b, system_time 338a, and writeblock 507c.

e function uses
[476a] ⟨function prototypes 45a⟩+≡ (44a) ◁ 474b 478a ▷

int mx_create_new_zone (int device, int blockno, struct int_minix2_inode *inode);

which requests a new block and inserts it in the inode’s block list: e argument blockno
is the logical block number (as seen from the file). In the function, zone is the physical
block (zone) number that is assigned to the logical block.

[476b] ⟨minix filesystem implementation 420c⟩+≡ (440b) ◁ 474c 478b ▷
int mx_create_new_zone (int device, int blockno, struct int_minix2_inode *inode) {

int zone = mx_request_block (device); // new data block
if (zone == -1) {

printf ("ERROR: cannot reserve data block; disk full\n");
return -1;

}
int indirect_zone, double_indirect_zone;
int *zone_ptr;
byte indirect_block[BLOCK_SIZE] = { 0 };
byte double_indirect_block[BLOCK_SIZE] = { 0 };
if (blockno < 7) {
⟨create new zone: direct 477a⟩

} else if (blockno ≥ 7 && blockno < 7+BLOCKADDRESSES_PER_BLOCK) {
⟨create new zone: single indirect 477b⟩

} else {
⟨create new zone: double indirect 477c⟩

}
return zone;

}
Defines:

mx_create_new_zone, used in chunks 475c and 476a.
Uses BLOCK_SIZE 440a, BLOCKADDRESSES_PER_BLOCK 472, int_minix2_inode 459a, mx_request_block 448,

and printf 601a.

with the following three cases for direct, indirect and double indirect blocks—they are
similar to the three cases in the fileblocktozonea function. If we deal with a direct zone,
we can directly enter the zone number in the inode:
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[477a]⟨create new zone: direct 477a⟩≡ (476b)
// the first 7 zone numbers (0..6) are in the inode:
inode->i_zone[blockno] = zone;

In case of single indirection, we may have to create the indirection block which requires
another call of mx_request_block.

[477b]⟨create new zone: single indirect 477b⟩≡ (476b)
indirect_zone = inode->i_zone[7];

// if there is no indirection block yet, create it
if (indirect_zone == 0) {

// no indirection block found
indirect_zone = mx_request_block (device); // data block for indirections
if (indirect_zone == -1) {

mx_clear_zmap_bit (device, zone); // undo reservation of data block
return -1;

}
inode->i_zone[7] = indirect_zone;

} else {
// indirection block exists: read it
readblock (device, indirect_zone, (byte *) indirect_block);

}

zone_ptr = (int *) indirect_block;
zone_ptr += (blockno - 7);
*zone_ptr = zone; // write information about new data block
writeblock (device, indirect_zone, (byte *) indirect_block);

Uses mx_clear_zmap_bit 446, mx_request_block 448, read 429b, readblock 506b, and writeblock 507c.

Finally, in the case of double indirection, the worst that can happen is that we need to
create both the first and the second indirection block. In both cases (single and double
indirection) we use the same offset calculations as in fileblocktozonea().

[477c]⟨create new zone: double indirect 477c⟩≡ (476b)
double_indirect_zone = inode->i_zone[8];

// if there is no double indirection block yet, create it
if (double_indirect_zone == 0) {

// no double indirection block found
double_indirect_zone = mx_request_block (device); // data block for 2x indir.
if (double_indirect_zone == -1) {

mx_clear_zmap_bit (device, zone); // undo reservation of data block
return -1;

}
inode->i_zone[8] = double_indirect_zone;

} else {
// indirection block exists: read it
readblock (device, double_indirect_zone, (byte *) double_indirect_block);

}
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zone_ptr = (int *) double_indirect_block;
zone_ptr += (blockno - 7 - BLOCKADDRESSES_PER_BLOCK) / BLOCKADDRESSES_PER_BLOCK;
indirect_zone = *zone_ptr;

// if there is no indirection block yet, create it
if (indirect_zone == 0) {

// no indirection block found
indirect_zone = mx_request_block (device); // data block for indirections
if (indirect_zone == -1) {

mx_clear_zmap_bit (device, zone); // undo reservation of data block
return -1;

}

// write to first level indirection block
*zone_ptr = indirect_zone;
writeblock (device, double_indirect_zone, (byte *) double_indirect_block);

} else {
// indirection block exists: read it
readblock (device, indirect_zone, (byte *) indirect_block);

}

zone_ptr = (int *) indirect_block;
zone_ptr += (blockno - 7) % BLOCKADDRESSES_PER_BLOCK;

*zone_ptr = zone; // write information about new data block
writeblock (device, indirect_zone, (byte *) indirect_block);

Uses BLOCKADDRESSES_PER_BLOCK 472, mx_clear_zmap_bit 446, mx_request_block 448, readblock 506b,
and writeblock 507c.

What’s still missing is a way to create a new (empty) file. e function
[478a] ⟨function prototypes 45a⟩+≡ (44a) ◁ 476a 479a ▷

int mx_creat_empty_file (int device, const char *path, int mode);

requests a new inode, fills it with the appropriate data and writes it to disk. en it writes
a link into the directory that will hold the file.

[478b] ⟨minix filesystem implementation 420c⟩+≡ (440b) ◁ 476b 479b ▷
int mx_creat_empty_file (int device, const char *path, int mode) {

int inodenr = mx_request_inode (device);
struct minix2_inode inode = { 0 };
inode.i_size = 0;
inode.i_atime = inode.i_ctime = inode.i_mtime = system_time;
inode.i_uid = thread_table[current_task].uid;
inode.i_gid = thread_table[current_task].gid;
inode.i_nlinks = 0;
inode.i_mode = S_IFREG | mode;
mx_write_inode (device, inodenr, &inode);
mx_write_link (device, inodenr, path); // create directory entry
return inodenr;

}
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Defines:
mx_creat_empty_file, used in chunks 464c and 478a.

Uses current_task 192c, gid 573a, minix2_inode 442a, mx_request_inode 448, mx_write_inode 452a,
mx_write_link 456, S_IFREG 457c, system_time 338a, thread_table 176b, and uid 573a.

12.6.8 Linking and Unlinking
Unix systems have no delete file deletionor erase system calls for files—instead there is an unlink
system call which removes a directory entry (it deletes the link from a filename to an
inode in that directory). Only if the last name was deleted, unlink will also delete the file,
which means freeing all data blocks and the inode.

e opposite operation is creating a hardlink: is creates a new name (a new link from
a filename to an inode in some directory).

Both operations modify an inode’s link count link count: at is where the filesystem keeps track
of how many names were given to a file.

We will start by showing two helper functions which can check whether a file exists
and whether it is a directory, then we implement the link operation since it is the simpler
one (of link and unlink).

[479a]⟨function prototypes 45a⟩+≡ (44a) ◁ 478a 480b ▷
boolean mx_file_exists (int device, const char *path);
boolean mx_file_is_directory (int device, const char *path);
int mx_link (int device, const char *path1, const char *path2);

[479b]⟨minix filesystem implementation 420c⟩+≡ (440b) ◁ 478b 480a ▷
boolean mx_file_exists (int device, const char *path) {

if (mx_pathname_to_ino (device, path) == -1) return false;
return true;

}

boolean mx_file_is_directory (int device, const char *path) {
int ino = mx_pathname_to_ino (device, path);
if (ino == -1) return false; // does not exist
struct minix2_inode inode;
mx_read_inode (device, ino, &inode);
if ((inode.i_mode & S_IFDIR) == 0) return false; // no directory
return true;

}
Defines:

mx_file_exists, used in chunks 456 and 480.
mx_file_is_directory, used in chunk 480a.

Uses minix2_inode 442a, mx_pathname_to_ino 461d, mx_read_inode 451b, and S_IFDIR 457c.

12.6.8.1 mx_link

e mx_linka function checks both paths and writes the link. Note that this implemen-
tation lets users create hard links of directories which is normally forbidden. We do check
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the condition but only print a warning because it is interesting to “play” with hard-linked
directories.

[480a] ⟨minix filesystem implementation 420c⟩+≡ (440b) ◁ 479b 480c ▷
int mx_link (int device, const char *path1, const char *path2) {

// check path1 exists
if (!mx_file_exists (device, path1)) return -1; // does not exist

// check path1 is not a directory
if (mx_file_is_directory (device, path1)) {

printf ("ln: warning: %s is a directory. This option will be removed.\n");
}

// check path2 does NOT exist
if (mx_file_exists (device, path2)) {

return -1; // path2 already exists; no forced linking
}

// everything ok now
int ino = mx_pathname_to_ino (device, path1);
mx_write_link (device, ino, path2); // updates link count
return 0;

}
Defines:

mx_link, used in chunks 419a and 479a.
Uses mx_file_exists 479b, mx_file_is_directory 479b, mx_pathname_to_ino 461d, mx_write_link 456,

and printf 601a.

12.6.8.2 mx_unlink

Unlinking is similar as long as at least one filename (one link) remains. If none remains,
the data blocks of the file and the inode must be freed.

[480b] ⟨function prototypes 45a⟩+≡ (44a) ◁ 479a 484a ▷
int mx_unlink (int device, const char *path);

[480c] ⟨minix filesystem implementation 420c⟩+≡ (440b) ◁ 480a 484b ▷
int mx_unlink (int device, const char *path) {

char ind_block[BLOCK_SIZE], double_ind_block[BLOCK_SIZE];
struct minix_dir_entry dentry;

// check if path exists
if (!mx_file_exists (device, path)) {

printf ("rm: file does not exist\n");
return -1; // error: path does not exist

}

// get inodes of file and directory
int inodenr = mx_pathname_to_ino (device, path);
struct minix2_inode inode;
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mx_read_inode (device, inodenr, &inode);
char dir[256], base[30];
splitpath (path, dir, base); // split path into dir and base
int dir_inodenr = mx_pathname_to_ino (device, dir);

// delete entry in directory
boolean found = false;
for (int i = 0; i < 32*7; i++) {

mx_read_dir_entry (device, dir_inodenr, i, &dentry);
if ( dentry.inode==inodenr && strequal (dentry.name, base) ) {

dentry.inode = 0;
memset (dentry.name, 0, 30);
found = true;
mx_write_dir_entry (device, dir_inodenr, i, &dentry);
break; // search finished

}
}
if (found==false) { return -1; } // error: not found in directory

inode.i_nlinks--; // one name less
if (inode.i_nlinks == 0) { ⟨free this inode 481a⟩ }
mx_write_inode (device, inodenr, &inode);
return 0;

}
Defines:

mx_unlink, used in chunks 418b and 480b.
Uses BLOCK_SIZE 440a, memset 596c, minix2_inode 442a, minix_dir_entry 452b, mx_file_exists 479b,

mx_pathname_to_ino 461d, mx_read_dir_entry 453b, mx_read_inode 451b, mx_write_dir_entry 453b,
mx_write_inode 452a, printf 601a, splitpath 455a, and strequal 596a.

We must take care of the case when the last link has been removed—then we have an
inode with a reference count of 0, and that means, the file is truly to be deleted: We need
to mark its data blocks as free (including an indirection block, if it exists) and also mark
the inode as free. We show this action in four separate steps:

[481a]⟨free this inode 481a⟩≡ (480c)
⟨free this inode: (1) direct blocks 481b⟩
⟨free this inode: (2) single indirect blocks 482a⟩
⟨free this inode: (3) double indirect blocks 482b⟩
⟨free this inode: (4) inode itself 483⟩

[481b]⟨free this inode: (1) direct blocks 481b⟩≡ (481a)
for (int i = 0; i < 7; i++) {

if (inode.i_zone[i] != 0) {
mx_clear_zmap_bit (device, inode.i_zone[i] - 33); // mark data block as free
inode.i_zone[i] = 0;

}
}

Uses mx_clear_zmap_bit 446.
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For single indirection, we clear both the zone map entries for the indirection block itself
and all the blocks it points to.

[482a] ⟨free this inode: (2) single indirect blocks 482a⟩≡ (481a)
if (inode.i_zone[7] != 0) {

readblock (device, inode.i_zone[7], ind_block);
unsigned int *zoneno;
zoneno = (unsigned int*)ind_block; // cast to uint*
int count = 0;
while (*zoneno != 0 && count < 256) {

mx_clear_zmap_bit (device, *zoneno - 33); // mark data block as free
zoneno++;
count++;

}
mx_clear_zmap_bit (device, inode.i_zone[7] - 33); // mark indir. block as free
inode.i_zone[7] = 0;

}
Uses mx_clear_zmap_bit 446 and readblock 506b.

And in case of double indirection, there are even more blocks to mark as free:
[482b] ⟨free this inode: (3) double indirect blocks 482b⟩≡ (481a)

if (inode.i_zone[8] != 0) {
readblock (device, inode.i_zone[8], double_ind_block);

unsigned int *ind_zoneno;
ind_zoneno = (unsigned int*)double_ind_block; // cast to uint*

int count1 = 0;
int count2;
while (*ind_zoneno != 0 && count1 < 256) {

readblock (device, *ind_zoneno, ind_block);
unsigned int *zoneno;
zoneno = (unsigned int*)ind_block; // cast to uint*
count2 = 0;
while (*zoneno != 0 && count2 < 256) {

mx_clear_zmap_bit (device, *zoneno - 33); // mark data block as free
zoneno++;
count2++;

}
mx_clear_zmap_bit (device, *ind_zoneno - 33); // mark indir. block as free
ind_zoneno++;
count1++;

}

mx_clear_zmap_bit (device, inode.i_zone[8] - 33); // mark double ind. block free
inode.i_zone[8] = 0;

}
Uses mx_clear_zmap_bit 446 and readblock 506b.
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Last, we free the inode:
[483]⟨free this inode: (4) inode itself 483⟩≡ (481a)

mx_clear_imap_bit (device, inodenr);
Uses mx_clear_imap_bit 446.

12.6.8.3 mx_symlink

Unix systems also know a second type of link, the symbolic symbolic linkor so link (short: symlink).
While this name reminds of the (hard) links for which we have just provided the imple-
mentation, and even the same Unix tool (ln) handles both hard and so links, these two
link types have nothing in common.

A symbolic link is a special file which contains a path name as data. When you disable
the treatment of symbolic links on a Unix system and try to read such a file, all you get is
the stored path name: Figure 12.13 shows how U displayed the content of a symbolic
link before symlinks were implemented: ulix.symlinkb was created by executing

ln -s ulix.h ulix.symlink

on a Linux system which had loop-mounted the Minix filesystem: As you can see from
the leer l at the start of the file entry, U already recognized the file type but did not
know beer than to output the contents of the file’s first data block.

Figure 12.13: U version 0.08 displays the contents of a symbolic link—in that version
symbolic links were not yet implemented. (e image was inverted for beer
readability.)

As you can see, creating a symlink is easy: We just write the link target into a data block
and mark the file as symlink:
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[484a] ⟨function prototypes 45a⟩+≡ (44a) ◁ 480b 484d ▷
int mx_symlink (int device, char *path1, char *path2);

[484b] ⟨minix filesystem implementation 420c⟩+≡ (440b) ◁ 480c 484c ▷
int mx_symlink (int device, char *path1, char *path2) {

int fd = mx_open (device, path2, O_WRONLY | O_CREAT);
if (fd == -1) return -1; // error: cannot create file
mx_write (fd, path1, strlen (path1));
mx_close (fd);

Defines:
mx_symlink, used in chunks 419b and 484a.

Uses mx_close 467b, mx_open 464b, mx_write 474c, O_CREAT 460b, O_WRONLY 460b, and strlen 594a.

(Note that we do not write a terminating \0 character: e link target need not be
terminated, the length of the filename is simply the symlink’s file size.)

We’re not finished yet—now we have a regular file with the link target in the first data
block. We need to turn it into a symlink:

[484c] ⟨minix filesystem implementation 420c⟩+≡ (440b) ◁ 484b 484e ▷
int inode_nr = mx_pathname_to_ino (device, path2);
struct minix2_inode inode;
mx_read_inode (device, inode_nr, &inode);
inode.i_mode = S_IFLNK | 0777;
mx_write_inode (device, inode_nr, &inode);
return 0; // OK.

}
Uses minix2_inode 442a, mx_pathname_to_ino 461d, mx_read_inode 451b, mx_write_inode 452a, and S_IFLNK 457c.

We’ve set the symlink’s access rights to 0777 (rwxrwxrwx) which is the default value
on Linux machines. e rights do not maer much anyway since reading, writing or
executing the linked file requires the target to grant the needed access permissions.

12.6.9 Truncating Files
Sometimes is is necessary to truncate a file, i. e., to reduce its file size by cuing off every-
thing aer a given offset. A special case is deleting all the content (seing the file size to
0). For emptying the file, we could simply delete and recreate it, but that might give the
new version a different inode number, and also that is impossible with an open file.

On other Unix systems, the truncate functions can also grow a file (by supplying a length
argument that is larger than the current size); we do not support this feature.

[484d] ⟨function prototypes 45a⟩+≡ (44a) ◁ 484a 486 ▷
int mx_ftruncate (int mfd, int length);

[484e] ⟨minix filesystem implementation 420c⟩+≡ (440b) ◁ 484c 487a ▷
int mx_ftruncate (int mfd, int length) {

if (mfd < 0 || mfd ≥ MX_MAX_FILES) return -1; // wrong mfd number
struct mx_filestat *st = &mx_status[mfd];
struct int_minix2_inode *inode = st->int_inode;
if (inode == NULL) return -1; // no open file
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short device = inode->device;

if (inode->i_size ≤ length) return -1; // attempt to grow the file

// calculate blocks to delete
int last_kept_byte = length - 1;
int firstblock;
if (length == 0) firstblock = 0;
else firstblock = last_kept_byte / BLOCK_SIZE + 1;
int lastblock = inode->i_size / BLOCK_SIZE - 1;

if (lastblock ≥ firstblock) { // any blocks to delete?
for (int i = firstblock; i ≤ lastblock; i++) {

// delete block
int zone = fileblocktozone (device, i, inode);
mx_clear_zmap_bit (device, zone);

}
}

// check indirection blocks
if (lastblock > 6 && inode->i_zone[7] != 0) {
⟨mx_ftruncate: free single indirection block ⟩

}
if (lastblock > 262 && inode->i_zone[8] != 0) {
⟨mx_ftruncate: free double indirection block ⟩

}

// reset size and write changed inode
inode->i_size = length;
inode->clean = false; // inode was changed
return 0;

}
Defines:

mx_ftruncate, used in chunks 420b and 484d.
Uses BLOCK_SIZE 440a, fileblocktozone 473a, int_minix2_inode 459a, mx_clear_zmap_bit 446, mx_filestat 460a,

MX_MAX_FILES 461a, mx_status 461b, and NULL 46a.

We do not implement the ⟨mx_ftruncate: free single indirection block ⟩ and ⟨mx_ftruncate:
free double indirection block ⟩ code chunks since they are basically a rewrite of correspond-
ing chunks in fileblocktozonea. Instead of looking up a zone number, it must be set to
0. us, when we truncate a file, single and double indirection blocks remain in use (and
linked by the inode); they will however be destroyed when the file is finally deleted, and
they will also be reused when the file grows again.
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12.6.10 Making and Removing Directories
What’s le is code for creating and deleting directories. Similar to symlinks, directories
are just a special type of file, and we already know how to modify existing directories.

Deleting a directorymeans to free the data blocks that had been used by it and to remove
its entry in the super-directory (the directory which is one step closer to the filesystem
root and contains it)—this task is already handled by the mx_unlinkc function, so we need
no further code in the kernel. Actually, we could provide an mx_rmdira function which
is simpler than mx_unlinkc since directories must not be hard-linked: if we remove a
directory, we always remove its inode.

For making a directory, we could do this as the logical three-step-procedure that is
involded:

• create the (empty) directory,
• within the new directory, create a hard link . to itself,
• and also create a hard link ..—either to the super-directory or to / in case of the root

directory /. But the kernel will never create a root directory (that’s handled by the
user mode tool mkfs.minix)

Also, all new directories look identical except for the two hard links . and .., so we
will keep our task simple by defining what the contents of a new directory look like (data-
bock-wise) and how to update the inode numbers in the . and .. entries.

e “.” character (dot) has the ASCII value 46, or 0x2E in hexadecimal code. A hexdump
of the data area of a Minix filesystem shows the following contents for an empty directory:

$ hexdump -C /tmp/minixdata.img
[...]
00013000 08 00 2e 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00013010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00013020 01 00 2e 2e 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00013030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
[...]

is shows a directory on the top level with inode number 8. e first two lines contain
the directory entry for . (pointing to itself: 08 00) and the last two lines hold the directory
entry for .. (pointing to the root directory which has inode number 1 (01 00).

e size of such an entry is 64:

$ ls -ld /mnt/minix/empty
drwxr-xr-x 2 esser esser 64 Jul 17 16:13 /mnt/minix/empty

e code for creating a directory with
[486] ⟨function prototypes 45a⟩+≡ (44a) ◁ 484d 487b ▷

int mx_mkdir (int device, const char *path, int mode);
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is as follows:
[487a]⟨minix filesystem implementation 420c⟩+≡ (440b) ◁ 484e 488a ▷

int mx_mkdir (int device, const char *path, int mode) {
struct minix_dir_entry entry = { 0 };
char dir[256]; char base[256];
int dir_inodenr, new_inodenr;
struct minix2_inode inode;

splitpath (path, dir, base); // split path into dir and base
dir_inodenr = mx_pathname_to_ino (device, dir);

// create new file
int fd = mx_open (device, path, O_CREAT | O_WRONLY); mx_close (fd);
new_inodenr = mx_pathname_to_ino (device, path);

// enter "." and ".." inode numbers
fd = mx_open (device, path, O_WRONLY);
memset (&entry, 0, 32); memcpy (entry.name, ".", 2); entry.inode = new_inodenr;
mx_write (fd, &entry, 32);
memset (&entry, 0, 32); memcpy (entry.name, "..", 3); entry.inode = dir_inodenr;
mx_write (fd, &entry, 32);
mx_close (fd);

// fix inode (make it type directory, set nlinks to 2)
mx_read_inode (device, new_inodenr, &inode);
inode.i_mode = S_IFDIR | (mode & 0777); // set mode
inode.i_uid = thread_table[current_task].euid; // set UID
inode.i_gid = thread_table[current_task].egid; // set GID
inode.i_nlinks = 2;
mx_write_inode (device, new_inodenr, &inode);

// update link count of directory above
mx_read_inode (device, dir_inodenr, &inode);
inode.i_nlinks++;
mx_write_inode (device, dir_inodenr, &inode);
return 0;

}
Defines:

mx_mkdir, used in chunks 422a and 486.
Uses current_task 192c, egid 573a, euid 573a, memcpy 596c, memset 596c, minix2_inode 442a,

minix_dir_entry 452b, mx_close 467b, mx_open 464b, mx_pathname_to_ino 461d, mx_read_inode 451b,
mx_write 474c, mx_write_inode 452a, O_CREAT 460b, O_WRONLY 460b, S_IFDIR 457c, splitpath 455a,
and thread_table 176b.

Deleting a directory via
[487b]⟨function prototypes 45a⟩+≡ (44a) ◁ 486 488b ▷

int mx_rmdir (int device, const char *fullpath, const char *path);

is only allowed if . and .. are its only entries. If so, we first unlink those two and then
remove the directory (file). Note that the function expects two path arguments, the full
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(global) path and the device-local path. Our implementation does not use the device-local
path, but new implementations of similar *_rmdir functions for other filesystems might do
so.

[488a] ⟨minix filesystem implementation 420c⟩+≡ (440b) ◁ 487a 489a ▷
int mx_rmdir (int device, const char *fullpath, const char *path) {

struct minix_dir_entry entry;
char abspath[256]; char dir[256]; char base[256]; char cwd[256];
int dir_inodenr, new_inodenr;
struct minix2_inode inode;

// check relative/absolute path
if (*path != '/') relpath_to_abspath (fullpath, abspath);
else strncpy (abspath, fullpath, 256);

// check if directory exists
int fd = u_open ((char*)fullpath, O_RDONLY, 0);
if (fd == -1) { return -1; }
u_close (fd);

// split path into dir and base
splitpath (abspath, dir, base);

// save current working directory
u_getcwd ((char*)cwd, 256);

if (mx_directory_is_empty (device, path)) {
if (u_chdir (dir) == -1) { return -1; }
if (u_unlink (".") == -1) { u_chdir (cwd); return -1; }
if (u_unlink ("..") == -1) { u_chdir (cwd); return -1; }
if (u_unlink (fullpath) == -1) { u_chdir (cwd); return -1; }

u_chdir (cwd); // restore old current working directory
return 0;

}
printf ("Directory not empty\n");
return -1; // not empty

}
Defines:

mx_rmdir, used in chunks 422a and 487b.
Uses cwd, minix2_inode 442a, minix_dir_entry 452b, mx_directory_is_empty 489a, O_RDONLY 460b, printf 601a,

relpath_to_abspath 412b, splitpath 455a, strncpy 594b, u_chdir 432e, u_close 418a, u_getcwd 432e,
u_open 412c, and u_unlink 418b.

We still need the function mx_directory_is_emptya which could check the file size of
a directory: if it is 64 then the directory should contain only the . and .. entries. Our

[488b] ⟨function prototypes 45a⟩+≡ (44a) ◁ 487b 489c ▷
boolean mx_directory_is_empty (int device, const char *path);
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function expects that the provided path argument is already a (device-local) absolute path,
i. e., it starts with a slash. It does not use the size check but queries individual directory
entries instead because we don’t always update the directory size when we delete files.

[489a]⟨minix filesystem implementation 420c⟩+≡ (440b) ◁ 488a 490a ▷
boolean mx_directory_is_empty (int device, const char *path) {

int count = 0; // number of entries
struct dir_entry d = { 0 };
for (int i = 0; i < 32 * 7; i++) {

if (mx_getdent (device, path, i, &d) == 0 && d.inode != 0) count++;
}
return (count == 2);

}
Defines:

mx_directory_is_empty, used in chunk 488.
Uses dir_entry 490b and mx_getdent 490d.

e function uses mx_getdentd() which we present in the following section.

12.6.11 Listing a Directory
In order to retrieve the information stored in the inode of a file, all Unix systems offer a
statb function which fills a status structure with content. What that structure looks
like depends on the flavor of Unix; for U we use the struct statb definition as it is
shown in the Linux man page stat(2), but without the st_blksize and st_blocks entries:

[489b]⟨public type definitions 142a⟩+≡ (44a 48a) ◁ 369a 490b ▷
struct stat {

unsigned int st_dev; // ID of device containing file
unsigned short st_ino; // inode number
unsigned short st_mode; // protection
unsigned short st_nlink; // number of hard links
unsigned short st_uid; // user ID of owner
unsigned short st_gid; // group ID of owner
unsigned short st_rdev; // device ID (if special file)
unsigned int st_size; // total size, in bytes
unsigned int st_atime; // time of last access
unsigned int st_mtime; // time of last modification
unsigned int st_ctime; // time of last status change

};
Defines:

stat, used in chunks 420c, 421d, 426b, 432e, 489, 490, 499, 576, 577c, and 608a.

We have not prefixed the type name with mx_ because we use it for all supported filesys-
tems. However, there are several *_stat functions that retrieve the data—one for each
supported filesystem. As part of the Minix filesystem implementation, we provide the

[489c]⟨function prototypes 45a⟩+≡ (44a) ◁ 488b 490c ▷
int mx_stat (int device, const char *path, struct stat *buf);

function which simply locates the inode and copies the data into a struct statb variable:
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[490a] ⟨minix filesystem implementation 420c⟩+≡ (440b) ◁ 489a 490d ▷
int mx_stat (int device, const char *path, struct stat *buf) {

struct minix2_inode inode;
int ino = mx_pathname_to_ino (device, path);
if (ino == -1) return -1; // error
buf->st_dev = device; buf->st_rdev = 0;
buf->st_ino = ino;
mx_read_inode (device, ino, &inode); // read the inode
buf->st_mode = inode.i_mode; buf->st_nlink = inode.i_nlinks;
buf->st_uid = inode.i_uid; buf->st_gid = inode.i_gid;
buf->st_size = inode.i_size; buf->st_atime = inode.i_atime;
buf->st_ctime = inode.i_ctime; buf->st_mtime = inode.i_mtime;
return 0;

}
Defines:

mx_stat, used in chunks 421d and 490d.
Uses minix2_inode 442a, mx_pathname_to_ino 461d, mx_read_inode 451b, read 429b, and stat 429b 489b.

We define the generic directory entry structure struct dir_entryb that is similar to
the Minix structure struct minix_dir_entryb but allows longer filenames.

[490b] ⟨public type definitions 142a⟩+≡ (44a 48a) ◁ 489b 491a ▷
struct dir_entry {

word inode; // inode number
byte filename[64]; // filename

};
Defines:

dir_entry, used in chunks 422c, 426b, 429b, 489a, 490d, and 500.

e function
[490c] ⟨function prototypes 45a⟩+≡ (44a) ◁ 489c 491b ▷

int mx_getdent (int device, const char *path, int index, struct dir_entry *buf);

fills a struct dir_entryb buffer with the data found in the Minix inode on disk via the
mx_read_dir_entryb function.

[490d] ⟨minix filesystem implementation 420c⟩+≡ (440b) ◁ 490a 491c ▷
int mx_getdent (int device, const char *path, int index, struct dir_entry *buf) {

struct minix_dir_entry d;
struct stat s;

int ret = mx_stat (device, path, &s);
if (ret == -1) return -1; // error does not exist

if (index*32 ≥ s.st_size) return -1; // index out of bounds

int ino = mx_pathname_to_ino (device, path);
if (ino == -1) return -1; // error: not a directory

ret = mx_read_dir_entry (device, ino, index, &d);
if (ret == -1) return -1; // error: no such entry in directory
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buf->inode = d.inode;
strncpy ((char*)(buf->filename), d.name, 30);
d.name[30] = 0; // terminate string
return 0; // success

}
Defines:

mx_getdent, used in chunks 422c, 489a, and 490c.
Uses dir_entry 490b, minix_dir_entry 452b, mx_pathname_to_ino 461d, mx_read_dir_entry 453b, mx_stat 490a,

stat 429b 489b, and strncpy 594b.

12.6.12 Filesystem Information: df
In order to implement a df (disk free) application we need a method to query the number
of free blocks on a filesystem. As we will only support this for the Minix filesystem, we
do not provide a generic layer (as part of the virtual filesystem) but directly write a Minix-
specific function. It will fill struct diskfree_querya structures:

[491a]⟨public type definitions 142a⟩+≡ (44a 48a) ◁ 490b
struct diskfree_query {

int device; // device ID (is set before calling mx_diskfree)
int size; // size of filesystem, in blocks
int used; // number of used blocks
int free; // number of free blocks (redundant; == size-used)
char name[10]; // name (such as "/dev/hda")
char mount[256]; // mount point
char fstype[10]; // filesystem name, e.g. "minix"

};
Defines:

diskfree_query, used in chunks 491–93.

e goal is to implement
[491b]⟨function prototypes 45a⟩+≡ (44a) ◁ 490c 494c ▷

void mx_diskfree (struct diskfree_query *query);
Uses diskfree_query 491a and mx_diskfree 492.

which will use the helper function
[491c]⟨minix filesystem implementation 420c⟩+≡ (440b) ◁ 490d 492 ▷

int count_zeros (byte *block, int maxcount) {
int count = 0;
for (int i = 0; i < (maxcount+7)/8; i++) {

if (block[i] == 0) { count += 8; }
else {

for (int j = 0; j < 8; j++) {
if (i*8 + j < maxcount && (block[i] >> j) % 2 == 0) count++;

}
}

}
return count;

}
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Defines:
count_zeros, used in chunk 492.

which counts the number of zero bits in a given block, but only up to the bit position
specified by the maxcount parameter. (We can slightly optimize the counting by checking
whether a byte is 0, in that case we can add 8 to the counter; this assumes that maxcount is
always a multiple of 8.)

mx_diskfree takes the device element of the structure as an argument, reads all zone
map blocks of that device and counts the contained zeros. at gives us the number of
free blocks. e other values are taken from the mount table or the superblock (or we
calculate them).

[492] ⟨minix filesystem implementation 420c⟩+≡ (440b) ◁ 491c
void mx_diskfree (struct diskfree_query *query) {

int device = query->device;
struct minix_superblock sblock;
char block[1024];
query->size = mx_query_superblock (device, MX_SB_ZONES);
unsigned int nblocks = mx_query_superblock (device, MX_SB_ZONES);
unsigned int zmap_start = 2 + mx_query_superblock (device, MX_SB_IMAP_BLOCKS);
unsigned int free_blocks = 0;
for (int i = 0; i < mx_query_superblock (device, MX_SB_ZMAP_BLOCKS); i++) {

readblock (device, zmap_start + i, (byte*)&block);
if ((i+1)*8192 < query->size)

free_blocks += count_zeros ((byte*)&block, 8192);
else

free_blocks += count_zeros ((byte*)&block, query->size - i*8192);
}
query->free = free_blocks;
query->used = query->size - free_blocks;

// find device name
switch (device) {

case DEV_HDA: strncpy (query->name, "/dev/hda", 10); break;
case DEV_HDB: strncpy (query->name, "/dev/hdb", 10); break;
case DEV_FD0: strncpy (query->name, "/dev/fd0", 10); break;
case DEV_FD1: strncpy (query->name, "/dev/fd1", 10); break;
default: strncpy (query->name, "unknown", 10); break;

}

// find mount point
boolean mounted = false;
for (int i=0; i<current_mounts; i++) {

if (mount_table[i].device == device) {
strncpy (query->fstype, fs_names[mount_table[i].fstype], 10);
strncpy (query->mount, mount_table[i].mountpoint, 255);
mounted = true;
break;

}
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}
if (!mounted) {

strncpy (query->fstype, "none", 10);
strncpy (query->mount, "none", 10);

}
}

Defines:
mx_diskfree, used in chunks 491 and 493b.

Uses count_zeros 491c, current_mounts 405b, DEV_FD0 508a, DEV_FD1 508a, DEV_HDA 508a, DEV_HDB 508a,
diskfree_query 491a, fs_names 410b, minix_superblock 440c, mount_table 405b, mx_query_superblock 443b,
readblock 506b, and strncpy 594b.

We provide a system call handler
[493a]⟨syscall prototypes 173b⟩+≡ (202a) ◁ 433a 512d ▷

void syscall_diskfree (context_t *r);

[493b]⟨syscall functions 174b⟩+≡ (202b) ◁ 433b 513a ▷
void syscall_diskfree (context_t *r) {

// ebx: address of diskfree query structure
mx_diskfree ((struct diskfree_query*)r->ebx);

}
Defines:

syscall_diskfree, used in chunk 493.
Uses context_t 142a, diskfree 493f, diskfree_query 491a, and mx_diskfree 492.

and register it:
[493c]⟨ulix system calls 206e⟩+≡ (205a) ◁ 428b

#define __NR_diskfree 522
Defines:

__NR_diskfree, used in chunk 493.

[493d]⟨initialize syscalls 173d⟩+≡ (44b) ◁ 434a 513b ▷
install_syscall_handler (__NR_diskfree, syscall_diskfree);

Uses __NR_diskfree 493c, install_syscall_handler 201b, and syscall_diskfree 493b.

User mode applications can then ask for the information by writing a value into the
device field of a diskfree_querya structure and calling

[493e]⟨ulixlib function prototypes 174c⟩+≡ (48a) ◁ 434b 513c ▷
void diskfree (struct diskfree_query *query);

which fills the other fields.
[493f]⟨ulixlib function implementations 174d⟩+≡ (48b) ◁ 434c 513d ▷

void diskfree (struct diskfree_query *query) {
syscall2 (__NR_diskfree, (unsigned int)query);

}
Defines:

diskfree, used in chunk 493b.
Uses __NR_diskfree 493c, diskfree_query 491a, and syscall2 203c.
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12.7 The /dev Filesystem
is section provides an interface to block devices (via /dev/fd0, /dev/fd1, /dev/hda and
/dev/hdb) and the physical memory (via /dev/kmem). We have not designed the code in a
way that would easily allow extensions to other device classes (however, a third or fourth
hard disk would be easy to add).

e /dev filesystem must be mounted on /dev/, so the filesystem itself has only the root
directory and the following five files which reside inside:

[494a] ⟨constants 112a⟩+≡ (44a) ◁ 472 495a ▷
#define DEV_HDA_NAME "hda"
#define DEV_HDB_NAME "hdb"
#define DEV_FD0_NAME "fd0"
#define DEV_FD1_NAME "fd1"
#define DEV_KMEM_NAME "kmem"
#define DEV_FD0_INODE 3
#define DEV_FD1_INODE 4
#define DEV_HDA_INODE 5
#define DEV_HDB_INODE 6
#define DEV_KMEM_INODE 7

Defines:
DEV_FD0_INODE, used in chunk 495c.
DEV_FD0_NAME, used in chunk 494b.
DEV_FD1_INODE, used in chunk 495c.
DEV_FD1_NAME, used in chunk 494b.
DEV_HDA_INODE, used in chunk 495c.
DEV_HDA_NAME, used in chunk 494b.
DEV_HDB_INODE, used in chunk 495c.
DEV_HDB_NAME, used in chunk 494b.
DEV_KMEM_INODE, used in chunk 495c.
DEV_KMEM_NAME, used in chunk 494b.

We will simulate behavior of the Minix filesystem for our /dev filesystem so that the
function which inspects a directory works with the /dev/ directory as well.

[494b] ⟨global variables 92b⟩+≡ (44a) ◁ 464a 495b ▷
struct minix_dir_entry dev_directory[7] = {

{ 1, "." }, { 2, ".." }, { 3, DEV_FD0_NAME },
{ 4, DEV_FD1_NAME }, { 5, DEV_HDA_NAME }, { 6, DEV_HDB_NAME },
{ 7, DEV_KMEM_NAME } };

Defines:
dev_directory, used in chunks 495c, 499d, and 500.

Uses DEV_FD0_NAME 494a, DEV_FD1_NAME 494a, DEV_HDA_NAME 494a, DEV_HDB_NAME 494a, DEV_KMEM_NAME 494a,
and minix_dir_entry 452b.

Opening a file works similar to thewaywe have implemented it for theMinix filesystem,
it is just a bit simpler:

[494c] ⟨function prototypes 45a⟩+≡ (44a) ◁ 491b 496a ▷
int dev_open (const char *path, int oflag);

Note that, different from mx_openb, it does not take a device argument.
We will keep a list of open file descriptors:

[494d] ⟨type definitions 91⟩+≡ (44a) ◁ 460a 508c ▷
struct dev_filestat {

short dev;
int pos;
short mode;

};
Defines:

dev_filestat, used in chunk 495b.
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and allow up to 32 simultaneously open files:
[495a]⟨constants 112a⟩+≡ (44a) ◁ 494a 506a ▷

#define MAX_DEV_FILES 32
Defines:

MAX_DEV_FILES, used in chunks 495, 496b, and 499b.

So, similar to the mx_statusb array, we declare a dev_statusb array that holds the
same kind of information:

[495b]⟨global variables 92b⟩+≡ (44a) ◁ 494b 509a ▷
struct dev_filestat dev_status[MAX_DEV_FILES] = { { 0 } };

Defines:
dev_status, used in chunks 495–99.

Uses dev_filestat 494d and MAX_DEV_FILES 495a.

e dev_openc function is much simpler than mx_openb because we know exactly
which files can be opened. We identify the inode number with the index into the table
dev_directoryb (plus 1, as we start counting inodes at number 1).

[495c]⟨function implementations 100b⟩+≡ (44a) ◁ 440b 496b ▷
int dev_open (const char *path, int oflag) {

if ((oflag & O_CREAT) != 0) return -1; // cannot create
int i, dev_inode = -1;

// get the inode number
for (i = 0; i < 7; i++) {

if (strequal (path+1, dev_directory[i].name)) {
// found!
dev_inode = dev_directory[i].inode; // which is always i...
break;

}
}
if (dev_inode == -1) return -1; // not found

// find free file descriptor
int fd = -1;
for (i = 0; i < MAX_DEV_FILES; i++) {

if (dev_status[i].dev == 0) { fd = i; break; }
}
if (fd == -1) return -1; // no free file descriptor

switch (dev_inode) {
case DEV_FD0_INODE : dev_status[fd].dev = DEV_FD0; break;
case DEV_FD1_INODE : dev_status[fd].dev = DEV_FD1; break;
case DEV_HDA_INODE : dev_status[fd].dev = DEV_HDA; break;
case DEV_HDB_INODE : dev_status[fd].dev = DEV_HDB; break;
case DEV_KMEM_INODE: dev_status[fd].dev = DEV_KMEM; break;
default: dev_status[fd].dev = -1;

}
dev_status[fd].pos = 0;
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dev_status[fd].mode = oflag;
return fd;

}
Defines:

dev_open, used in chunks 412c and 494c.
Uses dev_directory 494b, DEV_FD0 508a, DEV_FD0_INODE 494a, DEV_FD1 508a, DEV_FD1_INODE 494a, DEV_HDA 508a,

DEV_HDA_INODE 494a, DEV_HDB 508a, DEV_HDB_INODE 494a, DEV_KMEM 508a, DEV_KMEM_INODE 494a, dev_status 495b,
MAX_DEV_FILES 495a, O_CREAT 460b, and strequal 596a.

Closing a device file via
[496a] ⟨function prototypes 45a⟩+≡ (44a) ◁ 494c 496c ▷

int dev_close (int fd);

is much simpler:
[496b] ⟨function implementations 100b⟩+≡ (44a) ◁ 495c 496d ▷

int dev_close (int fd) {
if (fd ≥ 0 && fd < MAX_DEV_FILES && dev_status[fd].dev != 0) {

dev_status[fd].dev = 0;
return 0; // success

} else {
return -1; // fail

}
}

Defines:
dev_close, used in chunks 418a and 496a.

Uses dev_status 495b and MAX_DEV_FILES 495a.

Finally we need dev_readd, dev_write and dev_lseeka functions:
[496c] ⟨function prototypes 45a⟩+≡ (44a) ◁ 496a 498b ▷

int dev_read (int fd, char *buf, int nbyte);
int dev_write (int fd, char *buf, int nbyte);
int dev_lseek (int fd, int offset, int whence);

e implementation of dev_readd and dev_write is similar to the one of mx_readb
and mx_writec (which you have seen earlier), but it is simpler: the new functions need
not access an inode in order to retrieve block numbers.

ere is a special case for reading from memory via /dev/kmem which does not require
any block read/write operations at all: For memory access we can simple call memcpyc.

[496d] ⟨function implementations 100b⟩+≡ (44a) ◁ 496b 497 ▷
int dev_read (int fd, char *buf, int nbyte) {
⟨dev filesystem: check if fd is a proper file descriptor 499b⟩
int startbyte = dev_status[fd].pos;
int devsize = dev_size (dev_status[fd].dev);
if (startbyte ≥ devsize) { return 0; } // nothing to read
int endbyte = dev_status[fd].pos + nbyte - 1;
if (endbyte ≥ devsize) {

nbyte -= (endbyte - devsize + 1); endbyte = devsize - 1;
}

// special case /dev/kmem: direct memcpy()
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if (dev_status[fd].dev == DEV_KMEM) {
memcpy (buf, (char*)(PHYSICAL(startbyte)), nbyte);
dev_status[fd].pos += nbyte;
return nbyte;

}

int readbytes = 0; int offset, length;
int startblock = startbyte / BLOCK_SIZE; int curblock = startblock;
while (nbyte > 0) {

byte block[BLOCK_SIZE];
readblock (dev_status[fd].dev, curblock, (byte*) block);
if (curblock == startblock) {

offset = startbyte % BLOCK_SIZE; length = MIN (nbyte, BLOCK_SIZE - offset);
} else {

offset = 0; length = MIN (nbyte, BLOCK_SIZE);
}
memcpy (buf, block + offset, length);

nbyte -= length; buf += length;
readbytes += length; curblock++;
dev_status[fd].pos += length;

}
return readbytes;

}
Defines:

dev_read, used in chunk 414b.
Uses BLOCK_SIZE 440a, DEV_KMEM 508a, dev_size 499a, dev_status 495b, memcpy 596c, MIN 471d, PHYSICAL 116a,

and readblock 506b.

Writing is only slightly more complex because the first and last block must be read
before being wrien:

[497]⟨function implementations 100b⟩+≡ (44a) ◁ 496d 498a ▷
int dev_write (int fd, char *buf, int nbyte) {
⟨dev filesystem: check if fd is a proper file descriptor 499b⟩
int startbyte = dev_status[fd].pos;
int devsize = dev_size (dev_status[fd].dev);
if (startbyte ≥ devsize) { return 0; } // nothing to write
int endbyte = dev_status[fd].pos + nbyte - 1;
if (endbyte ≥ devsize) {

nbyte -= (endbyte - devsize + 1); endbyte = devsize - 1;
}

// special case /dev/kmem: direct memcpy()
if (dev_status[fd].dev == DEV_KMEM) {

memcpy ((char*)(PHYSICAL(startbyte)), buf, nbyte);
dev_status[fd].pos += nbyte;
return nbyte;

}
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int written_bytes = 0; int offset, length;
int startblock = startbyte / BLOCK_SIZE; int curblock = startblock;
while (nbyte > 0) {

byte block[BLOCK_SIZE];
if (curblock == startblock) {

offset = startbyte % BLOCK_SIZE; length = MIN (nbyte, BLOCK_SIZE - offset);
} else {

offset = 0; length = MIN (nbyte, BLOCK_SIZE);
}

if (offset != 0 || length != BLOCK_SIZE) {
// writing a partial block -- read it first!
readblock (dev_status[fd].dev, curblock, (byte*) block);

}
memcpy (block + offset, buf, length);
writeblock (dev_status[fd].dev, curblock, (byte*) block);

nbyte -= length; buf += length;
written_bytes += length; curblock++;
dev_status[fd].pos += length;

}
return written_bytes;

}
Defines:

dev_write, used in chunks 415a and 496c.
Uses BLOCK_SIZE 440a, DEV_KMEM 508a, dev_size 499a, dev_status 495b, memcpy 596c, MIN 471d, PHYSICAL 116a,

readblock 506b, and writeblock 507c.

Seeking is also simple:
[498a] ⟨function implementations 100b⟩+≡ (44a) ◁ 497 499a ▷

int dev_lseek (int fd, int offset, int whence) {
⟨dev filesystem: check if fd is a proper file descriptor 499b⟩
if (whence < 0 || whence > 2)

return -1; // wrong lseek option
if (whence == SEEK_END && offset > 0)

return -1; // cannot seek beyond end of device
switch (whence) {

case SEEK_SET: dev_status[fd].pos = offset; break;
case SEEK_CUR: dev_status[fd].pos += offset; break;
case SEEK_END: dev_status[fd].pos = dev_size (dev_status[fd].dev) + offset;

};
return dev_status[fd].pos;

}
Defines:

dev_lseek, used in chunk 418a.
Uses dev_size 499a, dev_status 495b, lseek 429b, SEEK_CUR 469b, SEEK_END 469b, and SEEK_SET 469b.

We have used a function
[498b] ⟨function prototypes 45a⟩+≡ (44a) ◁ 496c 499c ▷

long dev_size (int dev);
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which returns the size of the drive; here is its implementation:
[499a]⟨function implementations 100b⟩+≡ (44a) ◁ 498a 499d ▷

long dev_size (int dev) {
switch (dev) {

case DEV_FD0 : return fdd_type[fdd[0].type].total_sectors * 512; // fd0
case DEV_FD1 : return fdd_type[fdd[1].type].total_sectors * 512; // fd1
case DEV_HDA : return hd_size[0] * 512; // hda
case DEV_HDB : return hd_size[1] * 512; // hdb
case DEV_KMEM : return MEM_SIZE; // kmem
default : return -1; // error

}
}

Defines:
dev_size, used in chunks 496–99.

Uses DEV_FD0 508a, DEV_FD1 508a, DEV_HDA 508a, DEV_HDB 508a, DEV_KMEM 508a, fdd 541c, fdd_type 541c,
hd_size 534a, and MEM_SIZE 111c.

In both functions for reading and writing we check whether a valid file descriptor was
supplied and return -1 if not:

[499b]⟨dev filesystem: check if fd is a proper file descriptor 499b⟩≡ (496–98)
if (fd < 0 || fd ≥ MAX_DEV_FILES) return -1; // bad file descriptor
if (dev_status[fd].dev == 0) return -1; // file not open

Uses dev_status 495b and MAX_DEV_FILES 495a.

Last, we supply functions for querying a file and reading a directory entry which are
called from u_statd and u_getdent in the virtual filesystem layer.

[499c]⟨function prototypes 45a⟩+≡ (44a) ◁ 498b 504 ▷
int dev_stat (const char *path, struct stat *buf);
int dev_getdent (const char *path, int index, struct dir_entry *buf);

dev_statd compares the local path (which is expected to be /fd, /fd, /hda, /hdb or
/kmem) against the list of known device names and fills the struct statb buffer:

[499d]⟨function implementations 100b⟩+≡ (44a) ◁ 499a 500 ▷
int dev_stat (const char *path, struct stat *buf) {

int devices[] = { -1, 0, 0, DEV_FD0, DEV_FD1, DEV_HDA, DEV_HDB, DEV_KMEM };
int dev_inode;

for (int i = 0; i < 7; i++) { // get the inode number
if (strequal (path+1, dev_directory[i].name)) {

// found!
dev_inode = dev_directory[i].inode; // which is always i...
break;

}
}
if (dev_inode == -1) return -1; // not found

// buf->st_dev = 0; // no device, /dev is a virtual FS
buf->st_dev = devices[dev_inode];
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buf->st_rdev = 0;
buf->st_ino = dev_inode;
if (dev_inode > 2)

buf->st_mode = S_IFBLK | 0600; // block device; we have no char. devices
else

buf->st_mode = S_IFDIR | 0600; // directory
buf->st_nlink = 1; buf->st_uid = 0;
buf->st_gid = 0; buf->st_size = dev_size (devices[dev_inode]);
buf->st_atime = 0; buf->st_ctime = 0;
buf->st_mtime = 0;
return 0;

}
Defines:

dev_stat, used in chunk 421d.
Uses dev_directory 494b, DEV_FD0 508a, DEV_FD1 508a, DEV_HDA 508a, DEV_HDB 508a, DEV_KMEM 508a, dev_size 499a,

S_IFBLK 457c, S_IFDIR 457c, stat 429b 489b, and strequal 596a.

And dev_getdent copies an entry in the dev_directoryb table into the buffer (of type
struct dir_entryb).

[500] ⟨function implementations 100b⟩+≡ (44a) ◁ 499d 505b ▷
int dev_getdent (const char *path, int index, struct dir_entry *buf) {

if (index < 0 || index > 6) return -1; // no such entry

buf->inode = dev_directory[index].inode;
strncpy (buf->filename, dev_directory[index].name, 5);
return 0;

}
Defines:

dev_getdent, used in chunk 422c.
Uses dev_directory 494b, dir_entry 490b, and strncpy 594b.

12.8 Default Contents of the Filesystem
In the last two sections we describe the directories and files that you can find on the U
system disks and suggest two books which discuss other filesystems in depth.

Figure 12.14 shows the general tree structure of the virtual filesystem which is orga-
nized in a similar way as most Unix filesystems. e /bin directory contains executable
programs, /etc is reserved for configuration files (currently the only one is /etc/passwd),
/dev is the mount point for the device filesystem, and /home contains thehome directory home directories
of system users, it is already populated with two home directories that “belong” to us
(the authors of this book). ey correspond to identical user names in the /etc/passwd file
(with the passwords set to “xyz”). e administrator root has the home directory /root; it
is standard practice to place it directly in the root directory (/) and not below /home.
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Figure 12.14: ese are the contents of the U disk.

12.9 Further Reading
If you are interested in further details about Unix filesystem implementations, we suggest
you take a look at the following books:

• Steve D. Pate: “UNIX Filesystems: Evolution, Design, and Implementation”, 2003,
ISBN: 978-0-471-16483-8 [Pat03]

• William von Hagen: “Linux Filesystems”, 2002, ISBN: 978-0672322723 [vH02]

12.10 Exercises
36. Sparse Files

Sparse files are “files with holes”: ey have large areas which only contain 0x00 bytes.
Storing all those zeros on disk is a waste of disk space (and also of time for initially
writing them). Modern filesystems support a special treatment of sparse files where
information about these holes is stored in the inode or in a separate block that is
linked from the inode. e Minix filesystem does not support this kind of treatment,
but you can modify it so that it does.
Modify the file access functions so that a block address of − (0xFFFF) is interpreted
as a reference to a sparse area, i. e., an area completely filled with zeros. No blocks
need to be allocated for such areas. If a direct block address is −, the whole (logical)
block is considered to consist of zeros. If an indirect block address is−, it means that
there is no indirection block, but the space that could be addressed via the indirection
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block (up to 256 blocks = 256 KByte) are assumed to contain zeros.
Every read access to a sparse area shall return a block of zeros, but when writing to a
sparse area you need to allocate a block and change the block number from− to the
new zone number. If data is wrien in the middle of a sparse indirection block, you
need to allocate another block that then serves as indirection block with one zone
number pointing to the new non-zero data block (and all other zone numbers set to
−).
Change the mx_writec function so that it recognizes whether a whole sparse block
is being wrien (or whether the result of the current write operation is a block full
of zeros)—if so, add a new sparse area and release the block that is no longer needed.
You will need to make some changes to the system calls and user mode library func-
tions so that you can test the behavior.

37. Completion of the mx_ftruncate Function

Our implementation of mx_ftruncatee is incomplete: It does not provide code for
the ⟨mx_ftruncate: free single indirection block ⟩ and ⟨mx_ftruncate: free double indirec-
tion block ⟩ code chunks. Add those chunks (or modify the function otherwise) and
try to do that in an optimized way that uses as few individual inode or block write
operations as possible.
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Disk I/O

In the last chapter you saw the implementations of both theMinix and the FAT filesystem—
but what we have not discussed so far is how to actually talk to the hardware: we used
functions readblockb and writeblockc to read or write kilobyte-sized chunks of data
from the disk, and in this chapter you will see how to implement this.

13.1 Block and Character Devices
Classically, devices are split into two categories: block devices and block device

character device
character devices. e

difference lies in the amounts of data which are transferred with every single request.
A typical character device is the keyboard: each key-press generates an interrupt and
the amount of data transferred is (typically) two bytes. On the other hand, disks (both
floppy and hard disks) transfer whole chunks of data (512 bytes or larger quantities). e
controllers for floppy and hard disks do not provide the functionality to read/write single
bytes from/to the disk, but can only handle those larger chunks. at has consequences
for code which wants to change a single byte in a disk file: e chunk containing this byte
must first be read into memory, then modifed and finally rewrien to disk.

Block devices can be accessed in two ways: in the classical approach drivers used the
processor’s in and out instructions for every single byte that was to be transferred. Read-
ing a 512-byte-sized chunk of data from the disk would basically look like this:

[503]⟨classical disk access example 503⟩≡
out ioport1, sector ; request data from the disk
out ioport2, READ_CMD
mov reg1, memory ; set up target address, length of data
mov reg2, ioport3
mov reg3, length ; for "rep"
rep insl ; read data (loop)
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e rep prefix in the final statement uses the length argument stored in some register to
repeat the insl instruction length times and auto-increment the memory address so that
all the bytes coming from the disk will be stored in consecutive memory positions.

is approach requires the CPU to do a lot of work since it has to deal will every single
byte that is to be transferred. It is beer to use direct memory access (DMA)DMA which allows
the disk controller to store the data in memory without bothering the CPU.

In this chapter we will provide implementations of three device drivers:

• We start with a driver for a device that doesn’t exist but can easily be simulated: the
“serial disk”. is driver assumes that a disk is connected to the serial port of the
machine. e drive accepts read/write requests and sends or receives single bytes
of such a request via the serial port. Every byte sent by the disk will generate an
interrupt (andwe need to provide an interrupt handlerwhichwill then read the newly-
arrived byte via an in instruction), every byte we want to send to the disk must be
sent explicitly via an out instruction.

• e second driver uses the classical (non-DMA) approach for accessing hard disks.
It is easy to implement; a request for a 512-bytes-chunk is sent to the controller, the
controller reads the data from the disk and then generates one interrupt. e interrupt
handler must then read all 512 bytes from the controller. We use this to access the
hard disks on the machine.

• e third driver uses DMA to talk to a floppy drive: Reading a 512-bytes-chunk also
starts with requesting it from the controller, but the transfer happens in the back-
ground. When it’s finished, the controller generates an interrupt, and the interrupt
handler only needs to acknowledge it and tell the (suspended) process that its data
have arrived.

is collection of drivers thus introduces three very different approaches for talking to
mass media controllers.

13.2 Device Selection
We will provide two generic functions

[504] ⟨function prototypes 45a⟩+≡ (44a) ◁ 499c 505a ▷
void readblock (int device, int blockno, char *buffer);
void writeblock (int device, int blockno, char *buffer);

which read kilobyte-sized blocks from all the devices we support. As a naming convention
for devices we use the Unix concept ofmajormajor/minor

number
andminor device IDs—this lets us break down

device IDs into a device class (the major device number) and the specific device of a class
(the minor device number). We use the same numbers as Linux (for floppies and hard
disks):

• Floppy drives have the major number 2, we support two drives /dev/fd0 and /dev/fd1
with minor numbers 0 and 1.
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• Hard disks have the major number 3, we support two drives /dev/hda and /dev/hdb
with minor numbers 0 and 64 (the numbers 1–63 and 65–127 are reserved for parti-
tions of the first and second hard disk, respectively, but we do not implement partition
support for hard disks).

• e serial disk has major number 42. ere is only one of this kind: /dev/sdisk has
minor number 0.

We combine major and minor numbers in one 16 bit wide device number via device =
major << 8 + minor. at is: the upper eight bits of a device number contain the major
number, and the lower eight bits contain the minor number.

With that formula we can also calculate major and minor numbers from a given device
number: major = device >> 8 and minor = device & 0xff.

is leads to the major, minor and device numbers shown in Table 13.1. Note that we
do not provide devices for the serial ports or the keyboard even though they are also used
by U—they would be examples for the class of character devices.

We provide the following three functions to do the calculations:
[505a]⟨function prototypes 45a⟩+≡ (44a) ◁ 504 509c ▷

word makedev (byte major, byte minor);
byte devmajor (word device);
byte devminor (word device);

ey just use the formulas which we have already described above:
[505b]⟨function implementations 100b⟩+≡ (44a) ◁ 500 506b ▷

word makedev (byte major, byte minor) { return ((major << 8) + minor); }
byte devmajor (word device) { return (device >> 8); }
byte devminor (word device) { return (device & 0xff); }

Defines:
devmajor, used in chunks 406, 506b, and 507b.
devminor, used in chunks 406, 506b, and 507b.
makedev, used in chunk 505a.

Defining some constants makes our life easier in the following implementations:

device file major minor device
/dev/fd0 2 0 0x0200 = 512
/dev/fd1 2 1 0x0201 = 513
/dev/hda 3 0 0x0300 = 768
/dev/hdb 3 64 0x0340 = 832
/dev/kmem 4 0 0x0400 = 1024
/dev/sdisk *) 42 0 0x2a00 = 10752

Table 13.1: U supports these devices. *) e device file /dev/sdisk is not available.
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[506a] ⟨constants 112a⟩+≡ (44a) ◁ 495a 507a ▷
#define MAJOR_FD 2
#define MAJOR_HD 3
#define MAJOR_KMEM 4
#define MAJOR_SERIAL 42

Defines:
MAJOR_FD, used in chunks 506b and 507b.
MAJOR_HD, used in chunks 506b and 507b.
MAJOR_SERIAL, used in chunks 506b and 507b.

e generic readblockb and writeblockc functions calculate the major and minor
numbers from the device number and then call the appropriate reading or writing function
for the correct device class:

[506b] ⟨function implementations 100b⟩+≡ (44a) ◁ 505b 507b ▷
void readblock (int device, int blockno, char *buffer) {

// check buffer
if (buffer_read (device, blockno, buffer) == 0) { return; }

// read from disk
byte major = devmajor (device);
byte minor = devminor (device);
switch (major) {

case MAJOR_HD: readblock_hd (minor/64, blockno, buffer); break;
case MAJOR_FD: readblock_fd (minor, blockno, buffer); break;
case MAJOR_SERIAL: readblock_serial ( blockno, buffer); break;
default: return;

}

// update buffer
buffer_write (device, blockno, buffer, BUFFER_CLEAN);

}
Defines:

readblock, used in chunks 443–45, 448, 451a, 453b, 471c, 473–75, 477, 482, 492, 496d, and 497.
Uses BUFFER_CLEAN 510a, buffer_read 509d, buffer_write 510b, devmajor 505b, devminor 505b, MAJOR_FD 506a,

MAJOR_HD 506a, MAJOR_SERIAL 506a, readblock_fd 550d, readblock_hd 531b, and readblock_serial 522e.

e case selection is straightforward: depending on the major number, readblockb calls
either readblock_hdb (for hard disk access), readblock_fdd (for the floppy disks), or
readblock_seriale (for the serial disk), and we will provide implementations of those
functions in the following chapters.

e readblockb function also calls buffer_readd and buffer_writeb whichwe have
not discussed yet—these two functions provide access to a system-wide disk cache which
stores the contents of disk blocks so that they need not be read again when they are re-
quested a second time. We will introduce the buffer mechanism in the next section. e
short explanation for the above code is this: readblockb first checks whether the re-
quested block is already in the cache. If so, no disk access is necessary, and the function
can return immediately. Otherwise one of the readblock_* functions takes care of the
block transfer from disk to memory, and aer that the freshly-read block is stored in the
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cache. (e BUFFER_CLEANa argument states that the buffer’s copy of the block is iden-
tical to the disk’s version.) Note that the memory device (DEV_KMEMa) is not supported
by readblockb or writeblockc: it is no block device; the u_readb and u_writea
functions use memcpyc to access the memory.

Writing a block comes in two variations: We first show the writeblock_rawb func-
tion which is the direct counterpart to readblockb: it has the same case selection and
forwards the writing task to the writeblock_hdb (for hard disks), writeblock_fdd (for
floppies) and writeblock_seriale (serial disk) functions. When that is done, it also up-
dates the buffer’s copy of the block (if it is already cached).

[507a]⟨constants 112a⟩+≡ (44a) ◁ 506a 508a ▷
#define UPDATE_BUF 1
#define DONT_UPDATE_BUF 0

Defines:
DONT_UPDATE_BUF, used in chunk 512b.
UPDATE_BUF, used in chunk 507b.

[507b]⟨function implementations 100b⟩+≡ (44a) ◁ 506b 507c ▷
void writeblock_raw (int device, int blockno, char *buffer, char flag) {

byte major = devmajor (device);
byte minor = devminor (device);
switch (major) {

case MAJOR_HD: writeblock_hd (minor/64, blockno, buffer); break;
case MAJOR_FD: writeblock_fd (minor, blockno, buffer); break;
case MAJOR_SERIAL: writeblock_serial ( blockno, buffer); break;
default: break;

}

// update buffer cache (if it is in the cache)
if ( (flag == UPDATE_BUF) && (buffer_contains (device, blockno)) )

buffer_write (device, blockno, buffer, BUFFER_CLEAN);
}

Defines:
writeblock_raw, used in chunk 512b.

Uses BUFFER_CLEAN 510a, buffer_contains 512c, buffer_write 510b, devmajor 505b, devminor 505b,
MAJOR_FD 506a, MAJOR_HD 506a, MAJOR_SERIAL 506a, UPDATE_BUF 507a, writeblock_fd 550d, writeblock_hd 531b,
and writeblock_serial 522e.

However, in order to increase the disk performance, U will not write blocks to disk
immediately. Instead, we will always call the following function (writeblockc) which
simply copies the data into the cache and marks it as dirty. At regular intervals the kernel
will check whether there are dirty blocks and write them to disk.

[507c]⟨function implementations 100b⟩+≡ (44a) ◁ 507b 509d ▷
void writeblock (int device, int blockno, char *buffer) {

buffer_write (device, blockno, buffer, BUFFER_DIRTY);
}

Defines:
writeblock, used in chunks 445b, 448, 451a, 453b, 454a, 475c, 477, 497, and 504.

Uses BUFFER_DIRTY 510a and buffer_write 510b.
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Note that when calling readblock_hdb or writeblock_hdb, we pass minor/64 as argu-
ment which turns the only supported values for minor (0 and 64) into 0 and 1 for the two
hard disks.

If you want to add a driver for a different kind of media (e. g. CD-ROM or DVD-ROM
drives) all you need to do is develop readblock_XX and writeblock_XX functions for this new
category, define a new MAJOR_XX constant and add the new case to the implementations of
readblockb and writeblock_rawb.

We define device constants for the five devices we plan to use regularly and another
one that is used for error checking:

[508a] ⟨constants 112a⟩+≡ (44a) ◁ 507a 508b ▷
#define DEV_HDA 0x300 // disk /dev/hda
#define DEV_HDB 0x340 // disk /dev/hdb
#define DEV_FD0 0x200 // floppy /dev/fd0
#define DEV_FD1 0x201 // floppy /dev/fd1
#define DEV_KMEM 0x400 // memory /dev/kmem
#define DEV_NONE 0 // no device

Defines:
DEV_FD0, used in chunks 406, 492, 495c, and 499.
DEV_FD1, used in chunks 405b, 406, 492, 495c, and 499.
DEV_HDA, used in chunks 405b, 406, 492, 495c, 499, 607a, and 610d.
DEV_HDB, used in chunks 405b, 406, 492, 495c, and 499.
DEV_KMEM, used in chunks 495–97 and 499.
DEV_NONE, used in chunk 405b.

13.3 A Simple Buffer Cache
In early versions of U, the readblockb and writeblockc functions directly accessed
the drive controllers which made even simple things such as displaying the contents of
the root directory very slow, since many blocks were read over and over again.

Using a buffer cache can dramatically speed up disk access (to blocks which have already
been read) by buffering them in memory. For our simple system it does not take much,
we provide a buffer that can store 512 blocks:

[508b] ⟨constants 112a⟩+≡ (44a) ◁ 508a 510a ▷
#define BUFFER_CACHE_SIZE 512

Defines:
BUFFER_CACHE_SIZE, used in chunks 509–12.

Buffer entries store the buffer and some additional information: the device and block
numbers (in order to identify which block is cached), an access counter and a dirty flag:

[508c] ⟨type definitions 91⟩+≡ (44a) ◁ 494d 515a ▷
struct buffer_entry {

char buf[BLOCK_SIZE];
int dev; // from what device? (-1 if free)
int blockno; // block number of buffered block (-1 if free)
byte count; // how often was it read_?
byte dirty; // true if not written to disk

};
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Defines:
buffer_entry, used in chunk 509a.

Uses BLOCK_SIZE 440a.

e cache is just an array of buffer entries:
[509a]⟨global variables 92b⟩+≡ (44a) ◁ 495b 516a ▷

struct buffer_entry buffer_cache[BUFFER_CACHE_SIZE];
lock buffer_lock;

Defines:
buffer_cache, used in chunks 509–12.
buffer_lock, used in chunks 509, 510b, 512b, and 606.

Uses BUFFER_CACHE_SIZE 508b, buffer_entry 508c, and lock 365a.

and the kernel lock buffer_locka protects against parallel access aempts.
Here’s how we initialize the buffer cache at system start:

[509b]⟨initialize system 45b⟩+≡ (44b) ◁ 326c 522b ▷
memset (buffer_cache, 0, sizeof (buffer_cache));
for (int i = 0; i < BUFFER_CACHE_SIZE; i++) {

buffer_cache[i].blockno =
buffer_cache[i].dev = -1;
buffer_cache[i].dirty = 0;

}
buffer_lock = get_new_lock ("disk buffer");

Uses buffer_cache 509a, BUFFER_CACHE_SIZE 508b, buffer_lock 509a, get_new_lock 367b, and memset 596c.

Next we need code for entering data into and extracting it from the buffer cache; we
write three functions

[509c]⟨function prototypes 45a⟩+≡ (44a) ◁ 505a 512a ▷
int buffer_write (int dev, int blockno, char *block, char dirtyflag);
int buffer_read (int dev, int blockno, char *block);
boolean buffer_contains (int dev, int blockno);

e functions for reading and writing buffer entries have the same signatures as the
readblockb and writeblock_rawb functions.

Reading is the simpler task, so we start with that:
[509d]⟨function implementations 100b⟩+≡ (44a) ◁ 507c 510b ▷

int buffer_read (int dev, int blockno, char *block) {
// don't use the buffer before the scheduler is up
if (!scheduler_is_active) { return -1; } // -1 signals: must be read from disk
mutex_lock (buffer_lock);

// check if buffer cache holds the requested block
int pos = -1; // position in the cache
for (int i = 0; i < BUFFER_CACHE_SIZE; i++) {

if ((buffer_cache[i].dev == dev) && (buffer_cache[i].blockno == blockno)) {
// found it!
pos = i;
break;

}
}
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if (pos == -1) { mutex_unlock (buffer_lock); return -1; } // not found

// we found it: copy the contents, update the counter
memcpy (block, buffer_cache[pos].buf, BLOCK_SIZE);
if ((int)buffer_cache[pos].count < 254) { buffer_cache[pos].count++; }

mutex_unlock (buffer_lock); return 0; // success
}

Defines:
buffer_read, used in chunk 506b.

Uses BLOCK_SIZE 440a, buffer_cache 509a, BUFFER_CACHE_SIZE 508b, buffer_lock 509a, memcpy 596c,
mutex_lock 366a, mutex_unlock 366c, and scheduler_is_active 276e.

Writing to the buffer is a lile more complicated—if there is no entry for the block we
want to write. Otherwise it’s prey much the same:

[510a] ⟨constants 112a⟩+≡ (44a) ◁ 508b 515b ▷
#define BUFFER_CLEAN 0
#define BUFFER_DIRTY 1

Defines:
BUFFER_CLEAN, used in chunks 506b and 507b.
BUFFER_DIRTY, used in chunk 507c.

[510b] ⟨function implementations 100b⟩+≡ (44a) ◁ 509d 512b ▷
int buffer_write (int dev, int blockno, char *block, char dirtyflag) {

// don't use the buffer before the scheduler is up
if (!scheduler_is_active) { return 0; }
mutex_lock (buffer_lock);

// check if buffer cache already holds the requested block
int pos = -1; // position in the cache
for (int i = 0; i < BUFFER_CACHE_SIZE; i++) {

if ((buffer_cache[i].dev == dev) && (buffer_cache[i].blockno == blockno)) {
pos = i; break; // found it!

}
}

// if not found, create it
if (pos == -1) { ⟨buffer cache: find or create free entry; sets pos 511a⟩ }

// copy the contents, update the counter
if ((pos ≥ 0) && (pos < BUFFER_CACHE_SIZE)) {

memcpy (buffer_cache[pos].buf, block, BLOCK_SIZE);
if ((int)buffer_cache[pos].count < 254)

buffer_cache[pos].count++;
buffer_cache[pos].dirty = dirtyflag;

}
mutex_unlock (buffer_lock);
return 0; // success

}
Defines:

buffer_write, used in chunks 506, 507, and 509c.
Uses BLOCK_SIZE 440a, buffer_cache 509a, BUFFER_CACHE_SIZE 508b, buffer_lock 509a, memcpy 596c,

mutex_lock 366a, mutex_unlock 366c, and scheduler_is_active 276e.
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e obvious difference is that writing to the buffer cache always succeeds because we
either update an existing entry or create a new entry. Creating a new one is not a problem
as long as there remain free entries:

[511a]⟨buffer cache: find or create free entry; sets pos 511a⟩≡ (510b)
pos = -1; // new search
for (int i = 0; i < BUFFER_CACHE_SIZE; i++) {

if (buffer_cache[i].dev == -1) {
pos = i; break; // this one is free

}
}

if (pos == -1) { // we found no free entry
⟨buffer cache: free an entry; sets pos 511b⟩

}

buffer_cache[pos].dev = dev;
buffer_cache[pos].blockno = blockno;
buffer_cache[pos].count = 0;

Uses buffer_cache 509a and BUFFER_CACHE_SIZE 508b.

is code prepares the buffer cache entry by seing its dev and blockno members. e
memsetc command above would also zero out the buffer’s contents, but this is not needed
since it will be overwrien immediately.

Finally we need to say how to find an entry when all entries are in use. is asks for a
replacement strategy and we’ll implement a simple “least oen used” strategy.

[511b]⟨buffer cache: free an entry; sets pos 511b⟩≡ (511a)
begin_buffer_search: // find first clean entry
pos = -1;
for (int i = 0; i < BUFFER_CACHE_SIZE; i++) {

if (buffer_cache[i].dirty == false) {
pos = i; break; // end loop

}
}
if (pos == -1) {

buffer_sync (0); // all buffers are dirty
goto begin_buffer_search;

}

int least_used_val = buffer_cache[pos].count;

for (int i = pos+1; i < BUFFER_CACHE_SIZE; i++) {
if (buffer_cache[i].count < least_used_val && buffer_cache[i].dirty == false) {

// this entry is clean and was accessed less often
least_used_val = buffer_cache[i].count;
pos = i; // update candidate

}
}

Uses buffer_cache 509a, BUFFER_CACHE_SIZE 508b, buffer_sync 512b, and least_used_val.
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When we want to force a synchronization of the buffer (i. e., writing dirty entries to disk
and thereby making them clean), we call the buffer_syncb function

[512a] ⟨function prototypes 45a⟩+≡ (44a) ◁ 509c 518c ▷
void buffer_sync (boolean lock_buffer);

which takes one argument indicating whether the buffer_locka needs to be acquired:
[512b] ⟨function implementations 100b⟩+≡ (44a) ◁ 510b 512c ▷

void buffer_sync (boolean lock_buffer) {
_set_statusline ("[B]", 34);
if (lock_buffer) mutex_lock (buffer_lock);

for (int i = 0; i < BUFFER_CACHE_SIZE; i++) {
if (buffer_cache[i].dirty == true) {

writeblock_raw (buffer_cache[i].dev, buffer_cache[i].blockno,
(char*)buffer_cache[i].buf, DONT_UPDATE_BUF);

buffer_cache[i].dirty = false;
}

}
if (lock_buffer) mutex_unlock (buffer_lock);
_set_statusline ("[ ]", 34);

}
Defines:

buffer_sync, used in chunks 511–13.
Uses _set_statusline 337b, buffer_cache 509a, BUFFER_CACHE_SIZE 508b, buffer_lock 509a, DONT_UPDATE_BUF 507a,

mutex_lock 366a, mutex_unlock 366c, and writeblock_raw 507b.

We also add a function buffer_containsc which lets us query whether a specific block is
currently buffered:

[512c] ⟨function implementations 100b⟩+≡ (44a) ◁ 512b 516d ▷
boolean buffer_contains (int dev, int blockno) {

// don't use the buffer before the scheduler is up
if (!scheduler_is_active) { return false; }

// check if buffer cache holds this block
for (int i = 0; i < BUFFER_CACHE_SIZE; i++) {

if ((buffer_cache[i].dev == dev) && (buffer_cache[i].blockno == blockno)) {
return true; // found it!

}
}
return false;

}
Defines:

buffer_contains, used in chunk 507b.
Uses buffer_cache 509a, BUFFER_CACHE_SIZE 508b, and scheduler_is_active 276e.

In order to let the user synchronize the buffer cache (before shuing down the U ma-
chine), we provide a syncd system call:

[512d] ⟨syscall prototypes 173b⟩+≡ (202a) ◁ 493a 565b ▷
void syscall_sync (context_t *r);
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[513a]⟨syscall functions 174b⟩+≡ (202b) ◁ 493b 565c ▷
void syscall_sync (context_t *r) {

// this syscall takes no arguments
buffer_sync (1); // with lock

}
Defines:

syscall_sync, used in chunks 512d and 513b.
Uses buffer_sync 512b and context_t 142a.

[513b]⟨initialize syscalls 173d⟩+≡ (44b) ◁ 493d 565a ▷
install_syscall_handler (__NR_sync, syscall_sync);

Uses __NR_sync 204c, install_syscall_handler 201b, and syscall_sync 513a.

e system call will be available via the user mode library function
[513c]⟨ulixlib function prototypes 174c⟩+≡ (48a) ◁ 493e 568a ▷

void sync ();

that we implement here: It provides no arguments, so we use syscall1c.
[513d]⟨ulixlib function implementations 174d⟩+≡ (48b) ◁ 493f 568b ▷

void sync () { syscall1 (__NR_sync); }
Defines:

sync, used in chunk 513c.
Uses __NR_sync 204c and syscall1 203c.

Syncing will be done by the following swapper process which needs to be started during
system initialization:

[513e]⟨lib-build/tools/swapper.c 311b⟩+≡ ◁ 311b
#include "../ulixlib.h"
int main () {

int pid = getpid ();
if (pid != 2) { printf ("swapper: don't start_ me manually.\n"); exit (1); }
setterm (9); setpsname ("[swapper]");
int init_frames = get_free_frames ();
int last_free_frames;
int free_frames = init_frames;
unsigned int counter = 0;
#define THRESHOLD (init_frames - 500)
for (;;) {

last_free_frames = free_frames;
free_frames = get_free_frames ();
if (free_frames != last_free_frames) {

printf ("[%d.%d] swapper: %d free frames. threshold = %d.",
pid, counter++, free_frames, THRESHOLD);

if (free_frames < THRESHOLD) {
printf ("calling free_a_frame (%d < %d)\n", free_frames, THRESHOLD);
free_a_frame ();

} else {
printf ("\n");

}
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}
}

}
Uses exit 218a, free_a_frame 310e, free_frames 112b, get_free_frames 310e, getpid 223b, main 44b, printf 601a,

setterm 328g, and THRESHOLD.

We launch that program from the init process which guarantees that it will always have
process ID 2; we also prevent that process against being killed.

13.4 Serial Hard Disk
Talking to device controllers requires knowledge of the protocols which those controllers
understand. In later sections you will see how this is done for floppy and hard disk con-
trollers, but we start with an example that is easier to understand, though it introduces
a “device” that does not exist in real life: the serial hard disk. We provide support for a
hypothetical disk which is connected to a serial port, and we can only make it work in an
emulated machine (or with a second PC which takes the part of the serial disk).

Testing this code requires that you

• run U in a virtual machine which supports two serial ports and that you
• add an external program which connects to the (virtual) second serial port, accepting

commands and sending data back and forth.

It takes a lile more than that, though, since we want to emulate the “normal” behav-
ior of a disk controller. In real life, transfers use DMA (direct memory access). At the
lowest level, the disk driver creates a DMA_READ or DMA_WRITE message and sends it to the
controller. By itself, neither of these is a blocking action, since the disk controller will
handle the transfer of data from the hard disk to memory (reading) or from memory to
the disk (writing) independently of the CPU which continues executing. However, the
process which initiated the transfer must be blocked anyway, since reading from the disk
will take a while (and writing might not be safe if it continued and possibly changed the
data which are currently wrien). Aer completion the disk controller creates an inter-
rupt, the corresponding interrupt handler starts and puts the process back into the ready
queue.

e actual DMA transfers work with physical memory addresses, so code using DMA
must always know where data is or will be stored in physical memory.

Our serial hard disk works differently, it uses inin, out and out commands to read or write
single bytes through the serial port, and it can use virtual memory. In a simple implemen-
tation of this method the process would never block, it would just take a while to send or
receive the data, and the scheduler would switch back and forth between this process and
others.

In order to emulate “proper” disk controller behavior we take the following steps:

• Each time that a process starts a disk read/write operation, we create a special buffer
for this transfer (which knows what data to send in what direction) and put it in a
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disk queue; we then block the process. We limit the queue size so that no more than
100 processes may create an entry at the same time (the 101st process would fail and
exit).

• Sending data via the serial port can happen immediately, while receiving depends on
the other side (our external process). When the other side sends a byte, it causes an
interrupt for the serial port, and inside the U interrupt handler we fill a different
buffer with that byte. So when “reading” in the timer handler, we don’t actually talk
to the serial port, but instead just copy data from one buffer to another.

• We do not allow a read and a write operation at the same time, since this would
overcomplicate maers. Instead at each moment, we either read a whole sector, write
one or do not access the serial disk at all.

• We add extra functions for non-blocking non-blocking I/Odata transfer, because when we let the kernel
(not processes) access the disk, we have nothing that we can block. Since this is the
easier type of transfer, we start with it.

13.4.1 Kernel Code for the Serial Disk
We start with defining the buffer (which we create as a ring buffer):

[515a]⟨type definitions 91⟩+≡ (44a) ◁ 508c 541b ▷
struct serial_disk_buffer_entry {

int pid; // process ID; -1 if kernel
short status; // New, Transfer, Finished, see BUF_STAT_*
short direction; // 100 = read_, 101 = write
unsigned int secno; // sector number
memaddress address; // memory address (in process' address space)
byte sector[BLOCK_SIZE]; // 1024 bytes

};
Defines:

serial_disk_buffer_entry, used in chunks 516, 517c, and 520c.
Uses BLOCK_SIZE 440a and memaddress 46c.

[515b]⟨constants 112a⟩+≡ (44a) ◁ 510a 519b ▷
#define BUF_STAT_NEW 0
#define BUF_STAT_TRANSFER 1
#define BUF_STAT_FINISHED 2
#define BUF_READ 100
#define BUF_WRITE 101
#define SER_BUF_SIZE 100

Defines:
BUF_READ, used in chunks 517c, 518d, 520c, and 522e.
BUF_STAT_FINISHED, used in chunks 518 and 521a.
BUF_STAT_NEW, used in chunk 516d.
BUF_WRITE, used in chunks 517c, 518d, 520c, and 522e.
SER_BUF_SIZE, used in chunks 516, 518, and 521a.

e buffer is just an array with SER_BUF_SIZEb buffer entries, and we mark its current
use with two integers which remember its current start and end:
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[516a] ⟨global variables 92b⟩+≡ (44a) ◁ 509a 516b ▷
struct serial_disk_buffer_entry serial_disk_buffer[SER_BUF_SIZE];
int serial_disk_buffer_start = 0; // initialize start and end of buffer usage
int serial_disk_buffer_end = 0; // interval in use is [start_, end[,

// [0,0[ is empty
Defines:

serial_disk_buffer, used in chunks 516d, 517c, 519d, and 520c.
serial_disk_buffer_end, used in chunks 516d, 517c, and 520c.
serial_disk_buffer_start, used in chunks 516–21.

Uses SER_BUF_SIZE 515b and serial_disk_buffer_entry 515a.

is way we can always check whether the buffer is empty by testing if the two variables
serial_disk_buffer_starta and serial_disk_buffer_enda are equal.

e buffer shall be protected by a lock:
[516b] ⟨global variables 92b⟩+≡ (44a) ◁ 516a 517a ▷

lock serial_disk_lock;
Defines:

serial_disk_lock, used in chunks 516, 517c, and 520c.
Uses lock 365a.

[516c] ⟨initialize kernel global variables 184d⟩+≡ (44b) ◁ 363d
serial_disk_lock = get_new_lock ("serial disk");

Uses get_new_lock 367b and serial_disk_lock 516b.

Next we provide a function with which we can enter a new entry in the buffer:
[516d] ⟨function implementations 100b⟩+≡ (44a) ◁ 512c 517b ▷

int serial_disk_enter (int pid, short direction, uint secno, uint address) {
mutex_lock (serial_disk_lock);

// check if buffer is full
if ( (serial_disk_buffer_end+1) % SER_BUF_SIZE == serial_disk_buffer_start ) {

mutex_unlock (serial_disk_lock);
return -1; // fail

}
struct serial_disk_buffer_entry *entry;
entry = &serial_disk_buffer[serial_disk_buffer_end];
entry->status = BUF_STAT_NEW; entry->pid = pid;
entry->direction = direction; entry->secno = secno;
entry->address = address;
short tmp = serial_disk_buffer_end;
serial_disk_buffer_end = (serial_disk_buffer_end+1) % SER_BUF_SIZE;

mutex_unlock (serial_disk_lock);
return tmp; // tell the caller what entry number we used

}
Defines:

serial_disk_enter, used in chunks 518d and 522e.
Uses BUF_STAT_NEW 515b, mutex_lock 366a, mutex_unlock 366c, SER_BUF_SIZE 515b, serial_disk_buffer 516a,

serial_disk_buffer_end 516a, serial_disk_buffer_entry 515a, serial_disk_buffer_start 516a,
and serial_disk_lock 516b.
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13.4.1.1 Non-Blocking Read/Write Operations

Now it is time to provide the non-blocking functions for reading and writing. We com-
bine them in one function which does the appropriate thing, based on the buffer entry’s
direction field. e function takes no arguments since it finds all the necessary informa-
tion in the buffer entry.

[517a]⟨global variables 92b⟩+≡ (44a) ◁ 516b 519c ▷
volatile int serial_disk_reader = 0; // are we currently reading?

Defines:
serial_disk_reader, used in chunks 518b, 519d, and 521a.

When we want to send a sector number (as part of a request) we have to split it into bytes;
a sector number is a 32 bit wide integer, so four bytes are needed:

[517b]⟨function implementations 100b⟩+≡ (44a) ◁ 516d 517c ▷
void serial_disk_send_sector_number (uint secno) {

/* send... */ uart2putc ((byte)(secno % 256)); // lowest byte
secno /= 256; uart2putc ((byte)(secno % 256)); // 2nd lowest byte
secno /= 256; uart2putc ((byte)(secno % 256)); // 3rd lowest byte
secno /= 256; uart2putc ((byte)(secno % 256)); // highest byte

}
Defines:

serial_disk_send_sector_number, used in chunks 518 and 521a.
Uses uart2putc 345c.

e next function reads or writes a buffer.
[517c]⟨function implementations 100b⟩+≡ (44a) ◁ 517b 518d ▷

int serial_disk_non_blocking_rw () {
mutex_lock (serial_disk_lock);

serial_hard_disk_blocks = false; // we don't block
if (serial_disk_buffer_start == serial_disk_buffer_end) {

mutex_unlock (serial_disk_lock); return -1; // buffer is empty
}
struct serial_disk_buffer_entry *entry;
entry = &serial_disk_buffer[serial_disk_buffer_start];
switch (entry->direction) {

case BUF_WRITE: ⟨serial disk: write a buffer 518a⟩; break;
case BUF_READ: ⟨serial disk: read a buffer 518b⟩; break;
default: mutex_unlock (serial_disk_lock); return -1;

}
mutex_unlock (serial_disk_lock);
return 0;

}
Defines:

serial_disk_non_blocking_rw, used in chunk 518d.
Uses BUF_READ 515b, BUF_WRITE 515b, mutex_lock 366a, mutex_unlock 366c, serial_disk_buffer 516a,

serial_disk_buffer_end 516a, serial_disk_buffer_entry 515a, serial_disk_buffer_start 516a,
serial_disk_lock 516b, and serial_hard_disk_blocks 519c.

Writing is the simpler task: we only send the write command and the data via the serial
port; we need not wait for a response since the serial port controller will not send one.
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[518a] ⟨serial disk: write a buffer 518a⟩≡ (517c 520c)
uart2putc (CMD_PUT); serial_disk_send_sector_number (entry->secno);
byte *addressptr = (byte*)(entry->address);
for (int i = 0; i < 1024; i++) {

uart2putc (*addressptr); addressptr++;
}
entry->status = BUF_STAT_FINISHED;
serial_disk_buffer_start++;
serial_disk_buffer_start %= SER_BUF_SIZE;

Uses BUF_STAT_FINISHED 515b, CMD_PUT 519a, SER_BUF_SIZE 515b, serial_disk_buffer_start 516a,
serial_disk_send_sector_number 517b, and uart2putc 345c.

CMD_PUTa will be defined soon; along with CMD_GETa it is used to tell the serial disk
whether we initiate a write or read operation.

Reading is more complicated and requires the help of an interrupt handler; in the non-
blocking implementation we do not put processes to sleep while a read operation is active.
Instead we simply wait for its completion by repeatedly using the CPU instruction hlt.

[518b] ⟨serial disk: read a buffer 518b⟩≡ (517c)
uart2putc (CMD_GET); serial_disk_send_sector_number (entry->secno);
serial_disk_reader = 1; // we're in read mode,

// this value will be changed in the IRQ handler
while (serial_disk_reader == 1) asm ("hlt"); // wait for data
entry->status = BUF_STAT_FINISHED;
serial_disk_buffer_start++;
serial_disk_buffer_start %= SER_BUF_SIZE;
// copy buffer to target memory location
memcpy ((char*)(entry->address), (char*)&(entry->sector), BLOCK_SIZE);

Uses BLOCK_SIZE 440a, BUF_STAT_FINISHED 515b, CMD_GET 519a, memcpy 596c, SER_BUF_SIZE 515b,
serial_disk_buffer_start 516a, serial_disk_reader 517a, serial_disk_send_sector_number 517b,
and uart2putc 345c.

Next we combine our functions to provide non-blocking read and write functions for
the kernel (nb is short for “non-blocking”):

[518c] ⟨function prototypes 45a⟩+≡ (44a) ◁ 512a 520b ▷
void readblock_nb_serial (int secno, char *buf);
void writeblock_nb_serial (int secno, char *buf);

[518d] ⟨function implementations 100b⟩+≡ (44a) ◁ 517c 519d ▷
void readblock_nb_serial (int secno, char *buf) {

int pid; if (scheduler_is_active) pid = current_task; else pid = -1;
serial_disk_enter (pid, BUF_READ, secno, (uint)buf);
serial_disk_non_blocking_rw ();

}

void writeblock_nb_serial (int secno, char *buf) {
int pid; if (scheduler_is_active) pid = current_task; else pid = -1;
serial_disk_enter (pid, BUF_WRITE, secno, (uint)buf);
serial_disk_non_blocking_rw ();

}
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Defines:
writeblock_nb_serial, used in chunk 518c.

Uses BUF_READ 515b, BUF_WRITE 515b, current_task 192c, scheduler_is_active 276e, serial_disk_enter 516d,
and serial_disk_non_blocking_rw 517c.

ese are the commands which we can send to the external controller process:
[519a]⟨serial-hd/serial-hd-controller.h 519a⟩≡ (519b)

#define CMD_STAT 1 // status query
#define CMD_GET 2 // GET a block (1024 bytes)
#define CMD_PUT 3 // PUT a block (1024 bytes)
#define CMD_TERM 99 // terminate controller

Defines:
CMD_GET, used in chunks 518b and 521a.
CMD_PUT, used in chunk 518a.

We use them both in the U code as well as in the controller program.
[519b]⟨constants 112a⟩+≡ (44a) ◁ 515b 521c ▷

⟨serial-hd/serial-hd-controller.h 519a⟩

13.4.1.2 The Interrupt Handler

e interrupt handler serial_hard_disk_handlerd copies a byte from the serial port into
the buffer, and if the buffer is full, it resets the serial_disk_readera variable to indicate
that a whole block (of 1024 bytes) has been transferred.

[519c]⟨global variables 92b⟩+≡ (44a) ◁ 517a 522a ▷
char serial_hard_disk_buffer[1024];
int serial_hard_disk_pos = 0;
boolean serial_hard_disk_blocks = false;

Defines:
serial_hard_disk_blocks, used in chunks 517c, 519d, and 520c.
serial_hard_disk_buffer, used in chunk 519d.
serial_hard_disk_pos, used in chunk 519d.

Wewill also have to read from the second serial port, so we provide a uart2getc function
which reads a single character from that port. ere is no corresponding uartgetc function
for the first port, but it would look identical, except for using uartb[0] and IO_COM1a
instead of uartb[1] and IO_COM2a:

[519d]⟨function implementations 100b⟩+≡ (44a) ◁ 518d 520c ▷
static int uart2getc () {

if (!uart[1]) { return -1; }
if (!(inportb (IO_COM2+5) & 0x01)) { return -1; }
return inportb (IO_COM2+0);

}

void serial_hard_disk_handler (context_t *r) {
char c = uart2getc ();
serial_hard_disk_buffer[serial_hard_disk_pos++] = c;
if (serial_hard_disk_pos == 1024) {

serial_hard_disk_pos = 0;
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// copy buffer to proper serial hard disk buffer
memcpy ( &(serial_disk_buffer[serial_disk_buffer_start].sector),

&serial_hard_disk_buffer, 1024 );
serial_disk_reader = 0; // reading a sector is finished
if (serial_hard_disk_blocks) { ⟨serial hard disk: wake process 522c⟩ }

}
}

Defines:
serial_hard_disk_handler, used in chunk 520a.

Uses context_t 142a, inportb 133b, IO_COM2 344a, memcpy 596c, serial_disk_buffer 516a, se-
rial_disk_buffer_start 516a, serial_disk_reader 517a, serial_hard_disk_blocks 519c, se-
rial_hard_disk_buffer 519c, serial_hard_disk_pos 519c, and uart 344b.

Finally we enter this interrupt handler in the handler list and enable the interrupt.
[520a] ⟨setup serial hard disk 345d⟩+≡ (45c) ◁ 345d

install_interrupt_handler (IRQ_COM2, serial_hard_disk_handler);
enable_interrupt (IRQ_COM2);

Uses enable_interrupt 140b, install_interrupt_handler 146c, IRQ_COM2 132, and serial_hard_disk_handler 519d.

Note that we’re executing a code chunk ⟨serial hard disk: wake process 522c⟩ if we’re
currently working on a request for which blocking was enabled. We explain this in the
next subsection.

13.4.1.3 Blocking Read/Write Operations

For a multitasking system it is inacceptable to work with blocking I/O operations, at least
for processes. We will now implement the blocking read and write functions. For writing
there is no difference (because the transfer commands to the serial port finish immedi-
ately), but for reading we will put the calling process to sleep until a whole block of data
has been read. e function

[520b] ⟨function prototypes 45a⟩+≡ (44a) ◁ 518c 522d ▷
int serial_disk_blocking_rw ();

looks just like serial_disk_no_blocking_rw with two differences:

• It sets serial_hard_disk_blocksc to true (to indicate that we want to block),
• and in the switch expression it uses a fresh code chunk for reading.

[520c] ⟨function implementations 100b⟩+≡ (44a) ◁ 519d 522e ▷
int serial_disk_blocking_rw () {

mutex_lock (serial_disk_lock);
serial_hard_disk_blocks = true; // we block
if (serial_disk_buffer_start == serial_disk_buffer_end) {

mutex_unlock (serial_disk_lock); return -1; // buffer is empty
}
struct serial_disk_buffer_entry *entry;
entry = &serial_disk_buffer[serial_disk_buffer_start];
switch (entry->direction) {

case BUF_WRITE: ⟨serial disk: write a buffer 518a⟩; break;
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case BUF_READ: ⟨serial disk: read a buffer and block 521a⟩; break;
default: mutex_unlock (serial_disk_lock); return -1;

}
mutex_unlock (serial_disk_lock);
return 0;

}
Defines:

serial_disk_blocking_rw, used in chunks 520b and 522e.
Uses BUF_READ 515b, BUF_WRITE 515b, mutex_lock 366a, mutex_unlock 366c, serial_disk_buffer 516a,

serial_disk_buffer_end 516a, serial_disk_buffer_entry 515a, serial_disk_buffer_start 516a,
serial_disk_lock 516b, and serial_hard_disk_blocks 519c.

e difference between the ⟨serial disk: read a buffer 518b⟩ and the following new code
chunk is that we don’t do busy waiting (as above) but the process to sleep. Only one line
was changed (marked with [*]).

[521a]⟨serial disk: read a buffer and block 521a⟩≡ (520c)
uart2putc (CMD_GET);
⟨begin critical section in kernel 380a⟩
serial_disk_send_sector_number (entry->secno);
serial_disk_reader = 1; // we're in read mode,

// this value will be changed in the IRQ handler
while (serial_disk_reader == 1) { ⟨serial disk: put process to sleep 521b⟩ } // [*]
entry->status = BUF_STAT_FINISHED;
serial_disk_buffer_start++;
serial_disk_buffer_start %= SER_BUF_SIZE;
// copy buffer to target memory location
memcpy ((char*)(entry->address), (char*)&(entry->sector), BLOCK_SIZE);

Uses BLOCK_SIZE 440a, BUF_STAT_FINISHED 515b, CMD_GET 519a, memcpy 596c, SER_BUF_SIZE 515b,
serial_disk_buffer_start 516a, serial_disk_reader 517a, serial_disk_send_sector_number 517b,
and uart2putc 345c.

In the non-blocking code we simply executed the assembler instruction hlt in the loop,
we actively waited for the transfer to complete. Here we put the process to sleep:

[521b]⟨serial disk: put process to sleep 521b⟩≡ (521a)
if (scheduler_is_active) {

// we access thread table; interrupts are off
block (&serial_disk_queue, TSTATE_WAITSD);
⟨end critical section in kernel 380b⟩
⟨resign 221d⟩

} else {
⟨end critical section in kernel 380b⟩

}
Uses scheduler_is_active 276e, serial_disk_queue 522a, and TSTATE_WAITSD 521c.

We define the new state TSTATE_WAITSDc and the serial_disk_queuea blocked queue:
[521c]⟨constants 112a⟩+≡ (44a) ◁ 519b 525a ▷

#define TSTATE_WAITSD 12
Defines:

TSTATE_WAITSD, used in chunks 521b and 564c.
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[522a] ⟨global variables 92b⟩+≡ (44a) ◁ 519c 529a ▷
blocked_queue serial_disk_queue;

Defines:
serial_disk_queue, used in chunks 521, 522, and 564c.

Uses blocked_queue 183a.

e queue must also be initialized:
[522b] ⟨initialize system 45b⟩+≡ (44b) ◁ 509b 529b ▷

initialize_blocked_queue (&serial_disk_queue);
Uses initialize_blocked_queue 183c and serial_disk_queue 522a.

Since we need to wake the process up when the block was transmied, we add the
wake-up call to the interrupt handler. We’ve included the following code chunk in the
serial_hard_disk_handlerd function:

[522c] ⟨serial hard disk: wake process 522c⟩≡ (519d)
if (scheduler_is_active) {

int tid;
if ((tid = serial_disk_queue.next) != 0)

deblock (tid, &serial_disk_queue);
}

Uses deblock 186b, scheduler_is_active 276e, and serial_disk_queue 522a.

[522d] ⟨function prototypes 45a⟩+≡ (44a) ◁ 520b 528b ▷
void readblock_serial (int secno, char *buf);
void writeblock_serial (int secno, char *buf);

[522e] ⟨function implementations 100b⟩+≡ (44a) ◁ 520c 528c ▷
void readblock_serial (int secno, char *buf) {

int pid; if (scheduler_is_active) pid = current_task; else pid = -1;
serial_disk_enter (pid, BUF_READ, secno, (uint)buf);
serial_disk_blocking_rw ();

}

void writeblock_serial (int secno, char *buf) {
int pid; if (scheduler_is_active) pid = current_task; else pid = -1;
serial_disk_enter (pid, BUF_WRITE, secno, (uint)buf);
serial_disk_blocking_rw ();

}
Defines:

readblock_serial, used in chunk 506b.
writeblock_serial, used in chunks 507b and 522d.

Uses BUF_READ 515b, BUF_WRITE 515b, current_task 192c, scheduler_is_active 276e, serial_disk_blocking_rw
520c, and serial_disk_enter 516d.

13.4.2 The External Controller Process
e controller is a simple program that opens a TCP socket to talk to the serial port of the
emulated PC that executes U. e functions readsect and writesect transfer individual
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blocks. e program only reacts to requests that come from the U machine. In that
way it simulates the behavior of a disk controller.

[523]⟨serial-hd/serial-hd-controller.c 523⟩≡
#include <fcntl.h> // open()
#include <sys/types.h> // socket()
#include <sys/socket.h> // socket()
#include <netinet/in.h> // socket()
#include <unistd.h> // close()
#include <string.h> // bzero()
#include <stdio.h>
#include <unistd.h> // lseek: SEEK_SET
#include "serial-hd-controller.h"

int socks; // socket descriptor for ULIX connection
int fd = -1; // file descriptor
int numsec = -1; // number of sectors (1024 bytes) in disk image
byte sector[BLOCK_SIZE];

void readsocket (byte *buf, short len) {
// We use this instead of recv(), since recv() does not always
// read the expected number of bytes.
int total = 0;
while (total < len) {

total += recv (socks, buf+total, len-total, 0);
};

};

void openfile () { fd = open ("minix1.img", O_RDWR); numsec = 2880; };

void closefile () { close (fd); fd = -1; numsec = -1; }

void readsect (int i) {
lseek (fd, i*BLOCK_SIZE, SEEK_SET); // get sector from disk image
int res = read (fd, &sector, BLOCK_SIZE);
send (socks, &sector, BLOCK_SIZE, 0); // send it to ULIX

};

void writesect (int i) {
readsocket ((byte*) &sector, BLOCK_SIZE); // get sector from ULIX
lseek (fd, i*BLOCK_SIZE, SEEK_SET); // write it to disk image
write (fd, &sector, BLOCK_SIZE);

};

int main () {
openfile (); // open disk image
socks = socket (AF_INET, SOCK_STREAM, 0); // connect to localhost:4444
struct sockaddr_in serveraddr;
bzero (&serveraddr, sizeof (serveraddr));
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inet_pton (AF_INET, "127.0.0.1", &(serveraddr.sin_addr));
serveraddr.sin_family = AF_INET;
serveraddr.sin_port = htons (4444);

// Create connection
connect (socks, (struct sockaddr*) &serveraddr, sizeof (serveraddr));

byte cmd_type;
int sectornumber;
setbuf (stdout, 0);

while (1) {
readsocket (&cmd_type, 1);
switch (cmd_type) {

case CMD_STAT: printf ("ULIX asked for status\n"); break;
case CMD_GET: readsocket ((byte*)&sectornumber, 4);

printf ("ULIX asked get %d\n", sectornumber);
readsect (sectornumber); break;

case CMD_PUT: readsocket ((byte*)&sectornumber, 4);
printf ("ULIX asked put %d\n", sectornumber);
writesect (sectornumber); break;

case CMD_TERM: printf ("ULIX terminated connection. Quitting.\n");
goto finished;

default: printf ("ERROR in Command from ULIX\n");
};

}
finished: // Close connection
close (socks); closefile ();

}

In order to connect the external process to qemu (running U), we start qemu as follows:
[524] ⟨qemu invocation 524⟩≡

qemu -m 64 -fda ulix-fd0.img -d cpu_reset -s -serial mon:stdio \
-serial tcp::4444,server

Note that there are two -serial arguments; the first one connects COM1with the terminal
from which qemu was started; the second one connects COM2 with a TCP server on port
4444. at’s the one our external program is going to connect to.

e final release of U does not use the serial hard disk any more because its depen-
dency on the external controller program made using the system uncomfortable. In the
following two sections we present our hard disk and floppy disk drivers.
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13.5 The Hard Disk Controller
As mentioned before, we will let our hard disk driver use non-DMA data transfer, called
PIO (programmed input/output). PIOe code in this section is based on the IDE driver code
of the xv6 operating system [CKM12].

13.5.1 Sending Commands to the Controller
Communication with a device always needs to follow strict protocols, this holds for the
hard disk controller, too. e following description is full of technical details about con-
troller-internal registers and the ports used to access them, it also contains some assem-
bler code. If you want to skip this, here’s a summary: in this subsection we’ll define two
code chunks ⟨ide: read sector sector on device hd 527b⟩ and ⟨ide: write sector sector on
device hd 527c⟩ which can be used for sending the controller the commands for initiating
the transfer and for copying a sector from memory to the controller’s internal memory.
e other direction (from the controller’s memory to RAM) will be dealt with inside the
interrupt handler which we’ll discuss in one of the following subsections.

We’ll define some constants which will be used in the following code: e interrupt
number for the (first) IDE controller is 14 (IRQ_IDE). e controller accepts two com-
mands for reading (0x20; IDE_CMD_READa) and writing (0x30; IDE_CMD_WRITEa), and when
we query the controller’s status, there are four possible results which we’ll be prepared to
handle (busy, data ready, device fault and error):

[525a]⟨constants 112a⟩+≡ (44a) ◁ 521c 525b ▷
#define IDE_CMD_READ 0x20 // read from disk, with retries
#define IDE_CMD_WRITE 0x30 // write to disk, with retries
#define IDE_CMD_IDENT 0xec // identify disk
#define IDE_BSY 0x80 // 0b10000000 (bit 7), device busy
#define IDE_DRDY 0x40 // 0b01000000 (bit 6), device ready
#define IDE_DF 0x20 // 0b00100000 (bit 5), drive fault
#define IDE_ERR 0x01 // 0b00000001 (bit 0), error

Defines:
IDE_BSY, used in chunk 533b.
IDE_CMD_IDENT, used in chunk 534b.
IDE_CMD_READ, used in chunk 527b.
IDE_CMD_WRITE, used in chunk 527c.
IDE_DF, used in chunk 533b.
IDE_DRDY, used in chunk 533b.
IDE_ERR, used in chunk 533b.
IRQ_IDE, used in chunk 534b.

In order to talk to the controller we use the ports 0x1f0 – 0x1f7 (the port numbers can be
found in Seagate’s ATA Interface Reference Manual [Sea93, p. 13]), we give them names
to make things easier:

[525b]⟨constants 112a⟩+≡ (44a) ◁ 525a 529d ▷
// IDE output
#define IO_IDE_SEC_COUNT 0x1f2 // sector count register (read_/write_)
#define IO_IDE_SECTOR 0x1f3 // (32 bits in 0x1f3..0x1f6)
#define IO_IDE_DISKSEL 0x1f6 // disk select and upper 4 bits of sector no.
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#define IO_IDE_COMMAND 0x1f7 // command register
#define IO_IDE_DEVCTRL 0x3f6 // device control register
// IDE input
#define IO_IDE_DATA 0x1f0 // data (read_/write_)
#define IO_IDE_STATUS 0x1f7 // status register (identical to command reg.)

Defines:
IO_IDE_COMMAND, used in chunks 527 and 534b.
IO_IDE_DATA, used in chunks 532 and 534b.
IO_IDE_DEVCTRL, used in chunk 526.
IO_IDE_DISKSEL, used in chunks 526 and 534b.
IO_IDE_SEC_COUNT, used in chunk 526.
IO_IDE_SECTOR, used in chunk 527a.
IO_IDE_STATUS, used in chunks 532–34.

Note that IO_IDE_COMMANDb and IO_IDE_STATUSb are the same port number (0x1f7), but
depending on the type of access, they refer to different registers: When reading that port,
we access the status registerstatus/com-

mand register
, and when writing, we access the command register.

e read and write commands are specified in the “AT Aachment Interface for Disk
Drives” document [Lam94, p. 40]; 0x20 and 0x30 are the read/write commands which trig-
ger data transfer with retries (in case of errors); there are also further commands (0x21,
0x31) which trigger corresponding reads or writes without retries. e kernel can send
a command by writing the required value into the controller’s command register via the
IO_IDE_COMMANDb port 0x1f7 (outb IDE_CMD_READa, 0x1f7).

e status values represent the bit positions 7 (0x80 =  = ), 6 (0x40 =  = ), 5
(0x20=  = ) and 0 (0x01=  = ) of the status register [Lam94, p. 34], see Table 13.2.

e read and write commands can make the disk read/write several sectors with one
command. To start such a read or write operation, we need to tell the controller three
things:

• How many sectors shall be read/wrien? is information must be stored in the
sector count registersector count

register
which is accessible via the IO_IDE_SEC_COUNTb port (0x1f2). We

will always read or write just a single sector:
[526] ⟨ide: read/write sector sector on device hd 526⟩≡ (527) 527a ▷

idewait (0);
outportb (IO_IDE_DISKSEL, 0xe0 | (hd<<4)); // select disk
outportb (IO_IDE_DEVCTRL, 0); // generate interrupt
outportb (IO_IDE_SEC_COUNT, 1); // one sector

Uses idewait 533b, IO_IDE_DEVCTRL 525b, IO_IDE_DISKSEL 525b, IO_IDE_SEC_COUNT 525b, and outportb 133b.

7 6 5 4 3 2 1 0
BSY DRDY DWF DSC DRQ CORR IDX ERR

Table 13.2: e status register of the IDE controller.
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• Via the four ports 0x1f3 – 0x1f6, we can specify the 28 bits of a sector number (four
bits are used for selecting the drive, making the target register 32 bits wide):

[527a]⟨ide: read/write sector sector on device hd 526⟩+≡ (527) ◁ 526
outportb (IO_IDE_SECTOR, sector & 0xff);
outportb (IO_IDE_SECTOR+1, (sector >> 8) & 0xff);
outportb (IO_IDE_SECTOR+2, (sector >> 16) & 0xff);
outportb (IO_IDE_SECTOR+3, ((sector >> 24) & 0x0f) | ((0xe + hd) << 4) );

Uses IO_IDE_SECTOR 525b and outportb 133b.

• Finally, we send the IDE_CMD_READa or IDE_CMD_WRITEa command to the controller
via the IO_IDE_COMMANDb port 0x1f7:

[527b]⟨ide: read sector sector on device hd 527b⟩≡ (530c)
⟨ide: read/write sector sector on device hd 526⟩
outportb (IO_IDE_COMMAND, IDE_CMD_READ);

Uses IDE_CMD_READ 525a, IO_IDE_COMMAND 525b, and outportb 133b.

[527c]⟨ide: write sector sector on device hd 527c⟩≡ (530d)
⟨ide: read/write sector sector on device hd 526⟩
outportb (IO_IDE_COMMAND, IDE_CMD_WRITE);

Uses IDE_CMD_WRITE 525a, IO_IDE_COMMAND 525b, and outportb 133b.

Using 28 bits for the sector number allows us to access  =  sectors, thus
the maximum disk size is  ×  =  bytes (128 GByte) which should be
enough for most U uses … is is called LBA28 LBA28(Logical Block Addressing, 28 bits). In
2002, ATA-6 [McL02], the sixth version of the ATA standard, introduced LBA48 which
uses 48 bits to specify sector numbers and allows for much larger disks.

Our IDE driver will not use DMA transfer but instead copy the bytes with in and out
operations, directly talking to the controller.

Now we’re able to send read/write commands to the hard disk controller, and it will
start servicing those requests immediately. But what happens when the disk has read the
sector contents and copied them into the controller’s internal memory? We need to fetch
the data.

e controller is helpful in that it will tell us when it finished its work: it will raise the
IRQ_IDE interrupt (number 14), and our interrupt handler must then copy the data from
the controller to RAM.

We do this by directly reading the data via the controller’s data register (i. e., by reading
from IO_IDE_DATAb). e CPU instruction insl inslcan read four bytes (a 32 bit value) in
one go. For reading the contents of a whole sector we would need / =  of these
insl instructions, but the processor has a way of repeating this command automatically:
if we add a rep rep inslprefix to insl, we get repeated executions of insl witout manually writing
a loop.

e logic of rep insl requires us to fill some registers with proper values:

• e memory address (our buffer) goes into the EDI register (aer each step, EDI will
be incremented by 4),
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• the number of repetitions must be stored in the ECX register (aer each step, ECX will
be decremented; the loop continues while ECX ̸= ),

• and the port number must be stored in the (16 bit) DX register.

us, in C-like pseudo code, rep insl does the following:
[528a] ⟨pseudo code for rep insl 528a⟩≡

while (%ecx != 0) {
*(%edi) = inportl (%ecx); // read 4 bytes, write them to *(%edi)
%edi += 4; // update target memory
%ecx--; // decrement counter

}

In the inline assembler language the registers ECX , DX and EDI can be accessed using "c",
"d" and "D", respectively (see Appendix B for an introduction to gcc inline assembler). rep
can either auto-increment or auto-decrement the target address with each step; in order
to make it increment (like we want), we need to set the direction flagdirection flag of the EFLAGS register
to 0 using the machine instruction cldcld (clear direction flag).

e following function definition sets everything up properly and executes rep insl:
[528b] ⟨function prototypes 45a⟩+≡ (44a) ◁ 522d 528d ▷

static inline void repeat_inportsl (int port, void *addr, int cnt);

[528c] ⟨function implementations 100b⟩+≡ (44a) ◁ 522e 528e ▷
static inline void repeat_inportsl (int port, void *addr, int cnt) {

asm volatile ("cld \n"
"rep insl" :
"=D" (addr), "=c" (cnt) :
"d" (port), "0" (addr), "1" (cnt) :
"memory", "cc");

}
Defines:

repeat_inportsl, used in chunks 528b, 532d, and 534b.

With "0" and "1" we refer to the first two registers used, that is, "D" (EDI) and "c" (ECX );
see also Appendix B.4.

For the other direction, we provide a repeat_outportsle function which looks almost
identical:

[528d] ⟨function prototypes 45a⟩+≡ (44a) ◁ 528b 529c ▷
static inline void repeat_outportsl (int port, void *addr, int cnt);

[528e] ⟨function implementations 100b⟩+≡ (44a) ◁ 528c 530c ▷
static inline void repeat_outportsl (int port, void *addr, int cnt) {

asm volatile ("cld \n"
"rep outsl" :
"=S" (addr), "=c" (cnt) :
"d" (port), "0" (addr), "1" (cnt) :
"cc");

}
Defines:

repeat_outportsl, used in chunks 528d and 532b.
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Instead of EDI, the outsl instruction expects the ESI register to contain the memory
address, which is why we wrote "=S"(addr) instead of "=D"(addr).

13.5.2 The Blocked eue
We define a harddisk_queuea which will contain processes waiting for a hard disk access
operation to finish:

[529a]⟨global variables 92b⟩+≡ (44a) ◁ 522a 530a ▷
blocked_queue harddisk_queue; // processes which wait for the hard disk

Defines:
harddisk_queue, used in chunks 529b, 531a, 532d, 564c, and 606.

Uses blocked_queue 183a.

and we have to initialize this queue:
[529b]⟨initialize system 45b⟩+≡ (44b) ◁ 522b 530b ▷

initialize_blocked_queue (&harddisk_queue);
Uses harddisk_queue 529a and initialize_blocked_queue 183c.

Processes that access a hard disk drive will wait on this queue, and the interrupt handler
will wake up these processes when the operation was completed.

13.5.3 Reading and Writing
Now we use the code presented so far to create two functions

[529c]⟨function prototypes 45a⟩+≡ (44a) ◁ 528d 532c ▷
void readblock_hd (int hd, int blockno, char *buffer);
void writeblock_hd (int hd, int blockno, char *buffer);

which read and write a complete block (1024 bytes). ey will use a buffer hd_bufa
which can contain one sector (512 bytes) and must be protected by a lock. We also declare
a global variable hd_directiona which we set to HD_OP_READd or HD_OP_WRITEd when
we initialize a read or write operation.

[529d]⟨constants 112a⟩+≡ (44a) ◁ 525b 535 ▷
#define HD_OP_READ 0
#define HD_OP_WRITE 1
#define HD_OP_NONE -1

#define HD_SECSIZE 512
Defines:

HD_OP_NONE, used in chunks 530 and 532d.
HD_OP_READ, used in chunks 530c and 532d.
HD_OP_WRITE, used in chunks 530d and 532d.
HD_SECSIZE, used in chunks 530 and 532.

We also need some global variables: hd_bufa is a buffer that can store one sector,
hd_locka is used for locking disk access, and hd_directiona will always be set to one
of the HD_OP_* constants to indicate the current transfer direction.
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[530a] ⟨global variables 92b⟩+≡ (44a) ◁ 529a 534a ▷
char hd_buf[HD_SECSIZE];
lock hd_lock;
char hd_direction;

Defines:
hd_buf, used in chunks 530 and 532.
hd_direction, used in chunks 530 and 532d.
hd_lock, used in chunk 530.

Uses HD_SECSIZE 529d and lock 365a.

We initialize the lock at system start-up:
[530b] ⟨initialize system 45b⟩+≡ (44b) ◁ 529b 544e ▷

hd_lock = get_new_lock ("hard disk");
Uses get_new_lock 367b and hd_lock 530a.

e functions readblock_hdb and writeblock_hdb will transfer 1 KByte blocks of data.
Since the hard disk controller defaults to transferring 512-bytes-sized sectors, we first
provide functions for reading and writing such sectors.

[530c] ⟨function implementations 100b⟩+≡ (44a) ◁ 528e 530d ▷
void readsector_hd (int hd, int sector, char *buffer) {

mutex_lock (hd_lock);
hd_direction = HD_OP_READ;
⟨begin critical section in kernel 380a⟩
⟨ide: read sector sector on device hd 527b⟩
while (hd_direction == HD_OP_READ) { ⟨ide: put process to sleep 531a⟩ }
⟨ide: read data from the controller 532a⟩
memcpy (buffer, hd_buf, HD_SECSIZE);
hd_direction = HD_OP_NONE;

mutex_unlock (hd_lock);
}

Uses hd_buf 530a, hd_direction 530a, hd_lock 530a, HD_OP_NONE 529d, HD_OP_READ 529d, HD_SECSIZE 529d,
memcpy 596c, mutex_lock 366a, and mutex_unlock 366c.

For writing, the sequence of events is slightly different; we first transfer the data to the
controller and then put the process to sleep, leing it wait for the transfer to finish:

[530d] ⟨function implementations 100b⟩+≡ (44a) ◁ 530c 531b ▷
void writesector_hd (int hd, int sector, char *buffer) {

mutex_lock (hd_lock);
hd_direction = HD_OP_WRITE;
memcpy (hd_buf, buffer, HD_SECSIZE);
⟨begin critical section in kernel 380a⟩
⟨ide: write sector sector on device hd 527c⟩
⟨ide: write data to the controller 532b⟩
while (hd_direction == HD_OP_WRITE) { ⟨ide: put process to sleep 531a⟩ }
hd_direction = HD_OP_NONE;

mutex_unlock (hd_lock);
}

Defines:
writesector_hd, used in chunk 531b.

Uses hd_buf 530a, hd_direction 530a, hd_lock 530a, HD_OP_NONE 529d, HD_OP_WRITE 529d, HD_SECSIZE 529d,
memcpy 596c, mutex_lock 366a, and mutex_unlock 366c.
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Why do we put the process to sleep anyway? While the PIO transfer between system
RAM and the controller’s memory wastes some time (and a DMA would save that waste),
the actual transfer between controller and disk takes a lot longer—this transfer is what
the process must wait for to complete.

• When the process reads from the disk, we cannot get around waiting anyway: the
data will not be available before the transfer completes. Puing the process to sleep
guarantees that execution of the process only continues aer the data have been read
(and stored in the buffer that this process has set up for reading).

• In the case of writing, we could in principle let the process continue immediately aer
sending the data off to the controller. e process need not wait for the controller-to-
disk transfer to finish. But if it issued another write request immediately, that would
get in the way of the previous one. To make things simpler, we block the process
until the write operation is done.

When we put the process to sleep we use the waiting state TSTATE_WAITHDa defined on
page 180.

[531a]⟨ide: put process to sleep 531a⟩≡ (530)
if (scheduler_is_active) {

// interrupts are off; we access the thread table
block (&harddisk_queue, TSTATE_WAITHD);
⟨end critical section in kernel 380b⟩
⟨resign 221d⟩

} else {
⟨end critical section in kernel 380b⟩

}
Uses harddisk_queue 529a, scheduler_is_active 276e, and TSTATE_WAITHD 180a.

e block read/write functions are now implemented as follows:
[531b]⟨function implementations 100b⟩+≡ (44a) ◁ 530d 532d ▷

void readblock_hd (int hd, int blockno, char *buffer) {
readsector_hd (hd, blockno*2, buffer);
readsector_hd (hd, blockno*2+1, buffer + HD_SECSIZE);

}

void writeblock_hd (int hd, int blockno, char *buffer) {
writesector_hd (hd, blockno*2, buffer);
writesector_hd (hd, blockno*2+1, buffer + HD_SECSIZE);

}
Defines:

readblock_hd, used in chunk 506b.
writeblock_hd, used in chunks 507b and 529c.

Aer a read operation has finished (and the controller has generated an interrupt) we
can copy the read data from the controller’s memory to the buffer. at transfer happens
in the interrupt handler, here we only let the process wait for an interrupt.
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[532a] ⟨ide: read data from the controller 532a⟩≡ (530c)
idewait (0);
inportb (IO_IDE_STATUS); // read status, ack irq

Uses idewait 533b, inportb 133b, and IO_IDE_STATUS 525b.

Writing is similar:
[532b] ⟨ide: write data to the controller 532b⟩≡ (530d)

inportb (IO_IDE_STATUS); // read status, ack irq
repeat_outportsl (IO_IDE_DATA, hd_buf, HD_SECSIZE / 4);
inportb (IO_IDE_STATUS); // read status, ack irq

Uses hd_buf 530a, HD_SECSIZE 529d, inportb 133b, IO_IDE_DATA 525b, IO_IDE_STATUS 525b,
and repeat_outportsl 528e.

Now the only missing bit is the interrupt handler which will only acknowledge the
interrupt and possibly wake up a waiting process.

13.5.4 Interrupt Handler
e interrupt handler for the IDE controller

[532c] ⟨function prototypes 45a⟩+≡ (44a) ◁ 529c 533a ▷
void ide_handler (context_t *r);

will be executed whenever the controller finishes an operation and signals the CPU. What
it has do then depends on the transfer direction:

• In case of a write operation, writesector_hdd had filled the buffer, copied the data
from there into the controller’s memory and asked the controller to start the write
operation onto the disk. So when that is finished, the whole operation is completed,
and the interrupt handler only has to wake up the waiting process.

• e situation is different during a read operation: In that case the readsector_hdc
function had only asked the controller to read the data from disk and store them in the
controller’s memory. When the controller signals completion, the sector is waiting
there (in the controller memory) to be retrieved. us, the interrupt handler must
copy the data to system memory. Once it has finished that, it can also wake up the
waiting process.

[532d] ⟨function implementations 100b⟩+≡ (44a) ◁ 531b 533b ▷
void ide_handler (context_t *r) {

switch (hd_direction) {
case HD_OP_READ: repeat_inportsl (IO_IDE_DATA, hd_buf, HD_SECSIZE / 4);

hd_direction = HD_OP_NONE;
break;

case HD_OP_WRITE: hd_direction = HD_OP_NONE;
break;

case HD_OP_NONE: printf ("Funny IDE interrupt -- no request waiting\n");
return;
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}

if (scheduler_is_active) {
int tid;
if ((tid = harddisk_queue.next) != 0)

deblock (tid, &harddisk_queue); // wake up process
}

}
Defines:

ide_handler, used in chunks 532c and 534b.
Uses context_t 142a, deblock 186b, harddisk_queue 529a, hd_buf 530a, hd_direction 530a, HD_OP_NONE 529d,

HD_OP_READ 529d, HD_OP_WRITE 529d, HD_SECSIZE 529d, IO_IDE_DATA 525b, printf 601a, repeat_inportsl 528c,
and scheduler_is_active 276e.

e last function we need to discuss in the context of reading form or writing to disk is
[533a]⟨function prototypes 45a⟩+≡ (44a) ◁ 532c 536a ▷

int idewait (int checkerr);

which waits if the IDE controller is not yet ready to receive the next command. It checks
the IO_IDE_STATUSb register’s flags DRDY (device ready; bit 6) and BSY (busy; bit 7) and
loops until the controller is ready and not busy.

[533b]⟨function implementations 100b⟩+≡ (44a) ◁ 532d 534b ▷
int idewait (int checkerr) {
⟨enable interrupts 47b⟩
int r;
for (;;) {

r = inportb (IO_IDE_STATUS);
if ((r & (IDE_BSY | IDE_DRDY)) == IDE_DRDY) break; // ready, not busy

}
if (checkerr && (r & (IDE_DF|IDE_ERR)) != 0) {
⟨disable interrupts 47a⟩
return -1;

} else {
if (current_task > 1) { ⟨disable interrupts 47a⟩ } // see comment
return 0;

}
}

Defines:
idewait, used in chunks 526, 532a, and 533a.

Uses busy, current_task 192c, IDE_BSY 525a, IDE_DF 525a, IDE_DRDY 525a, IDE_ERR 525a, inportb 133b,
and IO_IDE_STATUS 525b.

(idewaitb() must enable interrupts and disable them again aer an IDE interrupt has
occurred. With the check for current_taskc > 1 we treat the special case of disk access
before scheduling has started, i. e., when we load the init program.)

13.5.5 Hard Disk Initialization
When the system boots we check what hard disks (if any) are available. We support up to
two IDE disks and store their disk sizes in the
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[534a] ⟨global variables 92b⟩+≡ (44a) ◁ 530a 536d ▷
ulonglong hd_size[2] = {-1, -1};

Defines:
hd_size, used in chunks 499a and 534b.

Uses ulonglong 46b.

record. If a disk is not available we keep the − value.
e ata_initb function selects a disk by sending the encoded disk number to the

IO_IDE_DISKSELb port and then asks for identificationdisk iden-
tification

by sending the IDE_CMD_IDENTa
command to port IO_IDE_COMMANDb. e answer is 512 bytes long and copied into a buffer
using the repeat_inportslc function. e disk size is then assembled from four bytes
and wrien to the right hd_sizea array entry (and displayed in the boot messages).

We also use this function to install the interrupt handler.
[534b] ⟨function implementations 100b⟩+≡ (44a) ◁ 533b 536b ▷

void ata_init () {
// detect installed hard disks
word buf[512]; short drivecount = 0;
char *names[2] = { "hda", "hdb" };
printf ("ATA: ");
for (int disk = 0; disk < 2; disk++) {

outportb (IO_IDE_DISKSEL, 0xe0 | (disk<<4)); // select disk
for (int i = 0; i < 1000; i++) {

if (inportb (IO_IDE_STATUS) != 0) {
drivecount++;
outportb (IO_IDE_COMMAND, IDE_CMD_IDENT); // identify!
repeat_inportsl (IO_IDE_DATA, buf, 256); // 512 bytes = 256 words
hd_size[disk] = (ulonglong)buf[100] + (((ulonglong)buf[101])<<16)

+ (((ulonglong)buf[102])<<32) + (((ulonglong)buf[103])<<48);
if (drivecount > 1) printf (", ");
printf ("%s (%d KByte)", names[disk],

hd_size[disk]/2); // 512-byte sectors!
break;

}
}

}
printf ("\n");
outportb (IO_IDE_DISKSEL, 0xe0 | (0<<4)); // select disk 0

// install the interrupt handler
install_interrupt_handler (IRQ_IDE, ide_handler);
enable_interrupt (IRQ_IDE);

}
Defines:

ata_init, used in chunk 45c.
Uses enable_interrupt 140b, hd_size 534a, IDE_CMD_IDENT 525a, ide_handler 532d, inportb 133b,

install_interrupt_handler 146c, IO_IDE_COMMAND 525b, IO_IDE_DATA 525b, IO_IDE_DISKSEL 525b,
IO_IDE_STATUS 525b, IRQ_IDE 132 525a, outportb 133b, printf 601a, repeat_inportsl 528c, and ulonglong 46b.
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13.6 The Floppy Controller
In the previous sections you have already seen two ways to talk to a device controller:

• We accessed the “serial hard disk” by sending individual bytes across the serial port.
In one direction they contained controller commands and data (sectors to be wrien
on the disk), in the other direction only data (sectors read from the disk). Every single
received byte caused an interrupt, and so the sector had to be assembled byte by byte.

• For the IDE controller we used some kind of block transfer where we copied a sector
between the PC’s memory and the controller’s internal memory. For that purpose we
used a global buffer, though that was not strictly necessary; we could have used the
memory location that the read/write functions use for storing the sector, i. e., memory
that belongs to a process.
e transfer between controller memory and the actual disk was performed by the
controller itself, and we had to wait for that transfer to complete. is type of data
transfer is called PIO transfer (Parallel I/O).

Now we show you a third way that uses DMA transfer (Direct Memory Access). DMAHere
we need to work with a global buffer and we also need to know the physical address of
that buffer because the floppy controller will access it directly—it cannot use the MMU
to translate a virtual address. Once the controller has been told what to do, the data
transfer from or to that buffer happens automatically, no further activity by the CPU is
required. at is possible because the controller can access the memory bus (just like the
CPU does). is is most interesting in case of a read operation: Our code only has to
tell the controller that it shall read a certain sector from the floppy, and the next time the
controller generates an interrupt, the data will already be stored in the buffer—we need
not call repeat_inportslc or an equivalent instruction, as in our hard disk driver.

(Note that the IDE controller also supports DMA transfers. We have decided to let it
work in PIO mode so that you can see both approaches at work. However, PIO transfers
increase the load on the CPU, so if performance was your goal, you would have to replace
the PIO code with DMA code.)

13.6.1 Talking to the Controller
e floppy controller has several ports that can be used to communicate with it; either for
sending it a command or data or for reading data. ese ports are the following:

[535]⟨constants 112a⟩+≡ (44a) ◁ 529d 536c ▷
#define IO_FLOPPY_OUTPUT 0x3f2 // digital output register (DOR)
#define IO_FLOPPY_STATUS 0x3f4 // main status register (MSR)
#define IO_FLOPPY_COMMAND 0x3f5 // command/data register
#define IO_FLOPPY_RATE 0x3f7 // configuration control register

Defines:
IO_FLOPPY_COMMAND, used in chunks 536b and 537a.
IO_FLOPPY_OUTPUT, used in chunks 544, 551a, and 552c.
IO_FLOPPY_RATE, used in chunks 542c and 552c.
IO_FLOPPY_STATUS, used in chunks 536b and 537a.
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In most cases we will use the function fdc_outb to send a command to the controller
and read in the results with fdc_getresultsa. ese functions

[536a] ⟨function prototypes 45a⟩+≡ (44a) ◁ 533a 538a ▷
void fdc_out (byte data);
int fdc_getresults ();

work as follows:
[536b] ⟨function implementations 100b⟩+≡ (44a) ◁ 534b 537a ▷

void fdc_out (byte data) {
for (int i = 0; i < 10000; i++) {
byte status = inb_delay (IO_FLOPPY_STATUS) & (FLOPPY_MASTER | FLOPPY_DIRECTION);
if (status != FLOPPY_MASTER) continue;
outb_delay (IO_FLOPPY_COMMAND, data);
return;

}
fdc_need_reset = true; printf ("FDC: can't send byte %w to controller\n", data);

}
Defines:

fdc_out, used in chunks 536a, 540, 542c, 548b, and 551.
Uses fdc_need_reset 536d, FLOPPY_DIRECTION 536c, FLOPPY_MASTER 536c, inb_delay 538b, IO_FLOPPY_COMMAND 535,

IO_FLOPPY_STATUS 535, outb_delay 538b, and printf 601a.

Before we can write to the controller we need to check whether it is ready. We read
the status from the status register via the IO_FLOPPY_STATUS port. We are only interested
in the highest two bits of the status register that tell us whether it is ready (bit 7) and
whether it is prepared for a write operation (bit 6). So we mask the returned status value
with (FLOPPY_MASTERc | FLOPPY_DIRECTIONc):

[536c] ⟨constants 112a⟩+≡ (44a) ◁ 535 537b ▷
#define FLOPPY_DIRECTION 0b01000000 // bit 6 of status reg.
#define FLOPPY_MASTER 0b10000000 // bit 7 of status reg.

Defines:
FLOPPY_DIRECTION, used in chunks 536b and 537b.
FLOPPY_MASTER, used in chunks 536 and 537.

If only bit 7 is set in the resulting value, then we know that the controller is ready and
expects a write operation. en we can send the byte to the data/command registerdata/command

register
via the

IO_FLOPPY_COMMAND port; otherwise we loop until the status changes to what we need.
Sometimes a single byte (that was sent to the controller) constitutes a complete com-

mand, but oen we need to send a sequence. e controller can tell from the first byte
how many more bytes follow. When the command is complete, the controller executes it
and generates a result that may consist of a sequence of bytes as well.

If the loop completes without managing to send the byte, the controller needs to be
reset. We store that information in the

[536d] ⟨global variables 92b⟩+≡ (44a) ◁ 534a 537d ▷
static volatile int fdc_need_reset = 0;

Defines:
fdc_need_reset, used in chunks 536b, 537a, 539, 540, 546–48, and 551.
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variable and return.
We read the result in the following function:

[537a]⟨function implementations 100b⟩+≡ (44a) ◁ 536b 538b ▷
int fdc_getresults () {

int i, results = 0;
if (fdc_need_reset) { printf ("exit_\n"); return 0; } ;

for (i = 0; i < 30000; i++) {
byte status = inb_delay (IO_FLOPPY_STATUS) & FLOPPY_NEW_BYTE;
if (status == FLOPPY_MASTER) return true; // results are complete
if (status != FLOPPY_NEW_BYTE) continue;
if (results == MAX_FLOPPY_RESULTS) break;
fdc_results[results++] = inb_delay (IO_FLOPPY_COMMAND);

}

fdc_need_reset = true; printf ("FDC: reply error\n");
return false;

}
Defines:

fdc_getresults, used in chunks 540d, 548b, and 551.
Uses fdc_need_reset 536d, fdc_results 537d, FLOPPY_MASTER 536c, FLOPPY_NEW_BYTE 537b, inb_delay 538b,

IO_FLOPPY_COMMAND 535, IO_FLOPPY_STATUS 535, MAX_FLOPPY_RESULTS 537c, and printf 601a.

If the last byte has been read, the status changes to FLOPPY_MASTERc and our function
can return. We check whether the status is FLOPPY_NEW_BYTEb (i. e., the bits 4, 6 and 7 are
set which indicates that the controller is busy, we’re reading from the controller and it is
ready to have us query it). If this is not yet the case, we repeat until the status changes to
FLOPPY_NEW_BYTEb: en we can read the new byte via the IO_FLOPPY_COMMAND port.

If we exceed the maximum number of bytes that we expect the controller to send, we
cancel the operation and set the fdc_need_resetd flag.

[537b]⟨constants 112a⟩+≡ (44a) ◁ 536c 537c ▷
#define FLOPPY_CONTROLLER_BUSY 0b00010000 // bit 4 of status reg., busy
#define FLOPPY_NEW_BYTE (FLOPPY_MASTER | FLOPPY_DIRECTION | FLOPPY_CONTROLLER_BUSY)

Defines:
FLOPPY_NEW_BYTE, used in chunk 537a.

Uses busy, FLOPPY_DIRECTION 536c, and FLOPPY_MASTER 536c.

When we read the results, we store them in the fdc_resultsd buffer:
[537c]⟨constants 112a⟩+≡ (44a) ◁ 537b 539a ▷

#define MAX_FLOPPY_RESULTS 0x07
Defines:

MAX_FLOPPY_RESULTS, used in chunk 537.

[537d]⟨global variables 92b⟩+≡ (44a) ◁ 536d 538c ▷
byte fdc_results[MAX_FLOPPY_RESULTS];

Defines:
fdc_results, used in chunks 537a, 540d, 548b, and 551b.

Uses MAX_FLOPPY_RESULTS 537c.
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e functions
[538a] ⟨function prototypes 45a⟩+≡ (44a) ◁ 536a 538d ▷

void outb_delay (word __port, byte __value);
byte inb_delay (word __port);

do the same as outportbb() and inportbb(), but they execute an extra outb to an
unused port (0xE0) in order to create a short delay. It does not maer which value is sent
to the port, so they just send al (but could use any other value):

[538b] ⟨function implementations 100b⟩+≡ (44a) ◁ 537a 539c ▷
/**** FROM proc/i386.h *********/
void outb_delay (word __port, byte __value) {

asm volatile ("outb %0,%1; \
outb %%al,$0xE0" :

/* no output */ :
"a" (__value),
"dN" (__port)
/* "eax","edx" */ );

}

byte inb_delay (word __port) {
byte data;
asm volatile ("inb %1,%0; \

outb %%al,$0xE0" :
"=a" (data) :
"dN" (__port)
/* "eax","edx" */ );

return data;
}

Defines:
inb_delay, used in chunks 536b, 537a, and 552c.
outb_delay, used in chunks 536b, 538a, 542–44, 551a, and 552c.

13.6.2 Seing Up the DMA Transfer
As we already mentioned, we will use a global buffer and declare its address here:

[538c] ⟨global variables 92b⟩+≡ (44a) ◁ 537d 539b ▷
static char *fdc_buf = (char *)0x9a800;

Defines:
fdc_buf, used in chunks 543a, 549c, and 550b.

We have to pick the address manually because there are limitations on which memory
areas can be used for DMA transfers.

e central function of the floppy driver which also handles the DMA setup is
[538d] ⟨function prototypes 45a⟩+≡ (44a) ◁ 538a 542b ▷

int fdc_command (int cmd, int drive, int track, int sector);
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It takes four parameters: cmd is set to either FLOPPY_READa or FLOPPY_WRITEa to indicate
the transfer direction, and the last three parameters describe the sector in terms of the
physical layout of a floppy disk.

[539a]⟨constants 112a⟩+≡ (44a) ◁ 537c 540a ▷
#define FLOPPY_READ 0xe6
#define FLOPPY_WRITE 0xc5

Defines:
FLOPPY_READ, used in chunks 543a and 549c.
FLOPPY_WRITE, used in chunks 540d and 550b.

fdc_commandc first sets the three variables
[539b]⟨global variables 92b⟩+≡ (44a) ◁ 538c 541c ▷

static int fdc_drive, fdc_track, fdc_head;
Defines:

fdc_drive, used in chunks 539c, 540c, 544, 547d, 548b, and 551b.
fdc_head, used in chunks 539, 540, and 548b.
fdc_track, used in chunks 539, 540, and 548b.

to the corresponding argument values; they will also be accessed by other functions of the
floppy driver, so using global variables we can avoid passing these around as parameters.

en the function resets the controller (if needed), starts the motor, lets the drive seek
to the right track (we have to do that manually) and initiates the DMA transfer (see the
⟨fdc transfer 540c⟩ chunk):

[539c]⟨function implementations 100b⟩+≡ (44a) ◁ 538b 542c ▷
int fdc_command (int cmd, int drive, int track, int sector) {

fdc_drive = drive;
fdc_track = track;
fdc_head = sector / current_fdd_type->sectors;
int fdc_sector = sector % current_fdd_type->sectors + 1;

fdc_ticks_till_motor_stops = 3 * HZ;

⟨begin critical section in kernel 380a⟩
// will be re-enabled in fdc_read_/write_sector
for (int err = 0; err < MAX_FLOPPY_ERRORS; err++) {

if (fdc_need_reset) fdc_reset ();
⟨fdc start motor 544a⟩
if (!fdc_seek ()) continue;
⟨fdc transfer 540c⟩
switch (transfer_status) {

case -1: printf ("FDC: disk in drive %d is write protected\n", fdc_drive);
return 0;

case 0: continue;
case 1: return 1;

}
}
return 0;

}
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Defines:
fdc_command, used in chunks 538d, 549c, and 550b.

Uses current_fdd_type 541c, fdc_drive 539b, fdc_head 539b, fdc_need_reset 536d, fdc_reset 551a, fdc_seek,
fdc_ticks_till_motor_stops 546c, fdc_track 539b, HZ 540a, MAX_FLOPPY_ERRORS 540b, printf 601a,
and write 429b.

[540a] ⟨constants 112a⟩+≡ (44a) ◁ 539a 540b ▷
#define HZ 100 // frequency of the timer

Defines:
HZ, used in chunks 539c and 547a.

We allow up to eight floppy errors before we fail:
[540b] ⟨constants 112a⟩+≡ (44a) ◁ 540a 541a ▷

#define MAX_FLOPPY_ERRORS 0x08
Defines:

MAX_FLOPPY_ERRORS, used in chunk 539c.

With all the information available we can initiate the transfer which means sending a
longer sequence of bytes to the command/data register. We first tell the controller that we
want to transfer in DMA mode (and not in PIO mode) which requires another command
sequence shown in ⟨fdc dma init 543a⟩.

[540c] ⟨fdc transfer 540c⟩≡ (539c) 540d ▷
int transfer_status = 0; // will be set to 1 when successful
int sectors; // number of transmitted sectors
⟨begin critical section in kernel 380a⟩

if (!fdc_need_reset && current_fdd->motor && current_fdd->calibrated) {
⟨fdc dma init 543a⟩
fdc_mode ();
fdc_out (cmd); fdc_out (fdc_head << 2 | fdc_drive);
fdc_out (fdc_track); fdc_out (fdc_head); fdc_out (fdc_sector);
fdc_out (current_fdd_type->sectorsize); // 2: 512 bytes/sector
fdc_out (current_fdd_type->sectors); // end of track
fdc_out (current_fdd_type->gap); // gap length
fdc_out (FLOPPY_DTL); // data length

Uses current_fdd 541c, current_fdd_type 541c, fdc_drive 539b, fdc_head 539b, fdc_mode 542c,
fdc_need_reset 536d, fdc_out 536b, fdc_track 539b, and FLOPPY_DTL 541a.

We need not terminate the sequence because the controller knows when it has received
a complete command. So we can immediately continue by waiting for the answer (via
wait_fdc_interruptd) and call fdc_getresultsa to check whether the transfer was suc-
cessful:

[540d] ⟨fdc transfer 540c⟩+≡ (539c) ◁ 540c
if (!fdc_need_reset && !wait_fdc_interrupt () && fdc_getresults ()) {

if (cmd == FLOPPY_WRITE && fdc_results[1] & WRITE_PROTECTED) {
fdc_out (FLOPPY_SENSE);
fdc_getresults ();
transfer_status = -1;

} else if ((fdc_results[0] & TEST_BITS) != TRANSFER_OK ||
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fdc_results[1] || fdc_results[2]) {
current_fdd->calibrated = 0;
transfer_status = 0;

} else {
sectors = (fdc_results[3] - fdc_track) * current_fdd_type->sectors * 2

+ (fdc_results[4] - fdc_head) * current_fdd_type->sectors
+ fdc_results[5] - fdc_sector;

if (sectors == 1) transfer_status = 1; // success
}

}
}

Uses current_fdd 541c, current_fdd_type 541c, fdc_getresults 537a, fdc_head 539b, fdc_need_reset 536d,
fdc_out 536b, fdc_results 537d, fdc_track 539b, FLOPPY_SENSE 549a, FLOPPY_WRITE 539a, TEST_BITS 548c,
TRANSFER_OK 541a, wait_fdc_interrupt 547d, and WRITE_PROTECTED 541a.

[541a]⟨constants 112a⟩+≡ (44a) ◁ 540b 542a ▷
#define FLOPPY_DTL 0xFF
#define TRANSFER_OK 0x00
#define WRITE_PROTECTED 0x02

Defines:
FLOPPY_DTL, used in chunk 540c.
TRANSFER_OK, used in chunk 540d.
WRITE_PROTECTED, used in chunk 540d.

Both when sending the request and when checking whether the sector was successfully
read we need the device information which declares the physical properties of the disk
drive: In recent years only 3.5” drives with a formaed capacity of 1440 KByte have been
built into PCs (if at all), but older machines used 5.25” drives with a 1200 KByte capacity.
We store the information that we need to tell the controller in fdd_typec:

[541b]⟨type definitions 91⟩+≡ (44a) ◁ 515a
typedef struct {

int total_sectors, tracks, sectors, sectorsize, trackstep, rate, gap, spec1;
} struct_fdd_type;

typedef struct {
int present, calibrated, motor, current_track, type;

} struct_fdd;
Defines:

struct_fdd, used in chunk 541c.
struct_fdd_type, used in chunk 541c.

[541c]⟨global variables 92b⟩+≡ (44a) ◁ 539b 544d ▷
char *fdd_drive_name[6] = {

"not installed", "360 KByte (not supported)",
"1200 KByte", "720 KByte (not supported)",
"1440 KByte", "2880 KByte (not supported)" };

struct_fdd_type fdd_type[2] = {
{ 80*15*2, 80, 15, 2, 0, 0, 0x1B, 0xDF }, /* 1.2M */
{ 80*18*2, 80, 18, 2, 0, 0, 0x1B, 0xCF } }; /* 1.44M */
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struct_fdd_type *current_fdd_type;
struct_fdd fdd[2] = { { 0, 0, 0, INVALID_TRACK, 0 }, { 0, 0, 0, INVALID_TRACK, 0 } };
int fdds_in_use[2] = { 0, 0 };
struct_fdd *current_fdd;

Defines:
current_fdd, used in chunks 540, 544a, 548b, 549d, and 551b.
current_fdd_type, used in chunks 539, 540, 542c, 543a, 548b, and 549d.
fdd, used in chunks 499a, 544, 547a, 549d, 551a, and 552c.
fdd_drive_name, used in chunk 552c.
fdd_type, used in chunks 499a and 549d.

Uses INVALID_TRACK 542a, struct_fdd 541b, and struct_fdd_type 541b.

[542a] ⟨constants 112a⟩+≡ (44a) ◁ 541a 542d ▷
#define INVALID_TRACK -1

Defines:
INVALID_TRACK, used in chunks 541c and 551b.

When we initialize the system, we will detect the available floppies and write the infor-
mation into fddc, see Section 13.6.7.

We have been using an fdc_modec function that tells the controller what kind of drive
it has to access, but we have not shown its implementation yet.configuration

control register
It uses fdc_outb but

also writes to the configuration control register via the IO_FLOPPY_RATE port:
[542b] ⟨function prototypes 45a⟩+≡ (44a) ◁ 538d 545a ▷

void fdc_mode ();

[542c] ⟨function implementations 100b⟩+≡ (44a) ◁ 539c 545b ▷
void fdc_mode () {

fdc_out (FLOPPY_SPECIFY);
fdc_out (current_fdd_type->spec1);
fdc_out (FLOPPY_SPEC2);
outb_delay (IO_FLOPPY_RATE, current_fdd_type->rate & ~0x40);

}
Defines:

fdc_mode, used in chunks 540c and 542b.
Uses current_fdd_type 541c, fdc_out 536b, FLOPPY_SPEC2 542d, FLOPPY_SPECIFY 542d, IO_FLOPPY_RATE 535,

and outb_delay 538b.

[542d] ⟨constants 112a⟩+≡ (44a) ◁ 542a 542e ▷
#define FLOPPY_SPECIFY 0x03
#define FLOPPY_SPEC2 0x06

Defines:
FLOPPY_SPEC2, used in chunk 542c.
FLOPPY_SPECIFY, used in chunk 542c.

For seing up the DMA transfer we need to talk to the DMA controllerDMA controller which uses its
own ports for configuring:

[542e] ⟨constants 112a⟩+≡ (44a) ◁ 542d 543b ▷
#define IO_DMA0_INIT 0x0A // single channel mask register
#define IO_DMA0_MODE 0x0B // mode register
#define IO_DMA0_FLIPFLOP 0x0C // flip-flop reset register
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#define IO_DMA_PAGE_2 0x81 // page register for DMA channel 2
#define IO_DMA_ADDR_2 0x04 // address register for DMA channel 2
#define IO_DMA_COUNT_2 0x05 // count register for DMA channel 2

#define DMA_READ_MODE 0x44
#define DMA_WRITE_MODE 0x48

Defines:
DMA_READ_MODE, used in chunk 543a.
DMA_WRITE_MODE, used in chunk 543a.
IO_DMA0_FLIPFLOP, used in chunk 543a.
IO_DMA0_INIT, used in chunk 543a.
IO_DMA0_MODE, used in chunk 543a.
IO_DMA_ADDR_2, used in chunk 543a.
IO_DMA_COUNT_2, used in chunk 543a.
IO_DMA_PAGE_2, used in chunk 543a.

e important bit about the following code chunk is that we tell the DMA controller
which chunk of memory it shall use as buffer for the DMA data transfer. e controller
only accepts 24 bit wide physical addresses. We tell it our buffer address fdc_bufc by
sending the lowest 16 bits to ID_DMA_ADDR_2 and the highest eight bits to IO_DMA_PAGE_2e.
at stores the lower 16 bits in the controller’s address register address registerand the eight extra bits
in the page register page register. e reason for this separate treatment is compatibility: Older DMA
controllers only supported 16-bit addresses. e amount of bytes to read or write must be
wrien to the count register count registervia IO_DMA_COUNT_2e. It takes a 16-bit value which requires
two outb commands.

[543a]⟨fdc dma init 543a⟩≡ (540c)
int count = 1 << (current_fdd_type->sectorsize + 7); // = 512
int mode;
if (cmd == FLOPPY_READ)

mode = DMA_READ_MODE; // prepare read operation
else

mode = DMA_WRITE_MODE; // prepare write operation

outb_delay (IO_DMA0_INIT, FLOPPY_CHANNEL | 4); // disable DMA channel
outb_delay (IO_DMA0_FLIPFLOP, 0); // clear DMA ch. flipflop
outb_delay (IO_DMA0_MODE, mode | FLOPPY_CHANNEL); // set DMA ch. mode (r/w)
// set count, address and page registers
outb_delay (IO_DMA_COUNT_2, (byte)(count-1)); // count
outb_delay (IO_DMA_COUNT_2, (byte)((count-1) >> 8));
outb_delay (IO_DMA_ADDR_2, (byte)(unsigned)fdc_buf); // address, bits 0.. 7
outb_delay (IO_DMA_ADDR_2, (byte)((unsigned)fdc_buf >> 8)); // bits 8..15
outb_delay (IO_DMA_PAGE_2, (unsigned)fdc_buf >> 16); // page, bits 16..23
outb_delay (IO_DMA0_INIT, FLOPPY_CHANNEL); // enable DMA channel

Uses current_fdd_type 541c, DMA_READ_MODE 542e, DMA_WRITE_MODE 542e, fdc_buf 538c, FLOPPY_CHANNEL 543b,
FLOPPY_READ 539a, IO_DMA0_FLIPFLOP 542e, IO_DMA0_INIT 542e, IO_DMA0_MODE 542e, IO_DMA_ADDR_2 542e,
IO_DMA_COUNT_2 542e, IO_DMA_PAGE_2 542e, outb_delay 538b, read 429b, and write 429b.

[543b]⟨constants 112a⟩+≡ (44a) ◁ 542e 544c ▷
#define FLOPPY_CHANNEL 0x02
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Defines:
FLOPPY_CHANNEL, used in chunk 543a.

13.6.3 Starting and Stopping the Motor
In comparison to the hard disk controller, the floppy controller needs a lot of help to get
things right. For example, it is necessary to manually turn the floppy motor on and off.
e code chunks ⟨fdc start motor 544a⟩ and ⟨fdc stop motor 544b⟩ send the right commands:

[544a] ⟨fdc start motor 544a⟩≡ (539c 551b)
if (!current_fdd->motor) {

outb_delay (IO_FLOPPY_OUTPUT, FLOPPY_CONTROLLER_ENABLE | FLOPPY_DMAINT_ENABLE |
fdc_drive | (16 << fdc_drive));

current_fdd->motor = 1;
fdd[!fdc_drive].motor = 0;
for (int i = 0; i < 500000; i++); // delay

}
Uses current_fdd 541c, fdc_drive 539b, fdd 541c, FLOPPY_CONTROLLER_ENABLE 544c, FLOPPY_DMAINT_ENABLE 544c,

IO_FLOPPY_OUTPUT 535, and outb_delay 538b.

[544b] ⟨fdc stop motor 544b⟩≡ (547a)
outb_delay (IO_FLOPPY_OUTPUT,

FLOPPY_CONTROLLER_ENABLE | FLOPPY_DMAINT_ENABLE | fdc_drive);
fdd[0].motor = fdd[1].motor = 0;

Uses fdc_drive 539b, fdd 541c, FLOPPY_CONTROLLER_ENABLE 544c, FLOPPY_DMAINT_ENABLE 544c,
IO_FLOPPY_OUTPUT 535, and outb_delay 538b.

[544c] ⟨constants 112a⟩+≡ (44a) ◁ 543b 548c ▷
#define FLOPPY_CONTROLLER_ENABLE 0x04
#define FLOPPY_DMAINT_ENABLE 0x08

Defines:
FLOPPY_CONTROLLER_ENABLE, used in chunks 544 and 551a.
FLOPPY_DMAINT_ENABLE, used in chunks 544 and 551a.

13.6.4 Handling Floppy Interrupts
We define a floppy_queued which will contain processes waiting for a floppy access
operation to finish:

[544d] ⟨global variables 92b⟩+≡ (44a) ◁ 541c 545c ▷
blocked_queue floppy_queue; // processes which wait for the floppy

Defines:
floppy_queue, used in chunks 544–46, 564c, and 606.

Uses blocked_queue 183a.

and we have to initialize this queue:
[544e] ⟨initialize system 45b⟩+≡ (44b) ◁ 530b

initialize_blocked_queue (&floppy_queue);
Uses floppy_queue 544d and initialize_blocked_queue 183c.
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Processes that access a floppy disk drive will wait on this queue, and the interrupt hand-
ler will wake up these processes when the operation was completed.

For example, when reading from an open file, we will call fdc_read_sectorc which in
turn calls fdc_commandc.

e last function potentially calls fdc_reseta, and it will call further functions all of
which call wait_fdc_interruptd.

wait_fdc_interruptd actually puts the process to sleep via fdc_sleepb until an inter-
rupt occurs.

Here is the implementation of the
[545a]⟨function prototypes 45a⟩+≡ (44a) ◁ 542b 545d ▷

void fdc_sleep ();

function:
[545b]⟨function implementations 100b⟩+≡ (44a) ◁ 542c 546a ▷

void fdc_sleep () {
if ((current_task > 1) && scheduler_is_active) {

// block process
fdc_is_busy = true;
⟨begin critical section in kernel 380a⟩ // access thread table
block (&floppy_queue, TSTATE_WAITFLP);
⟨end critical section in kernel 380b⟩
⟨resign 221d⟩

}
fdc_is_busy = false;

};
Defines:

fdc_sleep, used in chunks 545a and 547d.
Uses current_task 192c, fdc_is_busy 545c, floppy_queue 544d, scheduler_is_active 276e,

and TSTATE_WAITFLP 180a.

It uses the global
[545c]⟨global variables 92b⟩+≡ (44a) ◁ 544d 546c ▷

short int fdc_is_busy = false;
Defines:

fdc_is_busy, used in chunk 545b.

variable to keep track of whether the floppy is currently working on a request.
When we need to wake up a process that has been waiting for the floppy drive, we use

the
[545d]⟨function prototypes 45a⟩+≡ (44a) ◁ 545a 546d ▷

void fdc_wakeup ();

function. At any given time there can only be one active floppy operation, because (as
you will see in the implementation of fdc_read_sectorc and fdc_write_sectorb), all
read and write operations are critical sections, protected by the lock fdc_lockb. So for
fdc_wakeupa we just wake the first process in the queue as there can only be one.
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[546a] ⟨function implementations 100b⟩+≡ (44a) ◁ 545b 546b ▷
void fdc_wakeup () {

thread_id tid = floppy_queue.next;
if (tid != 0) deblock (tid, &floppy_queue);

}
Defines:

fdc_wakeup, used in chunks 545–47.
Uses deblock 186b, floppy_queue 544d, and thread_id 178a.

eactual interrupt handler for the floppy drives is rather simple: it first checkswhether
interrupts were expected at all, and if so, it wakes the waiting process.

[546b] ⟨function implementations 100b⟩+≡ (44a) ◁ 546a 547a ▷
void floppy_handler (context_t *r) {

fdc_timeout = false;
if (!fdc_waits_interrupt)

fdc_need_reset = 1; // unexpected floppy interrupt, reset controller
fdc_waits_interrupt = false;
fdc_wakeup ();

}
Defines:

floppy_handler, used in chunk 552c.
Uses context_t 142a, fdc_need_reset 536d, fdc_timeout 546c, fdc_waits_interrupt 546c, and fdc_wakeup 546a.

We use two counters fdc_ticksc and fdc_ticks_till_motor_stopsc: e first one
starts counting when we have started a read or write operation. If it does not finish within
two seconds (200 ticks) we abort the current operation (and fail). e second counter
makes sure that the motor is stopped three seconds aer the last operation completed.
We don’t turn the motor off immediately because further requests might follow. e flags
fdc_timeoutc and fdc_waits_interruptc show whether our two seconds have run out
and whether we’re waiting for an interrupt.

[546c] ⟨global variables 92b⟩+≡ (44a) ◁ 545c 547b ▷
int fdc_ticks = 0;
int fdc_ticks_till_motor_stops = 0;
boolean fdc_timeout = false;
boolean fdc_waits_interrupt = false;

Defines:
fdc_ticks, used in chunk 547.
fdc_ticks_till_motor_stops, used in chunks 539c and 547a.
fdc_timeout, used in chunks 546 and 547.
fdc_waits_interrupt, used in chunks 546 and 547.

e fdc_timera function will be called from the timer handler, so we need to declare
it here:

[546d] ⟨function prototypes 45a⟩+≡ (44a) ◁ 545d 547c ▷
void fdc_timer ();

We add it to the timer tasks which we have defined on page 342:
[546e] ⟨timer tasks 306d⟩+≡ (342b) ◁ 343b

fdc_timer ();
Uses fdc_timer 547a.
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e floppy timer has two objectives: It checks whether a timeout has occurred (and
cancels the current operation) and it checks if the motor has been running too long:

[547a]⟨function implementations 100b⟩+≡ (44a) ◁ 546b 547d ▷
void fdc_timer () {

if (fdc_waits_interrupt && ++fdc_ticks > HZ * 2) {
fdc_waits_interrupt = false;
fdc_timeout = true;
fdc_wakeup ();

} else if ((fdd[0].motor | fdd[1].motor) &&
~(fdc_lock->l) && !--fdc_ticks_till_motor_stops) {

⟨fdc stop motor 544b⟩
}

}
Defines:

fdc_timer, used in chunk 546.
Uses fdc_lock 547b, fdc_ticks 546c, fdc_ticks_till_motor_stops 546c, fdc_timeout 546c,

fdc_waits_interrupt 546c, fdc_wakeup 546a, fdd 541c, and HZ 540a.

It only stops the motor if the lock fdc_lockb is not held. We have not declared it yet,
but already mentioned it twice:

[547b]⟨global variables 92b⟩+≡ (44a) ◁ 546c 604a ▷
lock fdc_lock;

Defines:
fdc_lock, used in chunks 547a, 549, and 552c.

Uses lock 365a.

We will initialize it in fdc_initc ().
We also provide the function

[547c]⟨function prototypes 45a⟩+≡ (44a) ◁ 546d 548a ▷
int wait_fdc_interrupt ();

that waits for an interrupt. It will return from the fdc_sleepb call if either an interrupt
has occurred or it has timed out:

[547d]⟨function implementations 100b⟩+≡ (44a) ◁ 547a 548b ▷
int wait_fdc_interrupt () {

fdc_ticks = 0; // reset the wait time
fdc_waits_interrupt = true; // yes, we wait
fdc_sleep ();
if (fdc_timeout) { // a timeout occurred

fdc_need_reset = 1;
printf ("FDC: drive %d timeout\n", fdc_drive);

}
return fdc_timeout;

}
Defines:

wait_fdc_interrupt, used in chunks 540d, 547c, 548b, and 551.
Uses fdc_drive 539b, fdc_need_reset 536d, fdc_sleep 545b, fdc_ticks 546c, fdc_timeout 546c,

fdc_waits_interrupt 546c, and printf 601a.
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13.6.5 Reading and Writing
Reading and writing require that we first move the drive head to the right location. is
is performed by the

[548a] ⟨function prototypes 45a⟩+≡ (44a) ◁ 547c 549b ▷
int fdc_seek ();

function which calculates the physical parameters and sends them to the controller, using
the FLOPPY_SEEKa command.

[548b] ⟨function implementations 100b⟩+≡ (44a) ◁ 547d 549c ▷
int fdc_seek () {

if (fdc_need_reset ||
(!current_fdd->calibrated && !fdc_recalibrate ())) return false;

if (fdc_track == current_fdd->current_track) return true;

⟨begin critical section in kernel 380a⟩
if (!current_fdd->motor) return false;

fdc_out (FLOPPY_SEEK);
fdc_out (fdc_head << 2 | fdc_drive);
fdc_out (fdc_track);

if (fdc_need_reset || wait_fdc_interrupt ()) return false;

current_fdd->current_track = fdc_track;
fdc_out (FLOPPY_SENSE);

if (!fdc_getresults ()) return false;
if ((fdc_results[0] & TEST_BITS) != SEEK_OK ||

fdc_results[1] != fdc_track * (current_fdd_type->trackstep + 1))
return false;

return true;
}

Uses current_fdd 541c, current_fdd_type 541c, fdc_drive 539b, fdc_getresults 537a, fdc_head 539b,
fdc_need_reset 536d, fdc_out 536b, fdc_recalibrate 551b, fdc_results 537d, fdc_seek, fdc_track 539b,
FLOPPY_SEEK 549a, FLOPPY_SENSE 549a, SEEK_OK 548c, TEST_BITS 548c, and wait_fdc_interrupt 547d.

Via fdc_getresultsa we check whether the seek operation was successful: In that case
the highest five bits of fdc_resultsd[0] will be 00100b.

[548c] ⟨constants 112a⟩+≡ (44a) ◁ 544c 549a ▷
#define TEST_BITS 0b11111000 // 0xf8
#define SEEK_OK 0b00100000 // 0x20

Defines:
SEEK_OK, used in chunks 548b and 551b.
TEST_BITS, used in chunks 540d, 548b, and 551b.

e commands FLOPPY_SEEKa and FLOPPY_SENSEa perform the seek operation and
request status information from the floppy drive which is required aer every command.
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[549a]⟨constants 112a⟩+≡ (44a) ◁ 548c 550a ▷
#define FLOPPY_SEEK 0x0f
#define FLOPPY_SENSE 0x08

Defines:
FLOPPY_SEEK, used in chunk 548b.
FLOPPY_SENSE, used in chunks 540d, 548b, and 551.

With seeking completed, we’re ready to read or write.
[549b]⟨function prototypes 45a⟩+≡ (44a) ◁ 548a 550c ▷

int fdc_read_sector (int device, int block, char *buffer);
int fdc_write_sector (int device, int block, char *buffer);

ese functions read and write 512 byte sized sectors:
[549c]⟨function implementations 100b⟩+≡ (44a) ◁ 548b 550b ▷

int fdc_read_sector (int device, int block, char *buffer) {
⟨fdc: prepare read/write sector 549d⟩
result = fdc_command (FLOPPY_READ, device, ctrack, csector); // will sleep
if (result) {

memcpy ((void *)buffer, PHYSICAL(fdc_buf), FD_SECSIZE);
}
⟨fdc: finish read/write sector 549e⟩

}
Defines:

fdc_read_sector, used in chunk 550d.
Uses csector, ctrack, FD_SECSIZE 550a, fdc_buf 538c, fdc_command 539c, FLOPPY_READ 539a, memcpy 596c,

and PHYSICAL 116a.

with
[549d]⟨fdc: prepare read/write sector 549d⟩≡ (549c 550b)

int spt; // sectors per track
int ctrack, csector;
int result;

mutex_lock (fdc_lock);
current_fdd = &fdd[device];
current_fdd_type = &fdd_type[current_fdd->type];

spt = current_fdd_type->sectors * 2; // 36 ??
ctrack = block / spt;
csector = block % spt;

Uses csector, ctrack, current_fdd 541c, current_fdd_type 541c, fdc_lock 547b, fdd 541c, fdd_type 541c,
mutex_lock 366a, and spt.

and
[549e]⟨fdc: finish read/write sector 549e⟩≡ (549c 550b)

mutex_unlock (fdc_lock);
if (result) return FD_SECSIZE;
else return 0;

Uses FD_SECSIZE 550a, fdc_lock 547b, and mutex_unlock 366c.
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[550a] ⟨constants 112a⟩+≡ (44a) ◁ 549a 552a ▷
#define FD_SECSIZE 512

Defines:
FD_SECSIZE, used in chunks 549 and 550.

Writing is similar, but the order of calling fdc_commandc and copying the buffer con-
tents is reversed; also fdc_commandc supplies the argument FLOPPY_WRITEa instead of
FLOPPY_READa, and the memcpyc operation works the other way round:

[550b] ⟨function implementations 100b⟩+≡ (44a) ◁ 549c 550d ▷
int fdc_write_sector (int device, int block, char *buffer) {
⟨fdc: prepare read/write sector 549d⟩
memcpy (PHYSICAL(fdc_buf), (void *)buffer, FD_SECSIZE);
result = fdc_command (FLOPPY_WRITE, device, ctrack, csector); // will sleep
⟨fdc: finish read/write sector 549e⟩

}
Defines:

fdc_write_sector, used in chunks 549b and 550d.
Uses csector, ctrack, FD_SECSIZE 550a, fdc_buf 538c, fdc_command 539c, FLOPPY_WRITE 539a, memcpy 596c,

and PHYSICAL 116a.

Since we will always read or write whole blocks (1 KByte) we add readblock_fdd and
writeblock_fdd functions

[550c] ⟨function prototypes 45a⟩+≡ (44a) ◁ 549b 550e ▷
void readblock_fd (int device, int blockno, char *buffer);
void writeblock_fd (int device, int blockno, char *buffer);

which simply call the sector functions twice:
[550d] ⟨function implementations 100b⟩+≡ (44a) ◁ 550b 551a ▷

void readblock_fd (int device, int blockno, char *buffer) {
fdc_read_sector (device, blockno*2, buffer);
fdc_read_sector (device, blockno*2 + 1, buffer + FD_SECSIZE);

};

void writeblock_fd (int device, int blockno, char *buffer) {
fdc_write_sector (device, blockno*2, buffer);
fdc_write_sector (device, blockno*2 + 1, buffer + FD_SECSIZE);

};
Defines:

readblock_fd, used in chunk 506b.
writeblock_fd, used in chunks 507b and 550c.

Uses FD_SECSIZE 550a, fdc_read_sector 549c, and fdc_write_sector 550b.

13.6.6 Reseing and Recalibrating
Two further functions

[550e] ⟨function prototypes 45a⟩+≡ (44a) ◁ 550c 552b ▷
void fdc_reset ();
int fdc_recalibrate ();
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are required for our floppy driver implementation. fdc_reseta is called when too many
errors have occurred; in that case it asks the controller to reset so that a new aempt can
be started.

[551a]⟨function implementations 100b⟩+≡ (44a) ◁ 550d 551b ▷
void fdc_reset () {
⟨begin critical section in kernel 380a⟩
outb_delay (IO_FLOPPY_OUTPUT, FLOPPY_DMAINT_ENABLE);
for (int i = 0; i < 10000; i++) asm ("nop"); // wait a bit
outb_delay (IO_FLOPPY_OUTPUT, FLOPPY_CONTROLLER_ENABLE | FLOPPY_DMAINT_ENABLE);

fdc_need_reset = 0;
fdd[0].calibrated = fdd[1].calibrated = 0;
fdd[0].motor = fdd[1].motor = 0;

if (wait_fdc_interrupt ()) printf ("FDC: can't reset controller (timeout)\n");
fdc_out (FLOPPY_SENSE);
if (!fdc_getresults ()) printf ("FDC: can't reset controller\n");

}
Defines:

fdc_reset, used in chunks 539c and 550e.
Uses fdc_getresults 537a, fdc_need_reset 536d, fdc_out 536b, fdd 541c, FLOPPY_CONTROLLER_ENABLE 544c,

FLOPPY_DMAINT_ENABLE 544c, FLOPPY_SENSE 549a, IO_FLOPPY_OUTPUT 535, outb_delay 538b, printf 601a,
and wait_fdc_interrupt 547d.

e fdc_recalibrateb function sends the FLOPPY_RECALIBRATEa command to the con-
troller which is necessary when the drive is not calibrated; this should happen only once
(when the drive is accessed for the first time).

[551b]⟨function implementations 100b⟩+≡ (44a) ◁ 551a 552c ▷
int fdc_recalibrate () {

if (fdc_need_reset) return 0;
⟨begin critical section in kernel 380a⟩
⟨fdc start motor 544a⟩
fdc_out (FLOPPY_RECALIBRATE);
fdc_out (fdc_drive);
if (fdc_need_reset || wait_fdc_interrupt ()) return 0;
fdc_out (FLOPPY_SENSE);
if (!fdc_getresults () || (fdc_results[0] & TEST_BITS) != SEEK_OK || fdc_results[1])

goto bad_recalibration;

current_fdd->current_track = INVALID_TRACK;
return current_fdd->calibrated = 1;

bad_recalibration:
printf ("FDC: can't recalibrate\n");
fdc_need_reset = 1;
return 0;

}
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Defines:
fdc_recalibrate, used in chunk 548b.

Uses current_fdd 541c, fdc_drive 539b, fdc_getresults 537a, fdc_need_reset 536d, fdc_out 536b,
fdc_results 537d, FLOPPY_RECALIBRATE 552a, FLOPPY_SENSE 549a, INVALID_TRACK 542a, printf 601a,
SEEK_OK 548c, TEST_BITS 548c, and wait_fdc_interrupt 547d.

[552a] ⟨constants 112a⟩+≡ (44a) ◁ 550a 579b ▷
#define FLOPPY_RECALIBRATE 0x07

Defines:
FLOPPY_RECALIBRATE, used in chunk 551b.

13.6.7 Floppy Driver Initialization
As with the hard disk driver, we also need to initialize the floppy driver when the system
boots. is happens in the

[552b] ⟨function prototypes 45a⟩+≡ (44a) ◁ 550e 553a ▷
void fdc_init ();

function which initializes the locks, gathers the information about available floppy drives
from the CMOS, enters them in the data structures (and displays them on the screen) and
installs the interrupt handler for the floppy interrupt. It is comparable to the ata_initb
function.

[552c] ⟨function implementations 100b⟩+≡ (44a) ◁ 551b 553b ▷
void fdc_init () {

fdc_lock = get_new_lock ("fdc"); // initialize lock

outb_delay (IO_CMOS_CMD, 0x10); // read floppy status from CMOS
int fdd_type_byte = inb_delay (IO_CMOS_DATA);

int type; printf ("FDC: "); // enter and display data
for (int i = 0; i < 2; i++) {

// check floppy drive i
if (i == 0) type = fdd_type_byte >> 4; // upper 4 bits
else type = fdd_type_byte & 0x0F; // lower 4 bits
if ((fdd[i].present = (type == 2 || type == 4 || type == 5 )))

fdd[i].type = fdc_map_type (type);
printf ("fd%d (%s)%s", i, fdd_drive_name[type], (i==0) ? ", " : "\n");

}

if (fdd[0].present || fdd[1].present) { // enable floppy handler
install_interrupt_handler (IRQ_FDC, floppy_handler);
enable_interrupt (IRQ_FDC);
outportb (IO_FLOPPY_RATE, 0); // FDC Reset
outportb (IO_FLOPPY_OUTPUT, 12); // enable DMA, disable Reset

}
}
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Defines:
fdc_init, used in chunks 45c and 552b.

Uses enable_interrupt 140b, fdc_lock 547b, fdc_map_type 553b, fdd 541c, fdd_drive_name 541c,
floppy_handler 546b, get_new_lock 367b, inb_delay 538b, install_interrupt_handler 146c, IO_CMOS_CMD 339b,
IO_CMOS_DATA 339b, IO_FLOPPY_OUTPUT 535, IO_FLOPPY_RATE 535, IRQ_FDC 132, lock 365a, outb_delay 538b,
outportb 133b, printf 601a, and read 429b.

It uses the helper function
[553a]⟨function prototypes 45a⟩+≡ (44a) ◁ 552b 561b ▷

int fdc_map_type (int t);

that converts the floppy drive type (as seen in the CMOS) into an index into the fdd_typec[]
table which contains description of the drive characteristics.

[553b]⟨function implementations 100b⟩+≡ (44a) ◁ 552c 562b ▷
int fdc_map_type (int t) {

switch (t) {
case 2: return 0; // 1.2 MByte drive
case 4: return 1; // 1.44 MByte drive
default: return -1;

}
}

Defines:
fdc_map_type, used in chunks 552c and 553a.

Credits
As a final note we want to give credit to Tudor Hulubei who wrote the ix Operating
System [Hul95] and published the source code under the GPL 2 license. e whole floppy
code in Section 13.6 is based on his floppy driver implementation, thoughwe have removed
a lot of the original code. For example,ix uses several disk buffers so that floppy requests
can be queued.
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Signals

Signals are a classical Unix mechanism which allows a simple kind of messaging: pro-
cesses can send signals to other processes which makes them either terminate or call a
registered signal handler signal handler. In many ways these signals are very similar to interrupts, but
while an interrupt handler can only be set up in kernel mode (and serves the whole oper-
ating system), signal handlers can be set up in user mode and belong to just one process.

e similarity between signals and interrupts goes even further: Interrupts exist in two
varieties, synchronous (e. g. interrupts caused by accessing a badmemory address or trying
to execute an unknownCPU instruction) and asynchronous (e. g. raised by a device, such as
the timer or a floppy or hard disk controller), and the same holds for signals: a synchronous

signal
synchronous

signal is caused by the process itself (again access to a badmemory address is an example—
in that case it causes an interrupt first and the interrupt handler sends a corresponding
signal to the process), but most signals are asynchronous asynchronous

signal
(sent by a different process).

Some functionality is available in both worlds (interrupts and signals), take for example
a timer: the computer’s timer chip generates regular timer interrupts which are asyn-
chronous events and invoke the kernel’s timer interrupt handler. Besides other things,
this handler checks whether one of the processes has registered a (process-private) timer—
and if so, generates an alarm signal. When the process is scheduled the next time, instead
of continuing its normal execution it enters its alarm signal handler and treats the asyn-
chronous signal.

An example for synchronous events in both worlds is bad memory access. When a pro-
cess tries to access a virtual address which is not available (because the page tables do not
map it to some physical address), a page fault is generated, so the CPU jumps into the page
fault (interrupt) handler. at one checks the reason (the only acceptable reason being that
the page was paged out to disk). If that is not the case, the process must be terminated.
To achieve this goal, the page fault handler sends the process a SIGSEGVSIGSEGVa (segmentation
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violation) signal. When the process is scheduled again, it will normally abort, though it
may have registered a SIGSEGVa signal handler to deal with such a situation.

For the memory example, consider the following program segfault.c:
[556] ⟨segfault.c 556⟩≡

int main () {
char *adr = (char *)0;
char c = *adr;
putchar (c);

}

and its execution via the debugger gdb:

$ gcc -g segfault.c
$ gdb a.out
GNU gdb (Ubuntu/Linaro 7.4-2012.04-0ubuntu2.1) 7.4-2012.04
(gdb) run
Starting program: /tmp/a.out

Program received signal SIGSEGV, Segmentation fault.
0x0000000000400508 in main () at segfault.c:3
3 char c = *adr;

14.1 Use Cases for Signals
What are signals good for? In this sectionwe show you three examples which demonstrate
the range of application of signals.

Program Error: In many cases programs may run into a problem when they try to per-
form an action that the CPU will not allow, for example when trying to access an
invalid memory address. is is normally an indication that the program is faulty,
and the best action will be to terminate the process. However, instead of checking
every memory address in the program before it is accessed, a developer may decide
to rely on an error handler that will be called if such behavior is detected. So a
solution could be to write an error handler (and install it as the signal handler for
the signal that will be generated) that resets the program to some initial state and
starts over. en, when an error occurs, the processor jumps into the fault handler
which will send a signal to the process. When the process continues, it will execute
the signal handler.

Inter Process Communication: Processes that work together somehow, oen need to
communicate. Unix systems provide special mechanisms for sending complex mes-
sages, but if only some kind of “ping” is required to tell another process that a certain
condition has been reached, then a signal can serve that purpose.

Voluntary Abort: A process may decide to terminate itself when it recognizes an error
condition. Instead of calling exita with an error return value, it can use abort to
send itself aSIGABRT SIGABRTa signal.
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14.2 Signals in Classical Unix Systems
In classical Unix systems, processes can use the kill system call to deliver a signal to
an arbitrary process (as long as both have the same owner or the signal-sending process
belongs to root) or the raise system call to send a signal to themselves.

Every Unix system knows a few standard signals, with signal numbers typically ranging
from 0 to 31. While some signals have standard signal numbers (such as 9 and 15 for
SIGKILLa and SIGTERMa), the POSIX standard does not require signals to use standard
values; it only asks for signal names to be defined¹:

SIGABRT (default action: abort)

Process abort signal. e signal
could be sent by the process itself
(see above), by a different process
or by the kernel.

SIGALRM (default action: abort)

Unix systems normally supply an
alarm clock mechanism. By defin-
ing a timer, this signal will be sent
when the requested timeout occurs.

SIGBUS (default action: abort)

e process tried to access an in-
valid address. is is similar to
SIGSEGV, but the laer deals with
forbidden access to a valid address
(an address that requires kernel
privileges).

SIGCHLD (default action: ignore)

When a child process terminates,
stops (SIGSTOP) or continues
(SIGCONT), its parent process is
notified with this signal.

SIGCONT (default action: continue)

A process that was stopped (via
SIGSTOP) continues execution.

SIGFPE (default action: abort)
Originally the acronym FPE stood
for Floating Point Exception and the
signal was raised when the pro-
cess caused the FPU (Floating Point
Unit) to perform a faulting calcula-
tion, such as a division by zero. To-
day SIGFPU is used for all kinds of
arithmetic errors.

SIGHUP (default action: abort)
e Hangup signal tells a process
that its controlling terminal is gone.
On a modern Unix system this of-
ten refers to a closed terminal win-
dow, traditionally it occurred when
the connection of a dumb terminal
device to the machine (via a serial
line or a dial-in connection) was
lost.

SIGILL (default action: abort)
e process tried to execute an il-
legal instruction (e. g., one that re-
quires a newer processor with an
extended instruction set).

SIGINT (default action: abort)
Pressing [Ctrl-C] generates this sig-
nal. It is possible to write a signal
handlerwhichmay decide to ignore
[Ctrl-C]. Note that U terminates

¹ see http://pubs.opengroup.org/onlinepubs//basedefs/signal.h.html

http://pubs.opengroup.org/onlinepubs/009695399/basedefs/signal.h.html
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processes when this key combina-
tion is pressed.

SIGKILL (default action: abort)

is is the aggressive KILL signal
that cannot be intercepted by a sig-
nal handler. It terminates the pro-
cess at once.

SIGPIPE (default action: abort)

e process wrote to a pipe that has
no reader.

SIGQUIT (default action: abort)

is is similar to SIGINT. Some sys-
tems write a core dump, in addition
to what is caused by SIGINT.

SIGSEGV (default action: abort)

e process tried to access a mem-
ory location for which it lacks the
required privileges, see SIGBUS.

SIGSTOP (default action: stop)

e signal stops a process. It will re-
main blocked until it receives SIG-
CONT. e signal cannot be inter-
cepted by a handler.

SIGTERM (default action: abort)

e process is asked to terminate.
It can install a signal handler for
this signal which allows it to write
in-memory data to files or perform
other final actions. e signal can
also be ignored.

SIGTSTP (default action: stop)

is is a variant of SIGSTOP and
allows the installation of a signal
handler.

SIGTTIN (default action: stop)
e process has no terminal but
tried to read from a non-redirected
standard input.

SIGTTOU (default action: stop)
e process has no terminal but
tried to write to a non-redirected
standard output or standard error
output.

SIGUSR1, SIGUSR2 (default: abort)
ese signals can be used by appli-
cation developers for their own pur-
poses.

SIGPOLL (default action: ignore)
When new data appear on a pro-
cess’ standard input, this signal is
raised. Network sockets can also
generate this signal.

SIGPROF (default action: abort)
A special timer that counts CPU
time which was spent in this pro-
cess (or in the kernel, but for this
process) generates this signal. It is
similar to SIGALRM but that one
uses real time. Also compare with
SIGVTALRM.

SIGSYS (default action: abort)
e process tried to execute a sys-
tem call with an unknown system
call number.

SIGTRAP (default action: abort)
is signal is raised when a process
is run in a debugger and a break-
point was reached.

SIGURG (default action: ignore)
For systems that support network-
ing, this signal indicates that data
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have arrived on a socket which re-
quire urgent treatment.

SIGVTALRM (default action: abort)
A special timer that counts CPU
time which was spent in this pro-
cess (but not the kernel) gener-
ates this signal. It is similar to
SIGALRM but that one uses real
time. Also compare with SIG-
PROF.

SIGXCPU (default action: abort)

is can be used if a process is only
granted a certain amount of CPU
time before it is terminated. e sig-
nal is sent a bit earlier so that the
process can finish its work.

SIGXFSZ (default action: abort)

e process has tried to create a file
that is larger than allowed.

Table 14.1 shows how these signal names are mapped to signal numbers on some stan-
dard systems.

e information in the table was gathered from the following sources:
• kill -l on Linux (kernel 3.0.0) and OS X (Darwin kernel 10.8.0),
• Minix signal.h header file; “n/a” (not available) means: these system calls have not

been implemented in Minix, but the numbers were assigned because the POSIX stan-
dard requires Unix implementations to define them; http://faculty.qu.edu.qa/rriley/
cmpt/minix/signal_h-source.html.

• FreeBSD: http://www.unix.com/man-page/FreeBSD//signal/
• OpenSolaris 2009.06, http://www.unix.com/man-page/opensolaris/head/signal.h/
Over these five operating systems, only the signals SIGHUP (1), SIGINT (2), SIGQUIT (3),

SIGILL (4), SIGTRAP (5), SIGABRT (6), SIGFPE (8), SIGKILL (9), SIGSEGV (11), SIGPIPE (13),
SIGARLM (14) and SIGTERM (15) have common numbers.

You can find further details about signals in section 2.4 (Signal Concepts) of the System
Interfaces volume of the Single UNIX® Specification, Version 4, 2013 Edition [IT13].

14.3 Implementation of Signals in U
In order to implement signals the following two sets of functionalities are normally re-
quired:

• Methods which let a process register signal handlers (via a signal system call) and
decide which signals to block (by seing the signal mask signal maskvia a sigprocmask system
call). (U does not support changing the signal mask.)

• Methods to deliver signals to processes and have the process react accordingly: for de-
livering, we need to implement the kill system call, and making the process execute
(and return from) the signal handler requires changes to the scheduling code.

We will allow each process to define signal handlers for 32 signals (0–31), so we need
space for 32 addresses, and we need to store × bits in each process for pending signals
and blocked signals: A signal handler is stored as its address:

http://faculty.qu.edu.qa/rriley/cmpt507/minix/signal_8h-source.html
http://faculty.qu.edu.qa/rriley/cmpt507/minix/signal_8h-source.html
http://www.unix.com/man-page/FreeBSD/3/signal/
http://www.unix.com/man-page/opensolaris/3head/signal.h/


560 14 Signals

Signal Linux OS X Minix FreeBSD Solaris
SIGABRT 6 6 6 6 6
SIGALRM 14 14 14 14 14
SIGBUS 7 10 7 10 10
SIGCHLD 17 20 17 20 18
SIGCONT 18 19 n/a, 18 19 25
SIGFPE 8 8 8 8 8
SIGHUP 1 1 1 1 1
SIGILL 4 4 4 4 4
SIGINT 2 2 2 2 2
SIGKILL 9 9 9 9 9
SIGPIPE 13 13 13 13 13
SIGQUIT 3 3 3 3 3
SIGSEGV 11 11 11 11 11
SIGSTOP 19 17 n/a, 19 17 23
SIGTERM 15 15 15 15 15
SIGTSTP 20 18 n/a, 20 18 24
SIGTTIN 21 21 n/a, 22 21 26
SIGTTOU 22 22 n/a, 23 22 27
SIGUSR1 10 30 10 30 16
SIGUSR2 12 31 12 31 17
SIGPOLL *) 29 23 – 23 22
SIGPROF 27 27 25 27 29
SIGSYS 31 12 – 12 12
SIGTRAP 5 5 5 5 5
SIGURG 23 16 – 16 21
SIGVTALRM 26 26 24 26 28
SIGXCPU 24 24 – 24 30
SIGXFSZ 25 25 – 25 31

Table 14.1: Standard signals on five Unix systems.

*) Linux, Mac OS and FreeBSD call the SIGPOLL signal SIGIO.

[560a] ⟨public elementary type definitions 45e⟩+≡ (44a 48a) ◁ 178a
typedef void (*sighandler_t)(int);

Defines:
sighandler_t, used in chunks 560b, 561a, 566, and 568b.

and 32 bits fit precisely in an unsigned long integer, sowe can add two variables sig_pending
and sig_blocked for storing those bits:

[560b] ⟨more TCB entries 158c⟩+≡ (175) ◁ 432c 573a ▷
sighandler_t sighandlers[32];
unsigned long sig_pending;
unsigned long sig_blocked;

Uses sighandler_t 560a.
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For every signal number i and each state of a process there are several possibilities:

• e signal is blocked; in that case the i-th bit in sig_blocked is 1, and the value in
sighandlers[i] is irrelevant, because the signal will cause the i-th bit of sig_pending
to be set.

• e signal is not blocked and the default action shall take place; in that case the
corresponding bit in sig_blocked is 0 and sighandlers[i] is SIG_DFLa.

• e signal is not blocked, but the process ignores this signal; in that case the corre-
sponding bit in sig_blocked is 0 and sighandlers[i] is SIG_IGNa.

• e signal is not blocked and a signal handler handler() has been installed; in that
case the corresponding bit in sig_blocked is 0 and sighandlers[i] is handler.

We use the SIG_DFLa and SIG_IGNa values from a Linux system (on a 32 bit Linux
system their definitions can be found in /usr/include/asm-generic/signal-defs.h):

[561a]⟨public constants 46a⟩+≡ (44a 48a) ◁ 469b 562a ▷
#define SIG_DFL ((sighandler_t)0) // default signal handling
#define SIG_IGN ((sighandler_t)1) // ignore signal
#define SIG_ERR ((sighandler_t)-1) // error code

Defines:
SIG_DFL, used in chunks 562b and 567b.
SIG_ERR, used in chunk 566b.
SIG_IGN, used in chunks 562b and 567b.

Uses sighandler_t 560a and signal 568b.

is assumes that 0 and 1 can never be the addresses of a signal handler function.
We will not implement queues for signals; if the same process receives the same signal

more than once before the scheduler activates it the next time, then the extra signal(s) will
be lost (which is also what other Unix implementations do). us, our internal u_killb
function is rather simple:

[561b]⟨function prototypes 45a⟩+≡ (44a) ◁ 553a 566a ▷
int u_kill (int pid, int signo);

will set errnob (more precisely: the TCB element error) to one of the following error
constants if something goes wrong:

[561c]⟨error constants 370a⟩+≡ (207a) ◁ 371b 577a ▷
#define EPERM 1 // not permitted
#define ESRCH 3 // no such process
#define EINVAL 22 // invalid argument

Defines:
EINVAL, used in chunks 562b and 565c.
EPERM, used in chunks 562b and 565c.
ESRCH, used in chunks 562b and 565c.

Now we present the implementation. We have taken the signal numbers from an OS X
system (and renamed SIGIO to SIGPOLLa):
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[562a] ⟨public constants 46a⟩+≡ (44a 48a) ◁ 561a 584a ▷
#define SIGHUP 1
#define SIGINT 2
#define SIGQUIT 3
#define SIGILL 4
#define SIGTRAP 5
#define SIGABRT 6
#define SIGFPE 8
#define SIGKILL 9
#define SIGBUS 10
#define SIGSEGV 11
#define SIGSYS 12
#define SIGPIPE 13
#define SIGALRM 14
#define SIGTERM 15
#define SIGURG 16
#define SIGSTOP 17
#define SIGTSTP 18
#define SIGCONT 19
#define SIGCHLD 20
#define SIGTTIN 21
#define SIGTTOU 22
#define SIGPOLL 23
#define SIGXCPU 24
#define SIGXFSZ 25
#define SIGVTALRM 26

#define SIGPROF 27
#define SIGUSR1 30
#define SIGUSR2 31

Defines:
SIGABRT, used in chunk 562b.
SIGALRM, used in chunk 562b.
SIGBUS, used in chunk 562b.
SIGCONT, used in chunks 563b and 566b.
SIGFPE, used in chunk 562b.
SIGHUP, used in chunk 562b.
SIGILL, used in chunk 562b.
SIGINT, used in chunk 562b.
SIGKILL, used in chunks 321a, 562b, 564a,

and 566b.
SIGPIPE, used in chunk 562b.
SIGPROF, used in chunk 562b.
SIGSTOP, used in chunks 562b, 563a, and 566b.
SIGSYS, used in chunk 562b.
SIGTERM, used in chunk 562b.
SIGTRAP, used in chunk 562b.
SIGTSTP, used in chunk 562b.
SIGTTIN, used in chunk 562b.
SIGTTOU, used in chunk 562b.
SIGUSR1, used in chunk 562b.
SIGUSR2, used in chunk 562b.
SIGVTALRM, used in chunk 562b.
SIGXCPU, used in chunk 562b.
SIGXFSZ, used in chunk 562b.

e u_killb function first tests a few error conditions and leaves immediately if it
finds one of them: Signal numbers must be between 0 and 31, the target process must
exist and must neither have PID 1 (init/idle) or 2 (swapper) nor login as command name.

en it checks whether SIG_DFLa is set as signal handler; depending on the signal
it changes the signal number to SIGKILLa (for killing the process) or SIGSTOPa (for
stopping it). Aer that it treats the three special cases of the SIGKILLa, SIGSTOPa and
SIGCONTa signals which cannot be blocked or ignored.

Finally it checks whether the signal shall be ignored; if the signal is neither ignored nor
blocked, it sets the pending bit in the target TCB’s sig_pending field and returns.

[562b] ⟨function implementations 100b⟩+≡ (44a) ◁ 553b 566b ▷
int u_kill (int pid, int signo) {

TCB *tcb = &thread_table[pid];
if (signo < 0 || signo > 31) { set_errno (EINVAL); return -1; }
if (!tcb->used) { set_errno (ESRCH); return -1; }
if ( (pid < 3) || (strncmp (tcb->cmdline, "login", 5) == 0) )

{ set_errno (EPERM); return -1; }

if (tcb->sighandlers[signo] == SIG_DFL) { // default action
if (signo == SIGABRT || signo == SIGALRM || signo == SIGBUS ||

signo == SIGFPE || signo == SIGHUP || signo == SIGILL ||
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signo == SIGINT || signo == SIGPIPE || signo == SIGTERM ||
signo == SIGUSR1 || signo == SIGUSR2 || signo == SIGPROF ||
signo == SIGSYS || signo == SIGTRAP || signo == SIGVTALRM ||
signo == SIGXCPU || signo == SIGXFSZ) {

// default: abort, send SIGKILL
printf ("Replacing signal %d with kill signal (9)\n", signo);
signo = SIGKILL; // no handler? kill it

} else if (signo == SIGTTIN || signo == SIGTTOU || signo == SIGTSTP) {
// default: stop, send SIGSTOP
printf ("Replacing signal %d with kill signal (9)\n", signo);
signo = SIGSTOP; // no handler? kill it

}
}

switch (signo) { ⟨u_kill: special cases 563a⟩ }; // cannot ignore/block

if (tcb->sighandlers[signo] == SIG_IGN) return 0; // ignore signal
int blocked = tcb->sig_blocked & (1<<signo);
if (!blocked && signo ≥ 0 && signo < 32) {

tcb->sig_pending |= (1<<signo); // set the pending bit
}
return 0;

}
Defines:

u_kill, used in chunks 321a, 561b, and 565c.
Uses EINVAL 561c, EPERM 561c, ESRCH 561c, kill 568b, login 584c, printf 601a, set_errno 206b, SIG_DFL 561a,

SIG_IGN 561a, SIGABRT 562a, SIGALRM 562a, SIGBUS 562a, SIGFPE 562a, SIGHUP 562a, SIGILL 562a, SIGINT 562a,
SIGKILL 562a, signal 568b, SIGPIPE 562a, SIGPROF 562a, SIGSTOP 562a, SIGSYS 562a, SIGTERM 562a, SIGTRAP 562a,
SIGTSTP 562a, SIGTTIN 562a, SIGTTOU 562a, SIGUSR1 562a, SIGUSR2 562a, SIGVTALRM 562a, SIGXCPU 562a,
SIGXFSZ 562a, strncmp 594a, TCB 175, and thread_table 176b.

We treat three special cases directly in the u_killb function:

• e SIGSTOPa signal:
[563a]⟨u_kill: special cases 563a⟩≡ (562b) 563b ▷

case SIGSTOP: ⟨u_kill: remove thread from queue 564c⟩
tcb->state = TSTATE_STOPPED;
if (pid == current_task) {
⟨resign 221d⟩ // enter scheduler

}
return 0;

Uses current_task 192c, SIGSTOP 562a, and TSTATE_STOPPED 180a.

• e SIGCONTa signal:
[563b]⟨u_kill: special cases 563a⟩+≡ (562b) ◁ 563a 564a ▷

case SIGCONT: if (tcb->state == TSTATE_STOPPED) {
add_to_ready_queue (pid); // sets TSTATE_READY

} // else ignore
return 0;

Uses add_to_ready_queue 184b, SIGCONT 562a, TSTATE_READY 180a, and TSTATE_STOPPED 180a.
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• e SIGKILLa signal:
[564a] ⟨u_kill: special cases 563a⟩+≡ (562b) ◁ 563b

case SIGKILL: ⟨u_kill: remove thread from queue 564c⟩
tcb->used = false;
tcb->state = TSTATE_EXIT;
⟨u_kill: write kill message 564b⟩
wake_waiting_parent_process (pid);
⟨enable scheduler 276a⟩
if (pid == current_task) {
⟨resign 221d⟩ // enter scheduler

}
return 0;

Uses current_task 192c, SIGKILL 562a, TSTATE_EXIT 180a, and wake_waiting_parent_process 217a.

We want to notify the user that the process was killed, so we write a “Killed” message
onto the terminal that the task uses. For that purpose we need to temporarily change the
value of thread_tableb[current_taskc].terminal (since printfa() uses that value to
find its target) and restore it aer writing:

[564b] ⟨u_kill: write kill message 564b⟩≡ (564a)
int tmp_term = thread_table[current_task].terminal;
thread_table[current_task].terminal = thread_table[pid].terminal;
printf ("\nKilled\n");
thread_table[current_task].terminal = tmp_term;

Uses current_task 192c, printf 601a, and thread_table 176b.

In order to remove the thread from a queue we can only guess what queue it might
be on since we do not have a list of all available queues; for example, every lock has its
separate queue, and locks can be generated on the fly. We check the standard blocked
queues (waiting for a child process, a keyboard, floppy or hard disk event) and the ready
queue:

[564c] ⟨u_kill: remove thread from queue 564c⟩≡ (563a 564a)
switch (tcb->state) {

case TSTATE_READY: remove_from_ready_queue (pid); break;
case TSTATE_WAITFOR: remove_from_blocked_queue (pid, &waitpid_queue); break;
case TSTATE_WAITKEY: remove_from_blocked_queue (pid, &keyboard_queue); break;
case TSTATE_WAITFLP: remove_from_blocked_queue (pid, &floppy_queue); break;
case TSTATE_WAITHD: remove_from_blocked_queue (pid, &harddisk_queue); break;
case TSTATE_WAITSD: remove_from_blocked_queue (pid, &serial_disk_queue); break;
default: printf ("cannot remove process %d (state: %d) from blocked"

" queue, probably failure!\n", pid, tcb->state);
}

Uses floppy_queue 544d, harddisk_queue 529a, keyboard_queue 323d, printf 601a, remove_from_blocked_queue
186a, remove_from_ready_queue 184c, serial_disk_queue 522a, TSTATE_READY 180a, TSTATE_WAITFLP 180a,
TSTATE_WAITFOR 180a, TSTATE_WAITHD 180a, TSTATE_WAITKEY 180a, TSTATE_WAITSD 521c, and waitpid_queue 218b.
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Note that we need not (and do not) perform any checks in this function: u_killb can
be called by the kernel itself (which may send any signal to any process), but it cannot be
called directly by a process. Sending by a process requires using a system call, and the
system call handler will check whether the process is allowed to send the signal to the
target process before calling u_killb.

It is also classical for a process to send a signal to itself; that is what the raiseb func-
tion does. We will not implement it specifically inside the kernel, but in the user mode
library: raiseb(sig) is the same as killb(getpidb(),sig).

Here’s the code for the system call handler:
[565a]⟨initialize syscalls 173d⟩+≡ (44b) ◁ 513b 567a ▷

install_syscall_handler (__NR_kill, syscall_kill);
Uses __NR_kill 204c, install_syscall_handler 201b, and syscall_kill 565c.

[565b]⟨syscall prototypes 173b⟩+≡ (202a) ◁ 512d 566c ▷
void syscall_kill (context_t *r);

[565c]⟨syscall functions 174b⟩+≡ (202b) ◁ 513a 566d ▷
void syscall_kill (context_t *r) {

// ebx: pid of child to send a s signal, ecx: signal number
int retval; int target_pid = r->ebx; int signo = r->ecx;

if (!thread_table[target_pid].used) { // check if target process exists
// target process does not exist
set_errno (ESRCH);
retval = -1; goto end;

}

if (signo < 0 || signo > 31) { // check if signal is in range 0..31
set_errno (EINVAL);
retval = -1; goto end;

}

// check if current process may send a signal
if ((thread_table[current_task].euid == 0) ||

(thread_table[target_pid].euid == thread_table[current_task].euid)) {
retval = u_kill (target_pid, signo);

} else {
set_errno (EPERM);
retval = -1;

}
end: r->eax = retval;

// run scheduler if this was a raise operation
if (current_task == target_pid) { ⟨resign 221d⟩ }

};
Defines:

syscall_kill, used in chunk 565.
Uses context_t 142a, current_task 192c, EINVAL 561c, EPERM 561c, ESRCH 561c, euid 573a, raise 568b,

set_errno 206b, signal 568b, target_pid, thread_table 176b, and u_kill 562b.
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We only allow sending a signal if either the sender’s owner has user ID 0 or if sender
and recipient have the same owner.

If sender and receiver are the same process, we have a raiseb operation, and in that
case we will jump into the scheduler: we do not want the current process to continue
execution since it might have sent a SIGKILLa signal to itself.

(Note that we cannot use the eax_returna macro in this function because we may or
may not call ⟨resign 221d⟩.)

How can a process declare a signal handler? It just defines a function void *handler
(int) (of type sighandler_ta) and makes a signalb syscall. e internal function for
entering a system call is the following:

[566a] ⟨function prototypes 45a⟩+≡ (44a) ◁ 561b 576a ▷
sighandler_t u_signal (int sig, sighandler_t func);

[566b] ⟨function implementations 100b⟩+≡ (44a) ◁ 562b 576b ▷
sighandler_t u_signal (int sig, sighandler_t func) {

sighandler_t old_func;
if (sig ≥ 0 && sig < 32 &&

sig != SIGKILL && sig != SIGSTOP && sig != SIGCONT) {
old_func = thread_table[current_task].sighandlers[sig];
thread_table[current_task].sighandlers[sig] = func;

} else {
old_func = SIG_ERR; // wrong signal number

}
return old_func;

}
Defines:

u_signal, used in chunk 566.
Uses current_task 192c, SIG_ERR 561a, SIGCONT 562a, sighandler_t 560a, SIGKILL 562a, signal 568b, SIGSTOP 562a,

and thread_table 176b.

e function sets the new signal handler and returns the address of the old handler (or
0 if there was none); that way the process can keep a copy of the old handler address in
order to restore it at a later point.

As usual, we need to provide a system call so that a process can access this function.
[566c] ⟨syscall prototypes 173b⟩+≡ (202a) ◁ 565b 582b ▷

void syscall_signal (context_t *r);

It performs the already well-known transfers of register values to arguments and of the
return value to the EAX register:

[566d] ⟨syscall functions 174b⟩+≡ (202b) ◁ 565c 583a ▷
void syscall_signal (context_t *r) {

// ebx: signal number
// ecx: address of signal handler
int signo = r->ebx;
sighandler_t func = (sighandler_t)r->ecx;
func = u_signal (signo, func);
eax_return (func);

};
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Defines:
syscall_signal, used in chunks 566c and 567a.

Uses context_t 142a, eax_return 174a, sighandler_t 560a, and u_signal 566b.

[567a]⟨initialize syscalls 173d⟩+≡ (44b) ◁ 565a 583b ▷
install_syscall_handler (__NR_signal, syscall_signal);

Uses __NR_signal 204c, install_syscall_handler 201b, and syscall_signal 566d.

Finally, we need to add code to the scheduler: it needs to check for pending signals and—
if there are any—launch the registered handler function or execute the standard action.
Running a handler can be achieved by modifying the process’ stack. We loop over the
set of possible signal numbers (0–31) and check the bits in sig_pending. (Remember that
t_newc points to the newly chosen process’ TCB.)

Note that we onlymodify the stack (and the EIP value) if the process is currently running
in user mode (i. e., t_newc->regs.eip < 0xc0000000), because otherwise we would change
the kernel stack (making the signal handler run with kernel privileges).

[567b]⟨scheduler: check pending signals 567b⟩≡ (277b)
for (int signo = 0; signo < 32; signo++) {

if ((t_new->sig_pending & (1<<signo)) != 0 // signal is pending
&& t_new->regs.eip < 0xc0000000) { // and thread is in user mode

if (t_new->sighandlers[signo] == SIG_DFL) {
; // nop // default action, cannot happen

} else if (t_new->sighandlers[signo] == SIG_IGN) {
; // nop // ignored, should not happen

} else {
// handler exists
⟨modify process to execute signal handler 567c⟩

}
t_new->sig_pending &= ~(1<<signo); // remove bit
break; // only one handler at a time

}
}

Uses SIG_DFL 561a, SIG_IGN 561a, and t_new 276c.

When a handler exists, we modify both the (user mode) stack and the EIP register.
[567c]⟨modify process to execute signal handler 567c⟩≡ (567b)

// Note: t_new->regs has already been copied to r
memaddress oldeip = r->eip;
r->eip = (memaddress)t_new->sighandlers[signo];
// push signal number and oldeip on user mode stack
POKE_UINT (r->useresp, signo); // overwrites old RET address
r->useresp -= 4;
POKE_UINT (r->useresp, oldeip); // writes new RET address

Uses memaddress 46c, POKE_UINT 117, and t_new 276c.
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14.3.1 Library Functions
Now we can provide the user mode library functions for the two new system calls; we
also define a raiseb function which sends a signal to the own process:

[568a] ⟨ulixlib function prototypes 174c⟩+≡ (48a) ◁ 513c 584b ▷
int kill (int pid, int signo);
int raise (int signo);
sighandler_t signal (int sig, sighandler_t func);

[568b] ⟨ulixlib function implementations 174d⟩+≡ (48b) ◁ 513d 584c ▷
int kill (int pid, int signo) {

return syscall3 (__NR_kill, pid, signo);
}

int raise (signo) {
return kill (getpid (), signo);

}

sighandler_t signal (int sig, sighandler_t func) {
return (sighandler_t)syscall3 (__NR_signal, sig, (memaddress)func);

}
Defines:

kill, used in chunks 321a, 431, and 562b.
raise, used in chunk 565c.
signal, used in chunks 561a, 562b, 565c, 566b, and 568a.

Uses __NR_kill 204c, __NR_signal 204c, getpid 223b, memaddress 46c, sighandler_t 560a, and syscall3 203c.

14.3.2 Example Program
We end this chapter with an example program that you can also find on the U disk
image: /bin/sigtest forks, registers two signal handlers in the child and sends two signals
twice from the parent process. Both processes otherwise print sequences of “p”s or “c”s
to show that they are active. e expected behavior is that the output is interrupted with
four messages from the two signal handlers.

[568c] ⟨example for signal handlers 568c⟩≡
#include "../ulixlib.h"

void handler1 (int sig);
void handler2 (int sig);
void waste_time ();

int main (int argc, char *argv[]) {
int i; int pid = fork ();
if (pid == 0) { // child

signal (5, handler1); // register handler 1
signal (6, handler2); // register handler 2
for (i = 0; i < 40; i++) { printf ("c"); waste_time (); }
exit (0);
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} else { // parent
for (i = 0; i < 20; i++) { printf ("p"); waste_time (); }
kill (pid, 5);
kill (pid, 6);
for (i = 0; i < 22; i++) { printf ("p"); waste_time (); }
printf ("--done\n");
exit (0);

}
}

void handler1 (int sig) { printf ("\nHandler 1\n"); }
void handler2 (int sig) { printf ("\nHandler 2\n"); }

void waste_time () {
long int i, z;
for (i=0L; i<1000000L; i++) z = i*i - (i+1)*(i+1);

}





15
Users and Groups

Unix and all Unix-derived operating systems are multi-user-capable. ere are config-
uration files which contain the information about all known users users, and there is also a
list of groups that users can be members of. Each user has a standard group standard groupbut may—
additionally—have the membership of one or more further groups. e id command lists
the user ID, a corresponding user name, the standard group ID and name and a list of all
additional group memberships. e following is an example from a Linux installation:

$ id
uid=1000(esser) gid=1000(esser) groups=1000(esser),24(cdrom),25(floppy),29(audio),
30(dip),44(video),46(plugdev)

Internally, the systems use only the numerical IDs; tools which display user and group
names will look them up using functions such as getpwnam or getgrnam. e inode of each
file stores a user ID and a group ID, the first one expresses file ownership by the specific
user who uses this user ID, whereas the second one establishes an additional group own-
ership. Members of a group may (or may not) have access rights to a file which has the
corresponding group ID. e group is sometimes called the owner group owner groupor group owner,
both variants mean the same thing.

Classical Unix systems can associate nine access permissions access
permissions

with every file and every
directory: for files, these are the three basic rights to read (r), write (w) or execute (x) a file,
for directories the interpretation is listing, modifying and searching/entering a directory
(where “searching”means geing the inode number of a file in the directory and “entering”
means seing the current working directory to a folder). Each of these three permissions
can be granted or denied to the file owner, all members of one specific group of users and
all other users. is leads to nine permissions typically represented as a nine-character
string of the form rwxrwxrwx where missing rights are expressed by exchanging a leer
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with a minus character. For example, the permission string rwxr-x--- for a file lets the file
owner read, write and execute that file (rwx); it lets members of the file’s owner group read
and execute (but not write) it (r-x), and other users (those who neither are the owner nor
belong to the owner group) cannot access the file at all (---).

ere are a few more aributes which can be set for files and directories which have
specific effects:

SUID: If the Set User ID bit (SUID) is set for an executable file, theeffective
user ID

effective user ID (EUID)
is set to the ID of the file owner. For example, the passwdd tool uses this feature:
It may be called by any user (who wants to change his own password), but it needs
administrator privileges to modify the password file which is non-writeable for or-
dinary users. In order to allow this, the passwdd program is set to belong to the
root user and has the SUID bit set. When a regular user starts passwdd, the effec-
tive user ID of the process is set to 0 (the user ID of root), and write access to the
password file is granted.
In the directory listing of an executable file with a set SUID bit, the first x in the
permissions string is replaced with an s to show this. It is also possible to set the
SUID bit on a non-executable file which will show up with a capital S, however this
is useless.

SGID: e Set Group ID bit (SGID) has a function that is similar to the SUID bit’s, how-
ever it changes the effective group IDeffective

group ID
(EGID). It appears as a capital S in the group

permissions block.
On some Unix systems, a non-group-executable file which has the SGID bit set is
marked for mandatory lockingmandatory

locking
(for the Linux OS, see https://www.kernel.org/doc/

Documentation/filesystems/mandatory-locking.txt).

Sticky Bit: e sticky bit appears as a t leer in the last position of the permissions string
(replacing the x which shows the world-executable state). Similar to the difference
between s and S, if a file is set to be sticky but not world-executable, it appears as a
capital T.
e effect of a set sticky bit depends on the Unix variant. For example, the Linux
man page for chmodb says: “For directories, it prevents unprivileged users from
removing or renaming a file in the directory unless they own the file or the directory;
this is called the restricted deletion flag for the directory, and is commonly found
on world-writable directories like /tmp.”
On traditional Unix systems, a sticky bit on an executable file caused the system to
keep the program code in memory aer termination of a process, with the idea that
it did not have to be reloaded when the same program was executed again. at is
where the term “sticky” comes from.

Many modern Unix-like systems provide further access mechanisms through extended
aributes or access control listsaccess control

list (ACL)
(ACLs). is is a feature whichwas not available in classical

Unix, and we will not implement it for U, either.

https://www.kernel.org/doc/Documentation/filesystems/mandatory-locking.txt
https://www.kernel.org/doc/Documentation/filesystems/mandatory-locking.txt
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15.1 Users and Groups in U
In order to implement the user and group concepts in U, each thread control block
needs four new entries: a user ID (uida), a group ID (gida) and effective user and
group IDs (euida, egida) plus a third set called real user ID and real group ID (ruida,
rgida:

[573a]⟨more TCB entries 158c⟩+≡ (175) ◁ 560b
word uid; // user ID
word gid; // group ID
word euid; // effective user ID
word egid; // effective group ID
word ruid; // real user ID
word rgid; // real group ID

Defines:
egid, used in chunks 487a, 573b, 576–78, 580–83, and 587d.
euid, used in chunks 487a, 565c, 573b, 576–78, 580–83, 587d, and 588b.
gid, used in chunks 478b, 573b, 580–84, and 587d.
rgid, used in chunks 573b and 582a.
ruid, used in chunks 573b and 582a.
uid, used in chunks 478b, 573b, 580–85, and 587d.

e purpose of the real user and group IDs is to always remember which user started the
process: it will (normally) not change over a process’ lifetime whereas uida, gida
and the effective IDs can be changed by a running process using setuidc, setgidc,
seteuidc and setegidc functions; we will explain soon why we need to keep track of
so many IDs.

0 is a special ID, both for users and groups. user/group ID 0It belongs to the root user and root group,
respectively. e root user is the system administrator who can override all permission
seings (e. g. open files for which no read permissions have been set at all). All other IDs
have no special meaning, though it is standard on many systems to reserve IDs below 100
(or below 1000) for system services system serviceswith regular user IDs starting at 100 (or 1000).

e default seing of U processes is to run with root privileges. e function
start_program_from_disk sets all four IDs to 0:

[573b]⟨start program from disk: set uid, gid, euid, egid 573b⟩≡ (189)
thread_table[tid].uid = 0; thread_table[tid].gid = 0;
thread_table[tid].euid = 0; thread_table[tid].egid = 0;
thread_table[tid].ruid = 0; thread_table[tid].rgid = 0;

Uses egid 573a, euid 573a, gid 573a, rgid 573a, ruid 573a, thread_table 176b, and uid 573a.

e Linux man page for setreuid states:

“POSIX.1 does not specify all of [the] possible ID changes that are permied
on Linux for an unprivileged process. For setreuid(), the effective user ID
can be made the same as the real user ID or the save set-user-ID, and it is
unspecified whether unprivileged processes may set the real user ID to the
real user ID, the effective user ID or the saved set-user-ID. For setregid(),
the real group ID can be changed to the value of the saved set-group-ID, and
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the effective group ID can be changed to the value of the real group ID or the
saved set-group-ID.e precise details of what ID changes are permied vary
across implementations.”

For U we will take a simplified approach with the following rules:

• Processes can invoke the setuid and setgid system calls to change their user and
group IDs (uida, gida), and this will also set the effective user/group ID to the
same value. ese functions shall only succeed if the process had an uida value
of 0 or if the desired new ID is identical to either the current user ID or the current
effective user ID.

• Processes can invoke the seteuid and setegid system calls to change their effective
user and group IDs (euida, egida). is will not change the user/group ID (uida,
gida). ese functions shall only succeed if the process had an uida value of 0 or
if the desired new effective ID is identical to either the current user ID or the current
effective user ID.

• e login system call which expects a user ID and a password allows changing the
real and effective user and group IDs as long as the correct password was supplied.
login is also the only system call which sets the real user and group IDs, thus allowing
the system to keep track of which user initially started a process.

• Whenever file access is checked, the system looks at the effective IDs to establish the
permissions of the current process.

e consequence of these rules is that changing, for example, the user ID and effec-
tive user ID via setuidc is a permanent change which cannot be undone, whereas a
modification of only the effective user ID via seteuidc can be followed up with another
seteuidc call that sets it back to the original value. Once uida and euida have the
same non-zero value, there is only one way to go back to a different ID or effective ID:
it has to make a login system call which reperforms authorization against the password
database.

Whenever a process forks, the new process inherits all IDs from its parent.

15.1.1 Checking Permissions
Before we delve into the implementation of loginc and the set*id functions, let’s look
at how the openb and execve functions use the effective IDs to test whether access can
be granted or not.

Checking whether a user may access a file seems to be a simple task: e OS just needs
to look up the file’s inode and check the file owner, group and permissions stored in the
corresponding fields. But this is only half of the work we need to do because there is
also the issue of geing into the directory which holds the file—aer all, if the directory
does not provide sufficient read permissions, it is forbidden to find the inode number that
belongs to a filename entry.

e access rules are also different for opening (existing) files and newly creating files.
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• In order to access an existing file (either for reading or writing), the user must have
read and execute permissions on all directories which are passed on the way to file,
starting with the root directory /.

• In order to create a new file, the same permissions are needed, and the user must also
have write permission for the last directory (in which the file will be created).

U will first check whether the file already exists. It will then follow the path from either
the existing file or from the target directory, all the way up to the root directory and test
for each directory whether the needed permissions are available. We can do this in a loop
which repeatedly uses splitpatha to strip the last element of the current path.

Pseudo code for this loop looks like this:
[575]⟨pseudo code for checking permissions 575⟩≡

curpath = abspath;
step = 0;
for (;;) {

// check current path
if (step == 0 && fileexists (abspath)) { // can we access the (existing) file?

ok = check (curpath, oflag); // check requested mode
} else
if (step == 1 && !fileexists (abspath)) { // can we create the file, i.\,e. write

// to the target directory?
ok = check (curpath, "rwx");

} else {
ok = check (curpath, "rx"); // check some intermediate directory

}
if (!ok) return false; // access denied
if (curpath == "/") return true; // end of loop (/), access granted

// move to upper directory
lastpath = curpath;
splitpath (lastpath, curpath, tmp);
step++;

}

Note that it would be more efficient to directly implement the access checks in the loop
inside the mx_openb function of the Minix subsystem which traverses the path down
from the root to the file, but we did not want to discuss access rights when we presented
the code for opening a file. Also, our method is independent of the filesystem (e. g. Minix).
But it does more than duplicate the efforts of walking down the path, so it would be
unacceptable for production systems.

In each step both user, group and world access permissions need to be considered: for
example, if user permissions allow access to the first directory, group permissions allow
access to the second directory and world permissions allow access to the third directory,
then that is an acceptable sequence. Only if none of the directory permissions allow access
(somewhere in the path), access must be denied.
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We start with the implementation of
[576a] ⟨function prototypes 45a⟩+≡ (44a) ◁ 566a 576c ▷

boolean fileexists (char *abspath);

for which we can use the u_statd function:
[576b] ⟨function implementations 100b⟩+≡ (44a) ◁ 566b 576d ▷

boolean fileexists (char *abspath) {
struct stat tmp; // stat info will not be used
return (u_stat (abspath, &tmp) != -1); // -1 means: does not exist

}
Defines:

fileexists, used in chunk 576a.
Uses stat 429b 489b and u_stat 421d.

For checking the permissions on any level, we write a function
[576c] ⟨function prototypes 45a⟩+≡ (44a) ◁ 576a 579a ▷

boolean check_access (char *path, word euid, word egid, word mode);

which evaluates the owner, group and world access permissions, depending on the pro-
vided user and group IDs (euida and egida):

[576d] ⟨function implementations 100b⟩+≡ (44a) ◁ 576b 579c ▷
boolean check_access (char *path, word euid, word egid, word mode) {

struct stat st;
int res = u_stat (path, &st); // get file permissions
if (res == -1 && (mode & O_CREAT) == 0) {

set_errno (ENOENT); // file not found
return false;

}

if (res == -1 && (mode & O_CREAT) != 0) {
⟨check_access special case: create file 577b⟩

}

if (euid == st.st_uid) {
// case 1: user owns the file
res = check_perms (CHECK_USER, mode, st.st_mode);

} else if (egid == st.st_gid) {
// case 2: group matches owner group
res = check_perms (CHECK_GROUP, mode, st.st_mode);

} else {
// case 3: world access?
res = check_perms (CHECK_WORLD, mode, st.st_mode);

}
if (!res) set_errno (EACCES);
return res;

}
Defines:

check_access, used in chunk 577c.
Uses CHECK_GROUP 579b, check_perms 579c, CHECK_USER 579b, CHECK_WORLD 579b, EACCES 577a, egid 573a,

ENOENT 577a, euid 573a, O_CREAT 460b, set_errno 206b, stat 429b 489b, and u_stat 421d.
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(e function check_permsc checks just one possible way of geing access, e. g. via the
owner permissions. We will describe it soon.)

[577a]⟨error constants 370a⟩+≡ (207a) ◁ 561c
#define ENOENT 2 // No such file or directory
#define EACCES 13 // Permission denied

Defines:
EACCES, used in chunks 576 and 577.
ENOENT, used in chunks 576d and 577b.

ere’s also one special case we need to consider: when we create a new file, it does not
yet exist, and so u_statd will return −. For file creation we have to check the access
permissions of the directory in which the new file is to be placed.

[577b]⟨check_access special case: create file 577b⟩≡ (576d)
char dirname[256], basename[256];
splitpath (path, dirname, basename);
res = u_stat (dirname, &st); // get directory permissions
if (res == -1) {

set_errno (ENOENT); // directory not found
return false;

}
if (euid == st.st_uid) {

// case 1: user owns the directory
res = (((st.st_mode >> CHECK_USER) & 0x7) == 0x7); // 7: rwx

} else if (egid == st.st_gid) {
// case 2: group matches owner group
res = (((st.st_mode >> CHECK_GROUP) & 0x7) == 0x7);

} else {
// case 3: world access?
res = (((st.st_mode >> CHECK_WORLD) & 0x7) == 0x7);

}
if (!res) set_errno (EACCES);
return res;

Uses basename 455b, CHECK_GROUP 579b, CHECK_USER 579b, CHECK_WORLD 579b, dirname 455b, EACCES 577a, egid 573a,
ENOENT 577a, euid 573a, set_errno 206b, splitpath 455a, and u_stat 421d.

e u_openc function calculates the absolute path of the file it shall open and stores
it in abspath; the requested mode for opening is held in the function’s oflag parameter. It
can then call u_statd to read its access permissions as well as the permissions of the
directories involved:

[577c]⟨u_open: check permissions 577c⟩≡ (412c)
boolean access_ok = false;
word euid = thread_table[current_task].euid;
word egid = thread_table[current_task].egid;
struct stat st;

if (euid == 0) {
access_ok = true; // user root can do anything

} else {
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// loop over the directories
char old_dirname[256]; char dirname[256]; char rest[256];
strncpy (dirname, abspath, 256);
for (;;) {

strncpy (old_dirname, dirname, 256);
splitpath (old_dirname, dirname, rest); // ignore rest
u_stat (dirname, &st);
access_ok = ⟨u_open: access to directory is ok 578⟩;
if (!access_ok) {

set_errno (EACCES);
return -1;

}
if (strlen (dirname) == 1) break; // reached root directory

}
// finally: check file permissions
access_ok = check_access (abspath, euid, egid, oflag);

}
if (!access_ok) {

return -1; // wrong permissions
}

Uses check_access 576d, current_task 192c, dirname 455b, EACCES 577a, egid 573a, euid 573a, set_errno 206b,
splitpath 455a, stat 429b 489b, strlen 594a, strncpy 594b, thread_table 176b, and u_stat 421d.

A process may only access a directory if it can read and “execute” it, and that’s possible
if one of the following three conditions is fulfilled:

• the process’ effective user (determined by the euida field) owns the file and the user
read and execute bits (0500o) are set in the access permissions,

• the process’ effective user does not own the file, the process’ effective group (deter-
mined by the egida field) is the file’s owner group and the group read and execute
bits (0050o) are set in the access permissions,

• or neither the user and group fields of the file match the effective user or group, but
the world permissions allow read and execute access (0005o).

us, checking whether the process may access a directory (read and execute, + = )
can be done with the following code:

[578] ⟨u_open: access to directory is ok 578⟩≡ (577c)
( // user may have access, r-x------ ?

(((euid == st.st_uid) && (st.st_mode & 0500) == 0500)) ||
// group may have access (if wrong user), ---r-x--- ?
(((euid != st.st_uid) && (egid == st.st_gid) && (st.st_mode & 0050) == 0050)) ||
// others may have access (wrong user, group), ------r-x ?
(((euid != st.st_uid) && (egid != st.st_gid) && (st.st_mode & 0005) == 0005)) )

Uses egid 573a and euid 573a.

Now we need to provide the function
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[579a]⟨function prototypes 45a⟩+≡ (44a) ◁ 576c 580b ▷
boolean check_perms (short what, word req_mode, word perms);

which accepts one of the three constants
[579b]⟨constants 112a⟩+≡ (44a) ◁ 552a 608a ▷

#define CHECK_USER 6
#define CHECK_GROUP 3
#define CHECK_WORLD 0

Defines:
CHECK_GROUP, used in chunks 576d and 577b.
CHECK_USER, used in chunks 576d and 577b.
CHECK_WORLD, used in chunks 576d and 577b.

and a requested mode req_mode and the file permissions perms. e lowest two bits of
req_mode are either 00b (in case of O_RDONLYb), 01b (in case of O_WRONLYb) or 10b (in case
of O_RDWRb). We can check them by looking at req_mode & 0x3.

File access permissions can be found in the lowest nine bits of perms.

• If we want to check world permissions (for “others”), we look at the lowest three bits,
perms & 0x7.

• For the group permissions we can first right-shi perms so that we drop the lowest
three bits, that is, we look at (perms >> 3) & 0x7.

• Finally, for the owner permissions, we need a right-shi of six bits, which gives us
(perms >> 6) & 0x7

By seing CHECK_USERb, CHECK_GROUPb and CHECK_WORLDb to the necessary amount
of shiing (6, 3, 0), we can do this automatically:

[579c]⟨function implementations 100b⟩+≡ (44a) ◁ 576d 580c ▷
boolean check_perms (short what, word req_mode, word perms) {
boolean req_read = ((req_mode & 0x3) == O_RDONLY) | ((req_mode & 0x3) == O_RDWR);
boolean req_write = ((req_mode & 0x3) == O_WRONLY) | ((req_mode & 0x3) == O_RDWR);
word check = (perms >> what) & 0x7;
if (req_read && ((check & 0x4) != 0x4)) return false; // read perm. failure
if (req_write && ((check & 0x2) != 0x2)) return false; // write perm. failure
set_errno (0);
return true; // both are ok

}
Defines:

check_perms, used in chunks 576d and 579a.
Uses O_RDONLY 460b, O_RDWR 460b, O_WRONLY 460b, and set_errno 206b.

Note that some of this behavior is not obvious: for example, consider a user with user
ID 1000 and group ID 1000 who wants to open the following file in O_RDWRb mode:

-r--rw-r-- 1000 1000 filename

e file belongs to him and also to his group, but the owner permissions do not contain
the right to write to the file. Access will be denied in this case, even though the group
permissions would allow writing. In this case it just makes no sense that the owner’s
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write access is not enabled in the permission string. e user would first have to fix this
situation via chmodb.

e u_execvb function must also check whether it may load an application: this re-
quires that the read and executable flags are set for the owner, group or others. We’re
leaving this as an exercise to you.

[580a] ⟨u_execv: check permissions 580a⟩≡ (228b)
// TO DO, see "Exercises" section.

15.1.2 Changing User and Group IDs
Now we can deal with the loginc and set*id system calls. As usual we start with the
kernel functions which do the real work:

[580b] ⟨function prototypes 45a⟩+≡ (44a) ◁ 579a 588a ▷
int u_setuid (word uid); // set user ID
int u_setgid (word gid); // set group ID
int u_seteuid (word euid); // set effective user ID
int u_setegid (word egid); // set effective group ID
int u_login (word uid, char *pass);

All of these functions shall return 0 if they were successful and − otherwise. e
implementations are simple, we only have to follow the rules described earlier:

[580c] ⟨function implementations 100b⟩+≡ (44a) ◁ 579c 581 ▷
int u_setuid (word uid) {

TCB *t = &thread_table[current_task];
⟨begin critical section in kernel 380a⟩ // access thread table
if (t->uid == 0 || uid == t->uid || uid == t->euid) {

t->uid = uid; // set UID
t->euid = uid; // and also EUID
⟨end critical section in kernel 380b⟩
return 0; // success

} else {
⟨end critical section in kernel 380b⟩
return -1; // failure

}
}

int u_setgid (word gid) {
TCB *t = &thread_table[current_task];
⟨begin critical section in kernel 380a⟩ // access thread table
if (t->uid == 0 || gid == t->gid || gid == t->egid) {

t->gid = gid; // set GID
t->egid = gid; // and also EGID
⟨end critical section in kernel 380b⟩
return 0; // success

} else {
⟨end critical section in kernel 380b⟩
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return -1; // failure
}

}
Defines:

u_setgid, used in chunk 583a.
u_setuid, used in chunk 583a.

Uses current_task 192c, egid 573a, euid 573a, gid 573a, TCB 175, thread_table 176b, and uid 573a.

e implementations of u_seteuid and u_setegid are almost identical to the above
code, they just skip seing the uida or gida elements of the TCB:

[581]⟨function implementations 100b⟩+≡ (44a) ◁ 580c 582a ▷
int u_seteuid (word uid) {

TCB *t = &thread_table[current_task];
⟨begin critical section in kernel 380a⟩ // access thread table
if (t->uid == 0 || uid == t->uid || uid == t->euid) {

t->euid = uid; // set the EUID (only!)
⟨end critical section in kernel 380b⟩
return 0; // success

} else {
⟨end critical section in kernel 380b⟩
return -1; // failure

}
}

int u_setegid (word gid) {
TCB *t = &thread_table[current_task];
⟨begin critical section in kernel 380a⟩ // access thread table
if (t->uid == 0 || gid == t->gid || gid == t->egid) {

t->egid = gid; // set the EGID (only!)
⟨end critical section in kernel 380b⟩
return 0; // success

} else {
⟨end critical section in kernel 380b⟩
return -1; // failure

}
}

Defines:
u_setegid, used in chunk 583a.
u_seteuid, used in chunk 583a.

Uses current_task 192c, egid 573a, euid 573a, gid 573a, TCB 175, thread_table 176b, and uid 573a.

e u_logina function is just a lile more complicated: In a real Unix system it would
look up the password hash password hashstored in /etc/passwd, /etc/shadow or some similar file, calculate
the hash from the password that was provided as the second argument, compare the two
hashes and then decide on seing all user and group IDs (including the real user and group
IDs ruida, guid). Since we don’t want to include a hash function in the U source code,
we just store the plaintext password in the file. We also restrict the password file size to
1024 bytes since the U kernel has no advanced functions for line reading; we read one
block of data and parse it byte by byte.
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[582a] ⟨function implementations 100b⟩+≡ (44a) ◁ 581 588b ▷
int u_login (word uid, char *pass) {

TCB *t = &thread_table[current_task];
char passwords[BLOCK_SIZE];
char *words[128];
int fd = u_open ("/etc/passwd", O_RDONLY, 0);
if (fd == -1) return -1; // fail: no password database
int size = u_read (fd, &passwords, BLOCK_SIZE);
u_close (fd);
int pos; int index = 0; // position in words array

words[index++] = (char*)&passwords; // split
for (pos = 1; pos < size; pos++) {

if (passwords[pos] == ':' || passwords[pos] == '\n') {
passwords[pos] = 0; // terminate string
words[index++] = ((char*)&passwords)+pos+1;

}
}

for (int i = 0; i < index/5; i++) { // search
if ( (atoi (words[5*i+2]) == uid) // found right entry

&& strequal (words[5*i+1], pass) ) { // password matches
int gid = atoi (words[5*i+3]); // get group ID
u_chdir (words[5*i+4]); // make home directory the cwd
t->uid = t->euid = t->ruid = uid;
t->gid = t->egid = t->rgid = gid;
return 0; // success

}
}

return -1; // fail
}

Defines:
u_login, used in chunk 583a.

Uses atoi 595, BLOCK_SIZE 440a, current_task 192c, cwd, egid 573a, euid 573a, gid 573a, O_RDONLY 460b,
passwd 584d, passwords, rgid 573a, ruid 573a, strequal 596a, TCB 175, thread_table 176b, u_chdir 432e,
u_close 418a, u_open 412c, u_read 414b, and uid 573a.

As usual we need to provide system calls for these functions:
[582b] ⟨syscall prototypes 173b⟩+≡ (202a) ◁ 566c 587c ▷

void syscall_setuid (context_t *r);
void syscall_setgid (context_t *r);
void syscall_seteuid (context_t *r);
void syscall_setegid (context_t *r);
void syscall_login (context_t *r);
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[583a]⟨syscall functions 174b⟩+≡ (202b) ◁ 566d 587d ▷
void syscall_setuid (context_t *r) {

// ebx: uid
eax_return ( u_setuid (r->ebx) );

}

void syscall_setgid (context_t *r) {
// ebx: gid
eax_return ( u_setgid (r->ebx) );

}

void syscall_seteuid (context_t *r) {
// ebx: euid
eax_return ( u_seteuid (r->ebx) );

}

void syscall_setegid (context_t *r) {
// ebx: egid
eax_return ( u_setegid (r->ebx) );

}

void syscall_login (context_t *r) {
// ebx: uid, ecx: password
eax_return ( u_login (r->ebx, (char*)r->ecx) );

}
Defines:

syscall_login, used in chunk 583b.
syscall_setegid, used in chunk 583b.
syscall_seteuid, used in chunk 583b.
syscall_setgid, used in chunk 583b.
syscall_setuid, used in chunks 582b and 583b.

Uses context_t 142a, eax_return 174a, egid 573a, euid 573a, gid 573a, u_login 582a, u_setegid 581,
u_seteuid 581, u_setgid 580c, u_setuid 580c, and uid 573a.

and enter the new handler function in the system call table:
[583b]⟨initialize syscalls 173d⟩+≡ (44b) ◁ 567a 587e ▷

install_syscall_handler (__NR_setuid32, syscall_setuid);
install_syscall_handler (__NR_setgid32, syscall_setgid);
install_syscall_handler (__NR_setreuid32, syscall_seteuid);
install_syscall_handler (__NR_setregid32, syscall_setegid);
install_syscall_handler (__NR_login, syscall_login);

Uses __NR_login 584a, __NR_setgid32 204c, __NR_setregid32 204c, __NR_setreuid32 204c, __NR_setuid32 204c,
install_syscall_handler 201b, syscall_login 583a, syscall_setegid 583a, syscall_seteuid 583a,
syscall_setgid 583a, and syscall_setuid 583a.

(Note that the syscall numbers __NR_setreuid32c and __NR_setregid32c do not really
match the corresponding functions (seteuidc and setegidc), but they are the closest
candidates, so we chose them instead of reserving new numbers. We must, however, de-
clare the system call number __NR_logina:
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[584a] ⟨public constants 46a⟩+≡ (44a 48a) ◁ 562a 587a ▷
#define __NR_login 523

Defines:
__NR_login, used in chunks 583b and 584c.

e user mode library functions just make the system calls:
[584b] ⟨ulixlib function prototypes 174c⟩+≡ (48a) ◁ 568a 584e ▷

int setuid (word uid); // set user ID
int setgid (word gid); // set group ID
int seteuid (word euid); // set effective user ID
int setegid (word egid); // set effective group ID
int login (word uid, char *pass);

[584c] ⟨ulixlib function implementations 174d⟩+≡ (48b) ◁ 568b 585a ▷
int setuid (word uid) { return syscall2 (__NR_setuid32, uid); }
int setgid (word gid) { return syscall2 (__NR_setgid32, gid); }
int seteuid (word uid) { return syscall2 (__NR_setreuid32, uid); }
int setegid (word gid) { return syscall2 (__NR_setregid32, gid); }
int login (word uid, char *pass) {

return syscall3 (__NR_login, uid, (unsigned int) pass); }
Defines:

login, used in chunks 191a and 562b.
Uses __NR_login 584a, __NR_setgid32 204c, __NR_setregid32 204c, __NR_setreuid32 204c, __NR_setuid32 204c,

gid 573a, syscall2 203c, syscall3 203c, and uid 573a.

In order to let user mode programs look up /etc/passwd entries, we implement some
functions in the library which fill data structures of the following type:

[584d] ⟨ulixlib type definitions 584d⟩≡ (48a)
struct passwd {

char pw_name[32]; // user name
char pw_passwd[32]; // password
word pw_uid; // user ID
word pw_gid; // group ID
char *pw_gecos; // long name (ULIX: unused)
char pw_dir[32]; // home directory
char *pw_shell; // shell (ULIX: unused)

};
Defines:

passwd, used in chunks 582a and 585.

e functions
[584e] ⟨ulixlib function prototypes 174c⟩+≡ (48a) ◁ 584b 586c ▷

int getpwnam_r (const char *name, struct passwd *pwd,
char *buffer, int bufsize, struct passwd **result);

int getpwuid_r (word uid, struct passwd *pwd,
char *buffer, int bufsize, struct passwd **result);

have to read the password file, search it for the username (or user ID) and then fill the
supplied data structure. Since both reading the file and storing the data in the structure
are the same in both functions, we use two code chunks that deal with these tasks.
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[585a]⟨ulixlib function implementations 174d⟩+≡ (48b) ◁ 584c 587b ▷
int getpwnam_r (const char *name, struct passwd *pwd,

char *buffer, int bufsize, struct passwd **result) {
⟨get password entry: read password file into passwords and parse it 585b⟩
int i; for (i = 0; i < index/5; i++) {

if ( strequal (words[5*i], name) ) { // found right entry
⟨get password entry: fill target buffers 586a⟩
return 0; // success

}
}
return -1; // fail

}

int getpwuid_r (word uid, struct passwd *pwd,
char *buffer, int bufsize, struct passwd **result) {

⟨get password entry: read password file into passwords and parse it 585b⟩
int i; for (i = 0; i < index/5; i++) {

if (atoi (words[5*i+2]) == uid) { // found right entry
⟨get password entry: fill target buffers 586a⟩
return 0; // success

}
}
return -1; // fail

}
Uses atoi 595, getpwnam_r, getpwuid_r, passwd 584d, strequal 596a, and uid 573a.

with
[585b]⟨get password entry: read password file into passwords and parse it 585b⟩≡ (585a)

#define PASSWD_SIZE 1024
char passwords[PASSWD_SIZE] = "passwords"; char *words[128];
int fd = open ("/etc/passwd", O_RDONLY);
if (fd == -1) {

printf ("Cannot open /etc/passwd\n");
return -1; // fail: no password database

}
int size = read (fd, (char*)passwords, PASSWD_SIZE);
if (size == -1) {

printf ("Cannot read /etc/passwd, fd = %d\n", fd);
return -1; // fail: cannot read from password database

}
close (fd);

int index = 0; // position in words array
words[index++] = (char*)passwords;
int pos; for (pos = 1; pos < size; pos++) {

if (passwords[pos] == ':' || passwords[pos] == '\n') {
passwords[pos] = 0; // terminate string
words[index++] = ((char*)&passwords)+pos+1;

}
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}
Uses close 429b, O_RDONLY 460b, open 429b, passwd 584d, PASSWD_SIZE, passwords, printf 601a, and read 429b.

and
[586a] ⟨get password entry: fill target buffers 586a⟩≡ (585a)

strncpy (pwd->pw_name, words[5*i], 32); // field 0: username
strncpy (pwd->pw_passwd, words[5*i+1], 32); // field 1: password
pwd->pw_uid = atoi (words[5*i+2]); // field 2: user ID
pwd->pw_gid = atoi (words[5*i+3]); // field 3: group ID
strncpy (pwd->pw_dir, words[5*i+4], 32); // field 4: home directory

Uses atoi 595 and strncpy 594b.

Once more: With the way we store the plaintext passwords in /etc/passwd, any user can
inspect that file or use the getpw*_r functions to fetch the password. If we got rid of this
property, the system would provide the same security as other Unix implementations do
because the decision whether a user will be logged in or may change the user or group ID
happens in the kernel’s u_logina and u_set*id functions. A non-root user mode process
which calls setuidc (0) will be denied.

15.1.3 The su Program
Using the loginc library function we can create a simple su implementation which reads
in the password and tries to log in as root. It launches a new shell that runs with root
privileges. When that shell is le, control returns to the original shell.

[586b] ⟨lib-build/tools/su.c 586b⟩≡
#include "../ulixlib.h"
int main () {

char password[32]; printf ("Enter root password: ");
ureadline ((char*)&password, sizeof(password)-1, false); // no echo
printf ("\n");
if (login (0, password) == -1) { printf ("Login failed\n"); exit (1); }

// exec shell
char *args[] = { "/bin/sh", 0 };
execv (args[0], args);

}

15.1.4 The getuid() and getgid() Functions
Processes sometimes need to query the user and group IDs with which they are running.
For this purpose they can use the following functions:

[586c] ⟨ulixlib function prototypes 174c⟩+≡ (48a) ◁ 584e 591a ▷
word getuid ();
word geteuid ();
word getgid ();
word getegid ();
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Since such functions are never needed in the kernel (where functions can simply look at
the thread control block), we provide a simplified mechanism for quick access to these
IDs:

[587a]⟨public constants 46a⟩+≡ (44a 48a) ◁ 584a
#define QUERY_UID 0
#define QUERY_EUID 1
#define QUERY_GID 2
#define QUERY_EGID 3
#define __NR_query_ids 524

[587b]⟨ulixlib function implementations 174d⟩+≡ (48b) ◁ 585a 591b ▷
word getuid () { return syscall2 (__NR_query_ids, QUERY_UID); }
word geteuid () { return syscall2 (__NR_query_ids, QUERY_EUID); }
word getgid () { return syscall2 (__NR_query_ids, QUERY_GID); }
word getegid () { return syscall2 (__NR_query_ids, QUERY_EGID); }

Uses __NR_query_ids, QUERY_EGID, QUERY_EUID, QUERY_GID, QUERY_UID, and syscall2 203c.

e system call handler in the kernel directly returns the queried value:
[587c]⟨syscall prototypes 173b⟩+≡ (202a) ◁ 582b 590a ▷

void syscall_query_ids (context_t *r);
Uses context_t 142a and syscall_query_ids 587d.

[587d]⟨syscall functions 174b⟩+≡ (202b) ◁ 583a 590b ▷
void syscall_query_ids (context_t *r) {

// ebx: type of ID
switch (r->ebx) {

case QUERY_UID: eax_return (thread_table[current_task].uid);
case QUERY_EUID: eax_return (thread_table[current_task].euid);
case QUERY_GID: eax_return (thread_table[current_task].gid);
case QUERY_EGID: eax_return (thread_table[current_task].egid);
default: eax_return (-1);

}
}

Defines:
syscall_query_ids, used in chunk 587.

Uses context_t 142a, current_task 192c, eax_return 174a, egid 573a, euid 573a, gid 573a, QUERY_EGID, QUERY_EUID,
QUERY_GID, QUERY_UID, thread_table 176b, and uid 573a.

[587e]⟨initialize syscalls 173d⟩+≡ (44b) ◁ 583b 590c ▷
install_syscall_handler (__NR_query_ids, syscall_query_ids);

Uses __NR_query_ids, install_syscall_handler 201b, and syscall_query_ids 587d.

15.1.5 Changing Owner, Group and Permissions
All Unix systems provide system calls and library functions which allow users to change
the owner, group and access permissions of any file or directory for which they have write
access; U is no different. We start with the kernel-internal functions:
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[588a] ⟨function prototypes 45a⟩+≡ (44a) ◁ 580b 589b ▷
int u_chown (const char *path, short owner, short group);
int u_chmod (const char *path, word mode);

Note how u_chownb accepts negative arguments for the owner and group: if one or both
of them are -1, they are ignored. us,

• u_chown(file, 1000, 0) will set file’s UID to 1000 and the GID to 0,
• u_chown(file, 500, -1) will only set the UID to 500,
• u_chown(file, -1, 0) ignores the UID argument and sets the GID to 0 and
• u_chown(file, -1, -1) does nothing at all.

e implementation looks similar to other functions which take a path name as an argu-
ment; we start with converting the path into an absolute path and checking which device
with which filesystem the file resides on. en we call filesystem-specific functions. As
U only supports the Minix filesystem for disk drives and we do not want /dev entries
to change, the only option is to call mx_chownd:

[588b] ⟨function implementations 100b⟩+≡ (44a) ◁ 582a 589a ▷
int u_chown (const char *path, short owner, short group) {

char localpath[256], abspath[256];
short device, fs;

// only root may change file ownership / group
if (scheduler_is_active && thread_table[current_task].euid != 0) return -1;

// check relative/absolute path
if (*path != '/') relpath_to_abspath (path, abspath);
else strncpy (abspath, path, 256);
get_dev_and_path (abspath, &device, &fs, (char*)&localpath);
switch (fs) {

case FS_MINIX: return mx_chown (device, localpath, owner, group);
case FS_FAT: return -1; // not possible (and FAT is not implemented)
case FS_DEV: return -1; // not allowed
case FS_ERROR: return -1; // error
default: return -1;

}
}

Defines:
u_chown, used in chunks 588a and 590b.

Uses current_task 192c, euid 573a, FS_DEV 410a, FS_ERROR 410a, FS_FAT 410a, FS_MINIX 410a,
get_dev_and_path 408c, mx_chown 589d, relpath_to_abspath 412b, scheduler_is_active 276e, strncpy 594b,
and thread_table 176b.

e implementation of u_chmoda looks almost identical to u_chownb, except that the
number of arguments taken and passed to mx_chownd or mx_chmodd is different and
regular users are allowed to change the access permissions (but not the ownership or
owner group), so we don’t need the check for the root user:
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[589a]⟨function implementations 100b⟩+≡ (44a) ◁ 588b 589d ▷
int u_chmod (const char *path, word mode) {

char localpath[256], abspath[256];
short device, fs;

// check relative/absolute path
if (*path != '/') relpath_to_abspath (path, abspath);
else strncpy (abspath, path, 256);

if (scheduler_is_active) {
⟨u_chmod: check permissions 591c⟩ // see user/group chapter

}

get_dev_and_path (abspath, &device, &fs, (char*)&localpath);
switch (fs) {

case FS_MINIX: return mx_chmod (device, localpath, mode);
case FS_FAT: return -1; // not possible, no FAT implementation
case FS_DEV: return -1; // not allowed
case FS_ERROR: return -1; // error
default: return -1;

}
}

Defines:
u_chmod, used in chunk 590b.

Uses FS_DEV 410a, FS_ERROR 410a, FS_FAT 410a, FS_MINIX 410a, get_dev_and_path 408c, mx_chmod 589d,
relpath_to_abspath 412b, scheduler_is_active 276e, and strncpy 594b.

We only implement chown, chgrp and chmod for the Minix filesystem. Here are the corre-
sponding mx_* functions

[589b]⟨function prototypes 45a⟩+≡ (44a) ◁ 588a 589c ▷
int mx_chown (int device, const char *path, short owner, short group);
int mx_chmod (int device, const char *path, word mode);

which use a more general function
[589c]⟨function prototypes 45a⟩+≡ (44a) ◁ 589b 601b ▷

int mx_chinode (int device, const char *path, short owner,
short group, short mode);

that is able to change user ID, group ID and permissions in one step. It is called by both
mx_chownd and mx_chmodd andwill only modify the fields for which the provided values
are ̸= −:

[589d]⟨function implementations 100b⟩+≡ (44a) ◁ 589a 598a ▷
int mx_chown (int device, const char *path, short owner, short group) {
return mx_chinode (device, path, owner, group, -1); // change UID or GID, not mode

}

int mx_chmod (int device, const char *path, word mode) {
return mx_chinode (device, path, -1, -1, mode); // change mode, not UID or GID

}
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int mx_chinode (int device, const char *path, short owner,
short group, short mode) {

int ext_ino = mx_pathname_to_ino (device, path);
if (ext_ino == -1) {

printf ("file not found: %s\n", path);
return -1; // file not found

}

struct minix2_inode inode;
mx_read_inode (device, ext_ino, &inode);
if (owner != -1) inode.i_uid = owner; // change owner (if != -1)
if (group != -1) inode.i_gid = group; // change group (if != -1)
if (mode != -1)

// change mode (if != -1)
inode.i_mode = (inode.i_mode & ~07777) | (mode & 07777);

mx_write_inode (device, ext_ino, &inode);
return 0;

}
Defines:

mx_chinode, used in chunk 589c.
mx_chmod, used in chunk 589a.
mx_chown, used in chunks 588b and 589b.

Uses minix2_inode 442a, mx_pathname_to_ino 461d, mx_read_inode 451b, mx_write_inode 452a, and printf 601a.

We provide two system call handlers:
[590a] ⟨syscall prototypes 173b⟩+≡ (202a) ◁ 587c 610c ▷

void syscall_chown (context_t *r);
void syscall_chmod (context_t *r);

[590b] ⟨syscall functions 174b⟩+≡ (202b) ◁ 587d 610d ▷
void syscall_chown (context_t *r) {

// ebx: path, ecx: owner, edx: group
eax_return ( u_chown ((char *)r->ebx, r->ecx, r->edx) );

}

void syscall_chmod (context_t *r) {
// ebx: path, ecx: new mode
eax_return ( u_chmod ((char *)r->ebx, r->ecx) );

}
Defines:

syscall_chmod, used in chunk 590c.
syscall_chown, used in chunk 590.

Uses context_t 142a, eax_return 174a, u_chmod 589a, and u_chown 588b.

(which we need to initialize)
[590c] ⟨initialize syscalls 173d⟩+≡ (44b) ◁ 587e 611a ▷

install_syscall_handler (__NR_chown, syscall_chown);
install_syscall_handler (__NR_chmod, syscall_chmod);

Uses __NR_chmod 204c, __NR_chown 204c, install_syscall_handler 201b, syscall_chmod 590b,
and syscall_chown 590b.
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and also two user mode library functions chownb and chmodb (the chgrp programwill
use the chownb function):

[591a]⟨ulixlib function prototypes 174c⟩+≡ (48a) ◁ 586c 598b ▷
int chown (const char *path, short owner, short group);
int chmod (const char *path, short mode);

and
[591b]⟨ulixlib function implementations 174d⟩+≡ (48b) ◁ 587b 598c ▷

int chown (const char *path, short owner, short group) {
return syscall4 (__NR_chown, (unsigned int)path, owner, group);

}

int chmod (const char *path, short mode) {
return syscall3 (__NR_chmod, (unsigned int)path, mode);

}
Defines:

chown, used in chunk 591a.
Uses __NR_chmod 204c, __NR_chown 204c, syscall3 203c, and syscall4 203b.

15.2 Exercises
38. e code chunk ⟨u_execv: check permissions 580a⟩ is empty: When executing a pro-

gram, this version of the U kernel does not check whether the user is allowed to
run the program. In general, users can run programs if they can read them and also
have an execute …
Implement the empty code chunk and test your checks against some binaries which
have or do not have appropriate access permissions.

39. e u_chmoda function also needs to check whether it may change the access per-
missions. Fill the following code chunk:

[591c]⟨u_chmod: check permissions 591c⟩≡ (589a)
// TO DO

and test that you can only change permissions of files for which you have write access.





16
Small Standard Library

Some standard functions which are normally included with an operating system must be
provided by us; here’s a list of functions that are oen used. Some of these functions will
be part of both the kernel and the user mode library since features like formaing and
printing a string are needed in both environments.

Looking at the implementations of these functions will add nothing new to your un-
derstanding of operating system concepts—that is why they have been moved to this late
chapter. Following the literate programming concept that the document is the program,
we decided to include them here even though they could have been moved to a separate
code file. We will only provide few comments on these functions.

Some of these functions have not been implemented by us but were copied from online
resources. In those cases, the first line aer the function name lists the source.

16.1 Strings
Let’s start with some string functions which compare, copy and convert strings to num-
bers:

[593]⟨public function prototypes 454b⟩+≡ (44a 48a) ◁ 454b 596b ▷
size_t strlen (const char *str);
int strcmp (const char *str1, const char *str2);
int strncmp (const char *str1, const char *str2, uint n);
char *strncpy (char *dest, const char *src, size_t count);
char *strcpy (char *dest, const char *src);
int atoi (char *s);
int atoi8 (char *s);
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e function strlena returns the length of a null-terminated string, strcmpa and
strncmpa compare two strings and return 0 if they are equal and− or 1 if the first string
is lexicographically smaller than the second one or vice versa. e strncmpa variant
stops comparing aer n characters have been seen.

[594a] ⟨public function implementations 455a⟩+≡ (44a 48b) ◁ 455b 594b ▷
size_t strlen (const char *str) {

size_t retval;
for (retval = 0; *str != '\0'; str++) retval++;
return retval;

}

int strcmp (const char *s1, const char *s2) {
// source: http://en.wikibooks.org/wiki/C_Programming/Strings
while (*s1 != '\0' && *s1 == *s2) {

s1++; s2++;
}
byte b1 = (*(byte *) s1);
byte b2 = (*(byte *) s2);
return ((b1 < b2) ? -1 : (b1 > b2));

}

int strncmp (const char *s1, const char *s2, uint n) {
// source: http://en.wikibooks.org/wiki/C_Programming/Strings
if (n == 0) { return 0; } // nothing to compare? return 0
while (n-- > 0 && *s1 == *s2) {

if (n == 0 || *s1 == '\0') { return 0; } // equality
s1++; s2++;

}
byte b1 = (*(byte *) s1);
byte b2 = (*(byte *) s2);
return ((b1 < b2) ? -1 : (b1 > b2));

}
Defines:

strcmp, used in chunk 596a.
strlen, used in chunks 232a, 234b, 408, 409, 412b, 419a, 455a, 484b, 577c, 641d, and 642a.
strncmp, used in chunks 229a, 562b, and 641e.

Uses size_t 46b.

e strcmpa and strncmpa functions copy a null-terminated string. While the first
of the two will potentially go on copying forever if the source string is not terminated, the
second function stops copying aer count bytes. Note that if strncpyb fills the whole
target string (buffer), that string will not be null-terminated which can cause problems
when correct termination is not checked and otherwise enforced.

[594b] ⟨public function implementations 455a⟩+≡ (44a 48b) ◁ 594a 595 ▷
char *strcpy (char *dest, const char *src) {

char *ret = dest;
while ((*dest++ = *src++) != '\0') ;
return ret;
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}

char *strncpy (char *dest, const char *src, size_t count) {
// like memcpy (see next section), but copies only until first \0 character
const char *sp = (const char *)src;
char *dp = (char *)dest;
for (; count != 0; count--) {

*dp = *sp;
if (*dp == 0) break;
dp++; sp++;

}
return dest;

}
Defines:

strcpy, used in chunks 640 and 642b.
strncpy, used in chunks 224c, 234b, 367b, 409c, 411e, 412b, 419, 431, 432e, 455a, 461d, 488a, 490d, 492, 500,

577c, 586a, 588b, 589a, 593, and 641.
Uses size_t 46b.

atoi converts a string into an integer value. It goes on reading until the first non-
digit occurs, so it can also be used to convert strings like "123 KByte" to 123. It does not
recognize negative values; for example, trying to convert the string "-1234" will lead to a
result of 0 as the first character is found to be a non-digit.

[595]⟨public function implementations 455a⟩+≡ (44a 48b) ◁ 594b 596c ▷
int atoi (char *s) {

int res = 0;
while ( ('0' ≤ *s) && (*s ≤ '9') ) {

res = res*10 + (*s-'0');
s++;

}
return res;

};

int atoi8 (char *s) { // same as atoi, but with octal numbers
int res = 0;
while ( ('0' ≤ *s) && (*s ≤ '7') ) {

res = res*8 + (*s-'0');
s++;

}
return res;

};
Defines:

atoi, used in chunks 582a, 585a, and 586a.

atoi8 is not a standard function. It works like atoi but expects the string to contain
an octal number instead of a decimal number.

We define two macros strequala (strings are equal) and strdiffa (strings are differ-
ent) which use strcmpa:
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[596a] ⟨public macro definitions 596a⟩≡ (44a 48a)
#define strequal(s1,s2) (!strcmp((s1),(s2)))
#define strdiff(s1,s2) (strcmp((s1),(s2)))

Defines:
strequal, used in chunks 432e, 462a, 480c, 495c, 499d, 582a, 585a, 608b, 610a, and 631.

Uses strcmp 594a.

ey are more intuitive to use than the standard (in-)equality comparisons via strcmpa.
Wherever we need to compare strings in this book, we only use our strequala and
strdiffa functions. However, if you want to integrate other code in U or one of the
user mode programs, the default strcmpa function is available.

16.2 Memory
e standard functions memcpyc, memsetc and memsetwc compare two chunks of mem-
ory and fill a memory area with a byte or word constant:

[596b] ⟨public function prototypes 454b⟩+≡ (44a 48a) ◁ 593 597b ▷
void *memcpy (void *dest, const void *src, size_t count);
void *memset (void *dest, char val, size_t count);
word *memsetw (word *dest, word val, size_t count);

[596c] ⟨public function implementations 455a⟩+≡ (44a 48b) ◁ 595
void *memcpy (void *dest, const void *src, size_t count) {

const char *sp = (const char *)src;
char *dp = (char *)dest;
for (; count != 0; count--)

*dp++ = *sp++;
return dest;

}

void *memset (void *dest, char val, size_t count) {
char *temp = (char *)dest;
for ( ; count != 0; count--) *temp++ = val;
return dest;

}

word *memsetw (word *dest, word val, size_t count) {
word *temp = (word *)dest;
for ( ; count != 0; count--) *temp++ = val;
return dest;

}
Defines:

memcpy, used in chunks 190a, 209b, 223e, 232a, 327a, 332b, 334a, 449, 451a, 453b, 455a, 456, 468b, 471c, 475c,
487a, 496d, 497, 509d, 510b, 518b, 519d, 521a, 530, 549c, 550b, and 597a.

memset, used in chunks 100c, 103b, 112, 121c, 122a, 164, 166a, 197a, 211a, 232c, 255c, 257c, 480c, 487a,
and 509b.

memsetw, used in chunks 326c, 329b, 333e, 334a, and 609.
Uses size_t 46b.
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Only in the kernel we provide the
[597a]⟨macro definitions 35a⟩+≡ (44a) ◁ 471d 601c ▷

#define memcpy_debug(dest, src, count) \
debug_printf ("DEBUG: memcpy() called in line %d\n", __LINE__); \
memcpy (dest, src, count);

Uses debug_printf 601d and memcpy 596c.

macro which creates a debug message and calls memcpyc.

16.3 Formaed Output
We use a small implementation of the standard functions printfa and sprintfa that
is dual-licensed unter the LGPL and the BSD license and available from http://www.menie.
org/georges/embedded/ [Men02]—there is no need to reinvent the wheel. We modified the
code so that printfa can also handle the ‘o’ format character for octal numbers and we
changed the code indentation to match the style of the other code in this book. ere were
also some minor modifications that enable the functions to use the U output functions.
(ankfully the function already knew how to print numbers to any base; we just copied
the code for ‘x’ and changed the base 16 to 8.)

e code was also changed a bit to make it shorter, and we have turned the leading
comments into normal text to make them beer readable.

/* Copyright 2001, 2002 Georges Menie (http://www.menie.org)

is program is free soware; you can redistribute it and/or modify it under the terms
of the GNU Lesser General Public License as published by the Free Soware Foundation;
either version 2 of the License, or (at your option) any later version.

is program is distributed in the hope that it will be useful, but WITHOUT ANYWAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with
this program; if not, write to the Free Soware Foundation, Inc., 59 Temple Place, Suite
330, Boston, MA 02111-1307 USA */

/* putchara is the only external dependency for this file, if you have aworking putchara,
just remove the following define. If the function should be called something else, replace
outbyte(c) by your own function call. */

16.3.1 printf in the Kernel
e kernel uses the functions

[597b]⟨public function prototypes 454b⟩+≡ (44a 48a) ◁ 596b
int printf (const char *format, ...);
int sprintf (char *out, const char *format, ...);

http://www.menie.org/georges/embedded/
http://www.menie.org/georges/embedded/
http://www.menie.org
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and we have to define putchara as kputchb so that printfa will call the right char-
acter output function.

[598a] ⟨function implementations 100b⟩+≡ (44a) ◁ 589d 601d ▷
#define putchar(c) kputch (c)

static void printchar (char **str, int c) {
if ((int)str == -1) {

// debug output: goes to qemu serial console via uartputc
if (c == 0x100) { // backspace

uartputc ('\b'); uartputc (' '); uartputc ('\b');
} else {

uartputc (c);
}

} else if (str) {
**str = c; ++(*str);

} else {
(void)putchar (c);

}
}
⟨public printf implementation 599a⟩

Defines:
printchar, used in chunks 599 and 600.
putchar, used in chunk 556.

Uses kputch 335b and uartputc 336b.

e printchara function uses uartputcb to write output (only) to the serial port for
debugging purposes if str is −. kputchb always writes to the serial port, too.

16.3.2 printf in the User Mode Library
For the library, we use the same printfa code and only need to modify the implementa-
tion of putchara and printchara. at is why we can provide most of the code via the
⟨public printf implementation 599a⟩ chunk. Here we also define the ulixlib_printcharc
function for printing single characters that writes to the standard output descriptor (1).

[598b] ⟨ulixlib function prototypes 174c⟩+≡ (48a) ◁ 591a
int ulixlib_printchar (byte c);

[598c] ⟨ulixlib function implementations 174d⟩+≡ (48b) ◁ 591b
int ulixlib_printchar (byte c) { write (STDOUT_FILENO, &c, 1); }

#define putchar(c) ulixlib_printchar(c)

static void printchar (char **str, int c) {
if (str) { **str = c; ++(*str); }
else (void)putchar(c);

}
⟨public printf implementation 599a⟩
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Defines:
printchar, used in chunks 599 and 600.
putchar, used in chunk 556.
ulixlib_printchar, used in chunk 598b.

Uses STDOUT_FILENO 415b and write 429b.

16.3.3 The Generic Implementation
[599a]⟨public printf implementation 599a⟩≡ (598) 599b ▷

#define PAD_RIGHT 1
#define PAD_ZERO 2

static int prints (char **out, const char *string, int width, int pad) {
register int pc = 0, padchar = ' ';
if (width > 0) {

register int len = 0; register const char *ptr;
for (ptr = string; *ptr; ++ptr) ++len;
if (len ≥ width) width = 0;
else width -= len;
if (pad & PAD_ZERO) padchar = '0';

}
if (!(pad & PAD_RIGHT)) {

for ( ; width > 0; --width) { printchar (out, padchar); ++pc; }
}
for ( ; *string ; ++string) { printchar (out, *string); ++pc; }
for ( ; width > 0; --width) { printchar (out, padchar); ++pc; }
return pc;

}
Defines:

PAD_RIGHT, used in chunk 600.
PAD_ZERO, used in chunks 599b and 600.
prints, used in chunks 599b and 600.

Uses printchar 598a 598c.

e printib functions deals with 32-bit integers whose textual representation fits
inside a 34-byte buffer:

[599b]⟨public printf implementation 599a⟩+≡ (598) ◁ 599a 600 ▷
#define PRINT_BUF_LEN 34

static int printi (char **out, int i, int b, int sg, int width, int pad, int letbase) {
char print_buf[PRINT_BUF_LEN];
register char *s; register int t, neg = 0, pc = 0; register unsigned int u = i;
if (i == 0) {

print_buf[0] = '0'; print_buf[1] = '\0';
return prints (out, print_buf, width, pad);

}
if (sg && b == 10 && i < 0) { neg = 1; u = -i; }
s = print_buf + PRINT_BUF_LEN-1; *s = '\0';
while (u) {

t = u % b; if ( t ≥ 10 ) t += letbase - '0' - 10;
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*--s = t + '0'; u /= b;
}
if (neg) {

if ( width && (pad & PAD_ZERO) ) { printchar (out, '-'); ++pc; --width; }
else { *--s = '-'; }

}
return pc + prints (out, s, width, pad);

}
Defines:

printi, used in chunk 600.
Uses PAD_ZERO 599a, printchar 598a 598c, and prints 599a.

Wehavemodified the print function so that it recognizes the %o (octal) and %b (binary)
format words and prints numbers with base 8 or base 2, respectively.

[600] ⟨public printf implementation 599a⟩+≡ (598) ◁ 599b 601a ▷
static int print (char **out, int *varg) {

register int width, pad; register int pc = 0;
register char *format = (char *)(*varg++); register char *s; char scr[2];
for (; *format != 0; ++format) {

if (*format == '%') {
++format; width = pad = 0;
if (*format == '\0') break;
if (*format == '%') goto outlabel;
if (*format == '-') { ++format; pad = PAD_RIGHT; }
while (*format == '0') { ++format; pad |= PAD_ZERO; }
for ( ; *format ≥ '0' && *format ≤ '9'; ++format) {

width *= 10; width += *format - '0';
}
switch (*format) {

case 's': s = *((char **)varg++);
pc += prints (out, s?s:"(null)", width, pad); continue;

case 'd': pc += printi (out, *varg++, 10, 1, width, pad, 'a'); continue;
case 'o': pc += printi (out, *varg++, 8, 0, width, pad, 'a'); continue;
case 'b': pc += printi (out, *varg++, 2, 0, width, pad, 'a'); continue;
case 'x': pc += printi (out, *varg++, 16, 0, width, pad, 'a'); continue;
case 'X': pc += printi (out, *varg++, 16, 0, width, pad, 'A'); continue;
case 'u': pc += printi (out, *varg++, 10, 0, width, pad, 'a'); continue;
case 'c': // char are converted to int then pushed on the stack

scr[0] = *varg++; scr[1] = '\0';
pc += prints (out, scr, width, pad); continue;

}
} else {

outlabel:
printchar (out, *format); ++pc;

}
}
if ( (int)out != -1 && out ) **out = '\0';
return pc;

}
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Defines:
print, used in chunks 431, 601, and 626b.

Uses PAD_RIGHT 599a, PAD_ZERO 599a, printchar 598a 598c, printi 599b, and prints 599a.

[601a]⟨public printf implementation 599a⟩+≡ (598) ◁ 600
int printf (const char *format, ...) {

register int *varg = (int *)(&format); return print (0, varg);
}

int sprintf (char *out, const char *format, ...) {
register int *varg = (int *)(&format); return print (&out, varg);

}
Defines:

printf, used in chunks 45d, 151c, 152a, 164, 165a, 168d, 170e, 191a, 201d, 214, 290, 291, 293b, 297, 299e,
308c, 311b, 321a, 324a, 326c, 337c, 340b, 349, 406, 416d, 417, 431, 450a, 456, 471c, 476b, 480, 488a, 513e,
532d, 534b, 536b, 537a, 539c, 547d, 551, 552c, 562b, 564, 585b, 589d, 603–8, 610–14, 626a, and 639c.

sprintf, used in chunks 280a, 342b, 343b, 369c, 597b, and 608b.
Uses print 600.

e debug_printfd function
[601b]⟨function prototypes 45a⟩+≡ (44a) ◁ 589c 610b ▷

int debug_printf (const char *format, ...);

exists only in the kernel, it is similar to printfa if the DEBUG macro is set but passes the
target argument − instead of 0 so that output will go only to the serial port (and not to
the U screen). If DEBUG is not set, it does nothing.

Since writing many messages makes the system a bit slower, debug output is disabled
by default:

[601c]⟨macro definitions 35a⟩+≡ (44a) ◁ 597a
// #define DEBUG

[601d]⟨function implementations 100b⟩+≡ (44a) ◁ 598a 603 ▷
#ifdef DEBUG

int debug_printf (const char *format, ...) {
register int *varg = (int *)(&format); return print ((char**)-1, varg);

}
#else

inline int debug_printf (const char *format, ...) { return 0; } // do nothing
#endif

Defines:
debug_printf, used in chunks 277b, 366c, 597a, and 601b.

Uses print 600.
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Debugging Help

17.1 The Kernel Mode Shell
In cases when user mode does not work or when we need to look at kernel structures that
are not accessible from user mode, we can launch a simple kernel shell kernel_shella
that provides a few commands which are helpful for debugging.

is code is even less interesting than the one in the previous chapter unless you want
to modify U and run into problems that require some debugging.

For most internal commands CMD of the kernel shell we provide corresponding functions
named ksh_command_CMD which will be executed.

You can enter the kernel shell by pressing [Shi-Escape], and you can leave it with
exit which brings you back to user mode. When the system detects a fault from which it
cannot recover it will also drop you in the kernel mode shell, but in that case returning to
user mode is not possible.

e test command displays addresses of the current page directory and page table and
a hexdump of the frame table.

[603]⟨function implementations 100b⟩+≡ (44a) ◁ 601d 604b ▷
void ksh_command_test () {

kputs ("current_pd as INT: ");
printbitsandhex (*(uint*)(current_pd)); kputs ("\n");

kputs ("current_pd->ptds[0].frame_addr.:");
printbitsandhex (current_pd->ptds[0].frame_addr<<12); kputs ("\n");

kputs ("current_pt as INT: ");
printbitsandhex (*(uint*)(current_pt)); kputs ("\n");

kputs ("address of current_pd: "); printf ("%08x\n",(uint)current_pd);
kputs ("address of current_pt: "); printf ("%08x\n",(uint)current_pt);
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kputs ("size of current_pd: ");
printf ("%08x\n", sizeof (*current_pd));

kputs ("size of current_pt: ");
printf ("%08x\n", sizeof (*current_pt));

kputs ("address of frame table: "); printf ("%08x\n", (uint)ftable);
kputs ("hexdump ftable\n");
hexdump ((uint)&place_for_ftable, ((uint)&place_for_ftable) + 1);

};
Defines:

ksh_command_test, used in chunk 608b.
Uses current_pd 105a, current_pt 105a, ftable 112c, hexdump 612c, kputs 335b, place_for_ftable 112c,

printbitsandhex 612a, and printf 601a.

mem displays similar data, but for specific page table entries.
[604a] ⟨global variables 92b⟩+≡ (44a) ◁ 547b

extern memaddress stack_first_address, stack_last_address;
Uses memaddress 46c, stack_first_address 95a, and stack_last_address 95a.

[604b] ⟨function implementations 100b⟩+≡ (44a) ◁ 603 605a ▷
void ksh_command_mem () {

kputs ("kernel_pd as INT: ");
printbitsandhex (*(int*)(&kernel_pd)); kputs ("\n");

kputs ("kernel_pd.ptds[0].frame_addr: ");
printbitsandhex (kernel_pd.ptds[0].frame_addr<<12); kputs ("\n");

kputs ("kernel_pd.ptds[768].frame_addr: ");
printbitsandhex (kernel_pd.ptds[768].frame_addr<<12); kputs ("\n");

kputs ("kernel_pd.ptds[831].frame_addr: ");
printbitsandhex (kernel_pd.ptds[831].frame_addr<<12); kputs ("\n");

kputs ("kernel_pd.ptds[832].frame_addr: ");
printbitsandhex (kernel_pd.ptds[832].frame_addr<<12); kputs ("\n");

kputs ("kernel_pd.ptds[833].frame_addr: ");
printbitsandhex (kernel_pd.ptds[833].frame_addr<<12); kputs ("\n");

kputs ("kernel_pt as INT: ");
printbitsandhex (*(int*)(&kernel_pt)); kputs ("\n");

kputs ("address of kernel_pd: ");
printf ("%08x\n", (uint)&kernel_pd);

kputs ("address of kernel_pt: ");
printf ("%08x\n", (uint)&kernel_pt);

kputs ("stack_first_address: ");
printf ("%08x\n", (uint)&stack_first_address);

kputs ("stack_last_address: ");
printf ("%08x\n", (uint)&stack_last_address);

kputs ("free_frames: "); printf ("%d\n", free_frames);
uint esp; asm volatile ("mov %%esp, %0": "=r"(esp));
kputs ("ESP: "); printf ("%08x\n", esp);

};
Defines:

ksh_command_mem, used in chunk 608b.
Uses free_frames 112b, kernel_pd 105a, kernel_pt 105a, kputs 335b, printbitsandhex 612a, printf 601a,

stack_first_address 95a, and stack_last_address 95a.
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time and uname show the current time and the U version string.
[605a]⟨function implementations 100b⟩+≡ (44a) ◁ 604b 605b ▷

void ksh_command_time () {
short int hour, min, sec;

hour = (system_time/60/60)%24; min = (system_time/60)%60; sec = system_time%60;
printf ("The time is %02d:%02d:%02d.\n", hour, min, sec);

};

void ksh_command_uname () { printf ("%s; Build: %s \n", UNAME, BUILDDATE); };
Defines:

ksh_command_time, used in chunk 608b.
ksh_command_uname, used in chunk 608b.

Uses BUILDDATE 35a, hour, min, printf 601a, sec, system_time 338a, and UNAME 35a.

div0 causes a division by zero fault.
[605b]⟨function implementations 100b⟩+≡ (44a) ◁ 605a 605c ▷

void ksh_command_div0 () {
int zero = 0; int i = 10 / zero; kputch (i); // Test for exception

}
Defines:

ksh_command_div0, used in chunk 608b.
Uses kputch 335b.

hexdump prints a hex dump of the specified address range. Since kernel shell commands
do not take parameters, the addresses have to be changed in the source code in order to
show a different range.

[605c]⟨function implementations 100b⟩+≡ (44a) ◁ 605b 605d ▷
void ksh_command_hexdump () {

int as = current_as;
activate_address_space (10);
hexdump (0xaffffdf8, 0xaffffdf8 + 128); // modify this to show other regions
activate_address_space (as);

};
Defines:

ksh_command_hexdump, used in chunk 608b.
Uses activate_address_space 170c, current_as 170b, and hexdump 612c.

ps shows the process list.
[605d]⟨function implementations 100b⟩+≡ (44a) ◁ 605c 606 ▷

void ksh_command_ps () {
int i;
printf (" TID PID PPID ESP EIP EBP ESP0 AS State "

"Exi Cmdline\n");
for (i=0;i<MAX_THREADS; i++) {

if (thread_table[i].used) {
printf ("%4d %4d %4d %08x %08x %08x %08x %2d %-5s %3d %s\n",

thread_table[i].tid, thread_table[i].pid,
thread_table[i].ppid, thread_table[i].regs.esp,
thread_table[i].regs.eip, thread_table[i].regs.ebp,
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thread_table[i].esp0, thread_table[i].addr_space,
state_names[thread_table[i].state], thread_table[i].exitcode,
thread_table[i].cmdline);

}
}

}
Defines:

ksh_command_ps, used in chunk 608b.
Uses MAX_THREADS 176a, printf 601a, state_names 180b, and thread_table 176b.

queues shows all blocked queues and the processes or threads on those queues (as well as
the ready queue). e ksh_command_queues function uses the ksh_print_queue helper
function which displays a single queue. Similarly, locks shows all processes or threads
waiting for a lock.

[606] ⟨function implementations 100b⟩+≡ (44a) ◁ 605d 607a ▷
void ksh_print_queue (char *name, blocked_queue *bq) {

printf ("%s: ", name);
int pid = bq->next;
while (pid != 0) {

printf ("%d, ", pid);
pid = thread_table[pid].next;

}
printf ("\n");

}

void ksh_command_queues () {
printf ("Queues: \n");
printf ("ready: ");
int pid = 0;
while ((pid = thread_table[pid].next) != 0) printf ("%d, ", pid);
printf ("\n");
ksh_print_queue ("keyboard", &keyboard_queue);
ksh_print_queue ("harddisk", &harddisk_queue);
ksh_print_queue ("floppy", &floppy_queue);
ksh_print_queue ("waitpid", &waitpid_queue);
ksh_print_queue ("buffer", &(buffer_lock->bq));

}

void ksh_command_locks () {
for (int i = 1; i < MAX_LOCKS; i++) {

if (kernel_locks[i].used) {
ksh_print_queue (kernel_locks[i].lockname, &kernel_locks[i].bq);

}
}

}
Defines:

ksh_command_locks, used in chunk 608b.
ksh_command_queues, used in chunk 608b.

Uses blocked_queue 183a, buffer_lock 509a, floppy_queue 544d, harddisk_queue 529a, kernel_locks 365c,
keyboard_queue 323d, MAX_LOCKS 365b, printf 601a, thread_table 176b, waitpid 220d, and waitpid_queue 218b.
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inode displays the hex dump of an inode. e device and number must be set directly
in the source code.

[607a]⟨function implementations 100b⟩+≡ (44a) ◁ 606 607b ▷
void ksh_command_inode () {

struct minix2_inode in;
int dev = DEV_HDA;
int ino = 79;
int res = mx_read_inode (dev, ino, &in);
printf ("mx_read_inode(%d, %d) returns %d\n", dev, ino, res);
if (res != 0) {

hexdump ((uint)&in, (uint)&in+sizeof(struct minix2_inode));
printf ("size: %d, blocks: ", in.i_size);
for (int i = 0; i < 10; i++) printf ("%d, ", in.i_zone[i]); printf ("\n");

}
}

Defines:
ksh_command_inode, used in chunk 608b.

Uses DEV_HDA 508a, hexdump 612c, minix2_inode 442a, mx_read_inode 451b, and printf 601a.

lsof displayes the list of open Minix files.
[607b]⟨function implementations 100b⟩+≡ (44a) ◁ 607a 607c ▷

void ksh_command_lsof () {
for (int i = 0; i < MX_MAX_FILES; i++) {

struct int_minix2_inode *inode = mx_status[i].int_inode;
if (inode != NULL) {

printf ("mfd=%d inode-addr=%08x size=%d\n",
i, (unsigned int)inode, inode->i_size);

}
}

}
Defines:

ksh_command_lsof, used in chunk 608b.
Uses int_minix2_inode 459a, MX_MAX_FILES 461a, mx_status 461b, NULL 46a, and printf 601a.

longhelp explains (some o) the commands in the kernel shell.
[607c]⟨function implementations 100b⟩+≡ (44a) ◁ 607b 608b ▷

void ksh_command_longhelp () {
printf ("ex" "it return to user mode\n"

"te" "st\n"
"pfault, div0 test faults\n"
"mem show memory (frames, pages) info\n"
"st" "at\n"
"uname show Ulix version\n"
"hex" "dump show hex" "dump of some memory area\n"
"clear clear the screen\n"
"gf, g" "p, gp1k get a frame, a page, 1000 pages\n"
"rp release page\n"
"bdump\n"
"malloc test kernel malloc\n"
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"time show time\n"
"cloneas <n> clone address space (argument: size)\n"
"listas show address spaces\n"
"ps process list\n"
"disable disable sche" "duler\n"
"enable (re-)enable sche" "duler\n"

);
}

Defines:
ksh_command_longhelp, used in chunk 608b.

Uses faults 148a, g, and printf 601a.

e ksh_run_commandb function tests whether the command that was entered is known.
If so, it executes one of the ksh_command_* functions (or directly performs some action).

[608a] ⟨constants 112a⟩+≡ (44a) ◁ 579b
#define SHELL_COMMANDS "help, ex" "it, test, div0, mem, stat, uname, "\

"hexdump, clear, gf, gp, rp, gp1k, bdump, malloc, time, listas, "\
"init, exec, testdisk, enable, longhelp, ps, queues, lsof"

Defines:
SHELL_COMMANDS, used in chunks 608b and 610a.

Uses gp 92b, hexdump 612c, and stat 429b 489b.

[608b] ⟨function implementations 100b⟩+≡ (44a) ◁ 607c 609 ▷
void ksh_run_command (char *s) {

if ( strequal (s, "help") ) { printf ("Commands: %s \n",
SHELL_COMMANDS); }

else if ( strequal (s, "uname") ) { ksh_command_uname (); }
else if ( strequal (s, "test") ) { ksh_command_test (); }
else if ( strequal (s, "div0") ) { ksh_command_div0 (); }
else if ( strequal (s, "hexdump") ) { ksh_command_hexdump (); }
else if ( strequal (s, "clear") ) { vt_clrscr (); }
else if ( strequal (s, "mem") ) { ksh_print_page_table (); }
else if ( strequal (s, "mem2") ) { ksh_command_mem (); }
else if ( strequal (s, "ps") ) { ksh_command_ps (); }
else if ( strequal (s, "queues") ) { ksh_command_queues (); }
else if ( strequal (s, "locks") ) { ksh_command_locks (); }
else if ( strequal (s, "longhelp") ) { ksh_command_longhelp (); }
else if ( strequal (s, "enable") ) { ⟨enable scheduler 276a⟩ }
else if ( strequal (s, "disable") ) { ⟨disable scheduler 276b⟩ }
else if ( strequal (s, "listas") ) { list_address_spaces (); }
else if ( strequal (s, "time") ) { ksh_command_time (); }
else if ( strequal (s, "lsof") ) { ksh_command_lsof (); }
else if ( strequal (s, "inode") ) { ksh_command_inode ();
} else if ( strequal (s, "gf") ) {

uint newframeid = request_new_frame ();
printf ("New frame ID: %d\n", newframeid);

} else if ( strequal (s, "gp") ) {
/* uint* page = */ request_new_page ();
// kputs (", Page @ "); printf ("%08x\n", (uint)page);

} else if ( strequal (s, "rp") ) {
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printf ("releasing page range 0xc03fe..0xc07e6 \n");
release_page_range (0xc03fe,0xc07e6);

} else if ( strequal (s, "gp1k") ) {
char buf[20]; uint *page;
for (int i = 0; i < 1024; i++) {

sprintf ((char*)&buf, "Create: %d ", i); set_statusline ((char*)&buf);
page = request_new_page ();

}
} else if ( strequal (s, "gp10k") ) {

char buf[20]; uint *page;
for (int i = 0; i < 10; i++) {

sprintf ((char*)&buf, "Create: %d ", i); set_statusline ((char*)&buf);
page = request_new_pages (1024);

}
}
else if ( strequal (s, "") ) { return; } // no command
else { printf ("Error: >%s< - no such command\n", s); }

}
Defines:

ksh_run_command, used in chunk 610a.
Uses gp 92b, hexdump 612c, kputs 335b, ksh_command_div0 605b, ksh_command_hexdump 605c, ksh_command_inode 607a,

ksh_command_locks 606, ksh_command_longhelp 607c, ksh_command_lsof 607b, ksh_command_mem 604b,
ksh_command_ps 605d, ksh_command_queues 606, ksh_command_test 603, ksh_command_time 605a,
ksh_command_uname 605a, ksh_print_page_table 613b, list_address_spaces 171a, printf 601a,
release_page_range 123d, request_new_frame 118b, request_new_page 120a, request_new_pages 120b,
set_statusline 337b, SHELL_COMMANDS 608a, sprintf 601a, strequal 596a, and vt_clrscr 329b.

e two statusline_* functions change the color of the status line so that it is always
obvious whether you are using a regular shell (blue blackground) or the kernel shell (red).

[609]⟨function implementations 100b⟩+≡ (44a) ◁ 608b 610a ▷
void statusline_red () {

// make status line red
memsetw (textmemptr + 24 * 80, 0x20 | VT_RED_BACKGROUND, 80);

}

void statusline_blue () {
// make status line blue
memsetw (textmemptr + 24 * 80, 0x20 | VT_BLUE_BACKGROUND, 80);
set_statusline (UNAME);

}
Defines:

statusline_blue, used in chunk 610a.
statusline_red, used in chunk 610a.

Uses memsetw 596c, set_statusline 337b, textmemptr 116c, UNAME 35a, VT_BLUE_BACKGROUND 326b,
and VT_RED_BACKGROUND 326b.

Finally, this is the kernel shell. It reads in a command and calls ksh_run_commandb.
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[610a] ⟨function implementations 100b⟩+≡ (44a) ◁ 609 611b ▷
void kernel_shell () {
⟨enable interrupts 47b⟩
statusline_red ();
char s[101];

system_kbd_pos = 0;
system_kbd_lastread = -1;
system_kbd_count = 0;

printf ("\nUlix Kernel Shell. Commands: %s\n", SHELL_COMMANDS);
printf ("Type 'ex" "it' to enter user mode.\n");
for (;;) {

set_statusline (UNAME);
kputs ("kernel@ulix# ");
kreadline ((char*)&s,sizeof (s)-1);
if ( strequal ((char*)&s, "ex" "it") ) {

statusline_blue (); // restore normal color
⟨enable scheduler 276a⟩
return;

}
ksh_run_command ((char*)&s);

};
};

Defines:
kernel_shell, used in chunks 151c, 290b, 321a, and 610b.

Uses kputs 335b, kreadline 324b, ksh_run_command 608b, printf 601a, set_statusline 337b, SHELL_COMMANDS 608a,
statusline_blue 609, statusline_red 609, strequal 596a, system_kbd_count 318d, system_kbd_lastread 318d,
system_kbd_pos 318d, and UNAME 35a.

[610b] ⟨function prototypes 45a⟩+≡ (44a) ◁ 601b 611c ▷
void kernel_shell ();

17.2 A System Call That Displays an Inode
For testing the Minix filesystem implementation we provide a system call that reads a
Minix inode from the disk and displays it. It also shows the first seven entries of the
i_zone[] array (which contain the direct block numbers).

[610c] ⟨syscall prototypes 173b⟩+≡ (202a) ◁ 590a
void syscall_print_inode (context_t *r);

Uses context_t 142a and syscall_print_inode.

[610d] ⟨syscall functions 174b⟩+≡ (202b) ◁ 590b
void syscall_print_inode (context_t *r) {

int ino = r->ebx; // requested inode
printf ("syscall; ino = %d\n", ino);
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struct minix2_inode in;
mx_read_inode (DEV_HDA, ino, &in);
printf ("i_mode: 0%o\n", in.i_mode);
printf ("i_nlinks: %d\n", in.i_nlinks);
printf ("i_size: %d\n", in.i_size);
printf ("i_zone: [");
for (int i = 0; i < 7; i++) printf ("%d, ", in.i_zone[i]); printf ("]\n");

}
Uses context_t 142a, DEV_HDA 508a, minix2_inode 442a, mx_read_inode 451b, printf 601a,

and syscall_print_inode.

[611a]⟨initialize syscalls 173d⟩+≡ (44b) ◁ 590c
install_syscall_handler (777, syscall_print_inode);

Uses install_syscall_handler 201b and syscall_print_inode.

e system call should not be used for regular programs, instead the statb function
is intended to return information about a file.

17.3 Printing the Page Directory
e following function prints parts of the page directory.

[611b]⟨function implementations 100b⟩+≡ (44a) ◁ 610a 612a ▷
void print_page_directory () {

int i;
kputs ("The Page Directory:\n");
for ( i = 700 ; i<800 ; i++ ) {

if ( current_pd->ptds[i].present ) {
printf ("%04d ", i);
printf ("%08x\n", current_pd->ptds[i].frame_addr);

};
};

unsigned int z=(unsigned int)current_pd;
printf ("hexdump for %08x\n", z);
hexdump (z,z+128);
kputch ('\n');

};
Uses current_pd 105a, hexdump 612c, kputch 335b, kputs 335b, and printf 601a.

17.4 Helper Functions for Printing
Some functions that belong to the kernel mode shell use the following helper functions to
print number in binary and hexadecimal format and to print a hex dump.

[611c]⟨function prototypes 45a⟩+≡ (44a) ◁ 610b 612b ▷
void printbitsandhex (uint i);
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[612a] ⟨function implementations 100b⟩+≡ (44a) ◁ 611b 612c ▷
void printbitsandhex (uint i) { printf ("%032b %08X", i, i); };

Defines:
printbitsandhex, used in chunks 603, 604b, and 611c.

Uses printf 601a.

[612b] ⟨function prototypes 45a⟩+≡ (44a) ◁ 611c 613a ▷
void hexdump (uint startval, uint endval);

[612c] ⟨function implementations 100b⟩+≡ (44a) ◁ 612a 612d ▷
void hexdump (uint startval, uint endval) {

for (uint i=startval; i < endval; i+=16) {
printf ("%08x ", i); // address
for (int j = i; j < i+16; j++) { // hex values

printf ("%02x ", (byte)PEEK(j));
if (j==i+7) printf (" ");

};
printf (" ");
for (int j = i; j < i+16; j++) { // characters

char z = PEEK(j);
if ((z≥32) && (z<127)) {

printf ("%c", PEEK(j));
} else {

printf (".");
};

};
printf ("\n");

};
};

Defines:
hexdump, used in chunks 290a, 436c, 437, 603, 605c, 607, 608, 611b, and 612b.

Uses PEEK 117 and printf 601a.

17.5 Printing the Frame Table and Page Table
Here’s a function for displaying the current page tables.

Since we want to output information from the free frame list (we will use test_framea
to check frame states), we write a simple function that can print status information for a
memory region (going from start to end):

[612d] ⟨function implementations 100b⟩+≡ (44a) ◁ 612c 613b ▷
void ksh_print_page_table_helper (unsigned sta, unsigned end, unsigned used) {

if (used) { kputs ("Used: "); }
else { kputs ("Free: "); }
printf ("%05x-%05x %5d-%5d (%5d frames)\n",

sta, end, sta, end, end-sta+1);
};

Defines:
ksh_print_page_table_helper, used in chunk 613c.

Uses kputs 335b and printf 601a.
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e following function prints the frame and page tables:
[613a]⟨function prototypes 45a⟩+≡ (44a) ◁ 612b

void ksh_print_page_table ();

[613b]⟨function implementations 100b⟩+≡ (44a) ◁ 612d
void ksh_print_page_table () {

unsigned int cr3;
⟨print frame table 613c⟩
kputch ('\n');
⟨print page table 614a⟩
__asm__ __volatile__("mov %%cr3, %0": "=r"(cr3));
printf ("cr3: %08x\n", cr3);

}
Defines:

ksh_print_page_table, used in chunks 608b and 613a.
Uses kputch 335b and printf 601a.

[613c]⟨print frame table 613c⟩≡ (613b)
kputs ("Current Frame Info:\n");
unsigned int frameno = 0;
unsigned int totalfree = NUMBER_OF_FRAMES; // total number of free frames
unsigned int test = test_frame (frameno); // check first frame

for (unsigned int i = 1; i < NUMBER_OF_FRAMES; i++) {
if (test_frame (i) != test) {

ksh_print_page_table_helper (frameno, i-1, test);
if (test) totalfree -= (i-frameno);
test = 1-test;
frameno = i;

};
};
ksh_print_page_table_helper (frameno, NUMBER_OF_FRAMES-1, test);
if (test) totalfree -= (NUMBER_OF_FRAMES-frameno);
printf ("Total free frames: %6d\n", totalfree);
printf ("Value of free_frames: %6d\n", free_frames);

Uses free_frames 112b, kputs 335b, ksh_print_page_table_helper 612d, NUMBER_OF_FRAMES 112a, printf 601a,
test_frame 114a, and totalfree.

e output of ⟨print frame table 613c⟩ looks like this:

Current Frame Info:
Used: 0x00000000-0x000003FF 0000000-0001023 (0001024 frames)
Free: 0x00000400-0x000007FE 0001024-0002046 (0001023 frames)
Used: 0x000007FF-0x000007FF 0002047-0002047 (0000001 frames)
Free: 0x00000800-0x00004000 0002048-0016384 (0014337 frames)
Total free frames: 0015359

e following code for the page table seems overly complicated because we want to
print mappings of ranges and not each single mapping of a page to a frame in order to
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save space in the output (and keep it readable). We use a variable started to memorize
whether we’re right now in a mapped region while skipping through the page tables.

[614a] ⟨print page table 614a⟩≡ (613b)
printf ("Current Paging Info: Address Space #%d\n", current_as);

boolean started=false;
int save_i=0; int save_f=0;
unsigned int start_i=0; unsigned int start_f=0;
for (unsigned int i = 0; i < 1024*1024; i++) {

frameno = mmu_p (current_as, i); // get frameno with respect to current AS
if (frameno == -1) {

if (started) { // frame NOT found
⟨print pages to frames block 614b⟩
started = false;

}
continue; // dont act on non-mapped pages

} else { // frame found
if (!started) {

start_i = i; start_f = frameno;
save_i = i; save_f = frameno;
started = true;

} else {
if (i-start_i != frameno-start_f) {

// pages continue, but frames are elsewhere
⟨print pages to frames block 614b⟩
start_i=i; start_f=frameno;

};

save_i = i; save_f = frameno;
};

};
};
if (started) { ⟨print pages to frames block 614b⟩ }

Uses current_as 170b, mmu_p 171c, and printf 601a.

is is just the code for formaing the output:
[614b] ⟨print pages to frames block 614b⟩≡ (614a)

printf ("PTEs 0x%05x..0x%05x -> frames 0x%05x..0x%05x (%5d pages)\n",
start_i, save_i, start_f, save_f, save_i-start_i+1);

Uses printf 601a.

e output of ⟨print page table 614a⟩ will look like this:

Current Paging Info:
PTEs 0x00000000..0x000003FF -> frames 0x00000000..0x000003FF (0001024 pages)
PTEs 0x000C0000..0x000C03FF -> frames 0x00000000..0x000003FF (0001024 pages)
PTEs 0x000D0000..0x000D3FFF -> frames 0x00000000..0x00003FFF (0016384 pages)
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The ULIX Build Process

You have almost reached the end of the book—now we describe the whole process that is
needed in order to turn a literate program (the ulix-book.nw file) into a booting operating
system disk image and some other files needed for execution of the system.

18.1 Required Soware
If you want to build U yourself, you need several tools which might not be installed on
your machine. Check that the following requirements are fulfilled:

• Linux operating system
Any 32-bit version of Linux will work, provided that you can install the correct ver-
sion of the C compiler (see next point). ere was also one positive report of a devel-
oper using FreeBSD, and U can also be compiled on Mac OS X, but that requires
some more work (see Section 18.1.1). In principle a 64-bit Linux system should work
as well, but that would require some extra work because in default 64-bit installations
the compiler cannot create 32-bit binaries.

• GNU C compiler, version 4.4
eU sources can be compiledwith older or newer versions of the GNUC compiler
gcc (https://gcc.gnu.org/), but when we experimentally picked a different version
than 4.4, the resulting kernel did not work. is is likely caused by different code
optimization. We successfully used GCC 4.4.5 on a 32-bit version of Debian Linux
6.0.1 (Squeeze, https://www.debian.org/releases/squeeze/). If it turns out that your
compiler version cannot compile U and you do not have the option to install GCC
4.4, then you will need to download the development environment, see Section 18.2.

https://gcc.gnu.org/
https://www.debian.org/releases/squeeze/
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• NASM assembler
You need the nasm assembler (http://nasm.us/). On two development machines
(Debian Linux 6.0.1 and OS X 10.6.8) nasm -v displayed the following version strings:
Debian: NASM version 2.08.01 compiled on Jun 2 2010
OS X: NASM version 0.98.40 (Apple Computer, Inc. build 11) compiled on May 18

2009

Both versions workedwell, but others should, too, because the assembler must always
produce the same object files from the code: Assembler code will not be optimized.

• NoWEB
You have to install the noweb package (http://www.cs.tufts.edu/~nr/noweb/) which can
extract the C and assembler source code files and the makefiles from the literate pro-
gram ulix-book.nw. On a Debian Linux machine you can type apt-get install noweb.

• LATEX, the XƎLATEX variant
In order to reproduce a PDF version of this book, you will need the XƎLATEX vari-
ant of the LATEX document preparation system (http://www.xelatex.org/, http://www.
latex-project.org/). Depending on your Linux distribution, installing LATEXmight not
lead to a full installation (that contains XƎLATEX). On Debian Linux apt-get install
texlive-xetex should fetch and install the required packages. You will also need a
noweb package for XƎLATEX that is available from the U project website via
wget http://ulixos.org/files/0.12/noweb.sty

You can instead use the default noweb.sty file that might be installed on your machine,
but then the layout will look a bit different.

• mtools
Install the mtools package (http://www.gnu.org/software/mtools/) if it is not present
yet. (You can check by typing mtools in the shell; if you get a “Command not found”
error, you need to install it.) On Debian systems apt-get install mtools finds the
right package.

• qemu
You will also need the qemu PC emulator (http://www.qemu.org/). While U might
run on other Intel-x86-based hardware, we only tested it in the qemu and Bochs PC
emulators, and of those two only qemuwas able to boot and run it. We also successfully
used the Q program on OS X (http://www.kju-app.org/) which is a GUI for qemu; the
package contains a qemu version, so installing Q is enough for running U.

18.1.1 Toolchain on Mac OS X
It is possible to compile U on an Apple Mac, but the information in this section will not
be fully applicable if you use a newer version of OS X. However, it might still be helpful
for finding the right files for your setup. We used Mac OS X 10.6.8 and started with in-
stalling a GCCCross Compiler as documented in http://www.fanofblitzbasic.de/prettyos/
PrettyOSMacOSX.pdf). We downloaded the file http://www.fanofblitzbasic.de/prettyos/

http://nasm.us/
http://www.cs.tufts.edu/~nr/noweb/
http://www.xelatex.org/
http://www.latex-project.org/
http://www.latex-project.org/
http://www.gnu.org/software/mtools/
http://www.qemu.org/
http://www.kju-app.org/
http://www.fanofblitzbasic.de/prettyos/PrettyOSMacOSX.pdf
http://www.fanofblitzbasic.de/prettyos/PrettyOSMacOSX.pdf
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i-elf-binutils-gcc-macos.zip and unpacked it. (Note: Whenwe aempted to re-down-
load the file during the final preparation stage of this book, the website was offline. We
could not find that PDF file or the cross compiler archive elsewhere, but on http://wiki.
osdev.org/Talk:GCC_Cross-Compiler#On_Mac_OS_X_Lion the creation of a cross-compiler is
discussed, so that site might help you. In the end you will need a gcc version called
i586-elf-gcc that creates ELF-i386 binaries.)

We also had to install GMP and MPFR which could be automated using the port tool
(https://www.macports.org/). (On newer OS X versions port is replaced by brew; http://
brew.sh/.)

port install gmp
port install mpfr

en we set some links:

ln -s /opt/local/var/macports/software/mpfr/3.0.0-p8_0/opt/local/lib/libmpfr
.4.dylib /usr/local/lib/libmpfr.1.dylib

ln -s /opt/local/var/macports/software/gmp/5.0.1_0/opt/local/lib/libgmp.3.
dylib /usr/local/lib/libgmp.3.dylib

e nasm assembler was installed by default; it is also available via the MacPorts package
collection.

18.1.2 Other Useful Tools
You might find the following tools helpful though we have not used all of them for the
development of U.

• All in one boot disk, http://rescup.winbuilder.net/bootdisk/
is is a FAT-formaed GRUB boot disk (with other tools on there, e. g., a free DOS
clone and tools). It is useful because you can use the mtools utilities to copy a new
U kernel to the disk by typing
mcopy -i bootdisk.img kernel.img ::kernel.img

(the first : in :: is a “drive leer” used for talking to the disk image referenced by -i).
Wemodified the boot disk so that it has only onemenu entry to boot /ulix.bin, andwe
removed the contents of the TOOLS directory that provided DOS tools such as fdisk.exe
or ntfsdos.exe.

• mfstool, http://mfstool.sourceforge.net/
e mfstool can access Minix filesystem images. It works on Linux, Mac OS and other
Unix versions. For example,
mfstool dir minix1.img

displays the contents of the root directory in the Minix filesystem image minix1.img.
However, the version we tested had problems with writing files to an image. It was
good for reading files or listing directories, though.

http://wiki.osdev.org/Talk:GCC_Cross-Compiler#On_Mac_OS_X_Lion
http://wiki.osdev.org/Talk:GCC_Cross-Compiler#On_Mac_OS_X_Lion
https://www.macports.org/
http://brew.sh/
http://brew.sh/
http://rescup.winbuilder.net/bootdisk/
http://mfstool.sourceforge.net/
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• minixfs (MacFUSE), http://osxbook.com/software/unixfs/
minixfs is a driver that is part of theMacFUSE,

UnixFS
MacFUSE-based UnixFS package and lets OS

X users mount Minix-formaed volumes—but only in read-only mode. Accessing a
mounted volume is simpler than using mfstool.

18.2 Downloading the Development Environment
If you run into problems with your installed version of the development tools, you can
either aempt to fix them or simply download a virtual machine image for theVirtualBox VirtualBox
virtualization program (https://www.virtualbox.org/) that contains a Debian Linux 6.0.1
installation and the U sources. It is distributed as an ova appliance file (Open Virtual-
ization Format) that you can import in VirtualBox using the File / Import Appliance menu
entry. Visit the http://ulixos.org/files/./ova/ directory and read the instructions in
readme.txt which contain updated information about the installation process.

18.3 Bootstrapping: How to Start
Assuming that you have a development environment with all the needed tools installed
and the U noweb source code file ulix-book.nw in your home directory, you can start
by extracting the needed files from the noweb source file.

Create a directory ulix somewhere in your home directory and change into it with
cd. e directory must be empty. Move the literate program ulix-book.nw that you can
download with

wget http://ulixos.org/files/0.12/ulix-book.nw

into that folder and execute the command

notangle ulix-book.nw | sh

at command will extract the following root chunk ⟨* 618⟩ of the document which
contains a simple shell script that in turn creates some directories and makefiles. You will
also need to download and decompress the disk images and some additional files that help
with the PDF file generation. If you don’t press [Ctrl-C], the script will do that for you
automatically.

e Makefiles are intended to work on a Debian Linux 6.0.1 system that has all the re-
quired tools installed. If they do not work, you might want to inspect the Makefile files in
bin-build/, lib-build/ and tex-build/which are extracted from the ⟨bin-build/Makefile 620b⟩,
⟨lib-build/Makefile 622⟩ and ⟨tex-build/Makefile 623b⟩ code chunks (see below).

[618] ⟨* 618⟩≡
#!/bin/bash
echo This is the ULIX source code extractor
litprog=ulix-book.nw
files=$( ls -1 | wc -l )

http://osxbook.com/software/unixfs/
https://www.virtualbox.org/
http://ulixos.org/files/0.12/ova/
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if [ $files != 1 ]; then
echo "~/ulix directory is not empty, it must contain only ulix-book.nw. Aborting."
exit

fi

for dir in bin-build lib-build/tools lib-build/diskfiles/bin mountpoint tex-build
do

mkdir -p ${dir}
done
for file in Makefile bin-build/Makefile lib-build/Makefile lib-build/process.ld \
lib-build/tools/Makefile lib-build/tools/process.ld tex-build/Makefile \
bin-build/assembler-parser.py tex-build/filter-uses.py module.nw lib-build/init.c
do

notangle -R${file} -t8 ${litprog} > ${file}
done
chmod a+x bin-build/assembler-parser.py tex-build/filter-uses.py

webroot="http://ulixos.org/files/0.12"
echo "You can download the disk images if you don't have them yet:"
echo "cd to bin-build/ and type:"
echo " wget ${webroot}/ulix-fd0.img.gz"
echo " wget ${webroot}/ulix-fd1.img.gz"
echo " wget ${webroot}/ulix-hda.img.gz"
echo " wget ${webroot}/ulix-hdb.img.gz"
echo "Then uncompress them with"
echo " gunzip *.gz"
echo "Similarly, change to tex-build/ and type:"
echo " wget ${webroot}/noweb.sty.gz"
echo " wget ${webroot}/grep-patterns.gz"
echo "and uncompress them as well."
echo
echo "This script will download all files for you if you don't press Ctrl-C"
echo -n "in the next eight seconds... "
for (( i=1; i<9; i++ )); do echo -n ${i}...; sleep 1; done
echo ""
echo "Downloading files"
cd bin-build
for image in fd0 fd1 hda hdb; do

echo wget ${webroot}/ulix-${image}.img.gz
wget ${webroot}/ulix-${image}.img.gz
gunzip ulix-${image}.img.gz

done
cd ../tex-build
for file in noweb.sty grep-patterns; do

echo wget ${webroot}/${file}.gz
wget ${webroot}/${file}.gz
gunzip ${file}.gz

done
echo 'Done. Type "make" to build the kernel, type "make run" to run it in qemu.'
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18.3.1 Makefiles
We start with themakefiles which control the build processes for the kernel, the user mode
library, the applications and the PDF document (this book).

e development root folder contains the following makefile that will make kernel, li-
brary and tools (when you execute make) and start U in the qemu emulator when you
type make run. With make pdf you can create the PDF file (if XƎLATEX is installed).

[620a] ⟨Makefile 620a⟩≡
all: tools bin

pdf: ulix-book.nw
make -C tex-build

bin: ulix-book.nw
make -C bin-build

run:
make -C bin-build run

runs:
make -C bin-build runs

tools: ulix-book.nw
make -C lib-build

clean:
make -C lib-build clean
make -C bin-build clean
make -C tex-build clean

e bin-build/ directory is used for compiling the kernel source file ulix.c, assembling
the Assembler source file start.asm and linking the generated object files to create the
kernel binary ulix.bin.

[620b] ⟨bin-build/Makefile 620b⟩≡
OS=Linux
LD=ld
CC=/usr/bin/gcc-4.4
OBJDUMP=objdump
CFLAGS=-O0 -m32 -mstackrealign

HDA_IMG=ulix-hda.img
HDB_IMG=ulix-hdb.img
FD0_IMG=ulix-fd0.img
FD1_IMG=ulix-fd1.img

ASM=nasm
ASMFLAGS=-f elf
TEXSRC_FILE=../ulix-book.nw
TEXSRC_MODULE_FILE=../module.nw
EXTRACT_FILES=ulix.c start.asm ulix.ld

all: build

build: extract parse asm compile linking objdump mtools

extract:
notangle -L -Rulix.c $(TEXSRC_FILE) > ulix.c; true
notangle -Rstart.asm $(TEXSRC_FILE) > start.asm



18.3 Bootstrapping: How to Start 621

notangle -Rulix.ld $(TEXSRC_FILE) > ulix.ld
notangle -L -Rmodule.c $(TEXSRC_MODULE_FILE) > module.c
notangle -L -Rmodule.h $(TEXSRC_MODULE_FILE) > module.h

parse:
mv ulix.c ulix.c.pre
./assembler-parser.py ulix.c.pre ulix.c
sed -ie "s/Mon Nov 2 17:33:51 CET 2015/`date`/" ulix.c

asm:
mv module.c module.c.pre
./assembler-parser.py module.c.pre module.c
$(ASM) $(ASMFLAGS) -o start.o start.asm

compile:
$(CC) $(CFLAGS) -fno-stack-protector -std=c99 -g -nostdlib -nostdinc \
-fno-builtin -I./include -c -o module.o module.c
$(CC) $(CFLAGS) -fno-stack-protector -std=c99 -g -nostdlib -nostdinc \
-fno-builtin -I./include -c -o ulix.o -aux-info ulix.aux ulix.c

linking:
$(LD) $(LDFLAGS) -T ulix.ld -o ulix.bin *.o

mtools:
mcopy -o -i $(FD0_IMG) ulix.bin ::

objdump:
$(OBJDUMP) -M intel -D ulix.bin > ulix.dump
cat ulix.dump | grep -e '^[^ ]* <' | sed -e 's/<//' -e 's/>://' > ulix.sym

clean:
rm -f ./*.o ./*.c ./*.h ./*.pre ./ulix.bin ./ulix.aux ./ulix.ce
rm -f ./ulix.dump* ./*asm ./*.objdump ./*sym

run:
qemu -m 64 -rtc base=localtime -boot a -fda $(FD0_IMG) -fdb $(FD1_IMG) \
-hda $(HDA_IMG) -hdb $(HDB_IMG) -d cpu_reset -s -serial mon:stdio | \
tee ulix.output

nolog:
qemu -m 64 -rtc base=localtime -boot a -fda $(FD0_IMG) -fdb $(FD1_IMG) \
-hda $(HDA_IMG) -hdb $(HDB_IMG) -d cpu_reset

e lib-build/ directory is used for compiling the user mode library (from its source
files ulixlib.c and ulixlib.h) and the user mode applications in lib-build/tools/. e
generated U binaries will be placed in lib-build/diskfiles/ and then copied to the
hard disk image file bin-build/ulix-hda.img.

You might want to set up your Linux system so that you can run sudo without entering
a password, otherwise making the files in this directory will ask for your password.
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[622] ⟨lib-build/Makefile 622⟩≡
OS=Linux
LD=ld
CC=/usr/bin/gcc-4.4
OBJDUMP=objdump

NOWEBFILE=../ulix-book.nw
ROOTDISK=../bin-build/ulix-hda.img

CCOPTIONS=-nostdlib -ffreestanding -fforce-addr -fomit-frame-pointer \
-fno-function-cse -nostartfiles -mtune=i386 -momit-leaf-frame-pointer -O0
CCASMOPTIONS=-fverbose-asm -masm=intel
LDOPTIONS=-static -s

all: build

build: extract compile image

extract:
notangle -L -Rulixlib.c < $(NOWEBFILE) > ulixlib.c ; true
notangle -L -Rulixlib.h < $(NOWEBFILE) > ulixlib.h ; true

compile:
$(CC) $(CCOPTIONS) -g $(CCTESTOPTIONS) -c ulixlib.c
$(CC) $(CCOPTIONS) $(CCTESTOPTIONS) -c init.c
# link it with linker script "process.ld"
$(LD) $(LDOPTIONS) -T process.ld -o init init.o ulixlib.o
touch tools/*.c
make -C tools

image:
sudo mount -o loop $(ROOTDISK) ../mountpoint
cp init ../mountpoint/
sudo umount ../mountpoint

clean:
rm -f ./*.o

We’ve already shown the ⟨lib-build/tools/Makefile 236⟩ code chunk when we introduced
ELF binaries.

18.3.2 Linker Configuration Files
e two code chunks ⟨lib-build/process.ld 191b⟩ and ⟨lib-build/tools/process.ld 623a⟩ contain
process.ld files which are used to configure the behavior of the GNU linker ld. One of
those files belongs in the lib-build/ folder and is only used for creating the flat binary
file init, the other one belongs in lib-build/tools/ and is used for linking all the regular
programs which are ELF binaries. (e code chunk ⟨lib-build/process.ld 191b⟩ was already
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shown in Chapter 6.3.)

[623a]⟨lib-build/tools/process.ld 623a⟩≡
OUTPUT_FORMAT("elf32-i386")
ENTRY(main)
virt = 0x00000000;
SECTIONS {

. = virt;

.setup : AT(virt) {
*(.setup)

}

.text : AT(code) {
code = .;
*(.text)
*(.rodata*)
. = ALIGN(4096);

}

.data : AT(data) {
data = .;
*(.data)
. = ALIGN(4096);

}

.bss : AT(bss) {
bss = .;
*(COMMON*)
*(.bss*)
. = ALIGN(4096);

}
end = .;

}

tex-build/ is the folder in which you can recreate the PDF file of this book.
[623b]⟨tex-build/Makefile 623b⟩≡

TEX=xelatex -8bit -shell-escape

all:
nodefs -auto cee tmp.nw | sort -u > noweb.defs
grep -v -f grep-patterns noweb.defs > noweb.filtered.defs
noweave -indexfrom noweb.filtered.defs -delay tmp.nw > tmp.tex.in
./filter-uses.py < tmp.tex.in > tmp.tex
sed -ie "s/Mon Nov 2 17:33:51 CET 2015/`LANG=C date`/" tmp.tex
sed -ie 's/≤/≤/g' tmp.tex
sed -ie 's/≥/≥/g' tmp.tex
$(TEX) tmp
bibtex tmp
makeindex tmp.idx
noindex tmp
$(TEX) tmp
$(TEX) tmp
mv tmp.pdf ../ulix-book.pdf

clean:
rm -f ./tmp.*

(Note that the three sed commands are shown wrong in this code chunk, the first one
replaces SCRIPTBUILD with today’s date, the second and third ones replace <= and >= with
≤ and ≥ which you cannot see here because the transformation was also applied to those
lines. Extracting the Makefile gives you a correct file.)
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18.3.3 The Assembler Pre-Parser
e following Python program performs transformations of a simplified inline assembler
syntax to the regular syntax (as expected by the GNU C compiler).

[624] ⟨bin-build/assembler-parser.py 624⟩≡
#!/usr/bin/python

"""
This Parser replaces code of the following form:

asm {
starta: mov eax, 0x1001 // comment
mov ebx, 'A' // more comment
int 0x80

}
with code that looks like this:

asm ("\
.intel_syntax noprefix; \
starta: mov eax, 0x1001; \
mov ebx, 'A'; \
int 0x80; \
.att_syntax; \

");
It also understands asm volatile. What it cannot cope with is variable / register
usage. Note that it does not change the number or position of code lines.
"""

from sys import argv, exit
if len(argv)<3:

print ("Error: give input and output filenames")
exit (1)

infilename = argv[1]
outfilename = argv[2]

global ReplaceMode
ReplaceMode = False

def count_leading_blanks (line):
counter = 0
while line and (line[0] == " "):

counter+=1
line = line[1:]

return counter

def remove_trailing_blanks (line):
if (line == ""): return line
while (line != "") and (line[-1] == " "):

line = line[:-1]
return line



18.3 Bootstrapping: How to Start 625

def transform (line):
global ReplaceMode
if ReplaceMode:

if "}" in line:
# reached the end; skip this line
blanks = count_leading_blanks (line)
line = (blanks+2) * " " + '.att_syntax; ");'
ReplaceMode = False
return line

else:
# do something to the line
if '//' in line:

# remove comment
pos = line.find ("//")
line = line[:pos]
line = remove_trailing_blanks (line)

line = line + "; \\"
return line

def process (line):
global ReplaceMode
line = line[:-1]
if ReplaceMode:

# we're already in ReplaceMode, working on assembler
line = transform (line)

else:
# we're in normal C mode, check for asm {
if ("asm volatile{" in line) or ("asm volatile {" in line):

blanks = count_leading_blanks (line)
line = blanks * " " + 'asm volatile (".intel_syntax noprefix; \\'
ReplaceMode = True

elif ("asm{" in line) or ("asm {" in line):
blanks = count_leading_blanks (line)
line = blanks * " " + 'asm (".intel_syntax noprefix; \\'
ReplaceMode = True

return line

infile = file (infilename, "r")
outfile = file (outfilename, "w");

EndOfLoop = False

for line in infile:
line = process (line)
outfile.write (line+"\n")

infile.close()
outfile.close()
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18.3.4 Creating Modules with module.nw
e file module.nw is intended for students who want to work on a U-related project but
create their own literate program document. From the file two code chunks are extracted,
resulting in bin-build/module.c and bin-build/module.h. e C file will also be compiled,
and the resulting object file module.o is linked with the other kernel object files.

[626a] ⟨module.nw 626a⟩≡
<<module.c>>=
#include "module.h"
void initialize_module () {}
@
<<module.h>>=
void initialize_module ();
extern int printf(const char *format, ...);
@

e module.c function must provide an initialize_modulea function which will be
called during kernel initialization.

18.3.5 Prey Printing for the Book
e filter-uses.py script enables the limited prey-printing that we have used in this
book. It replaces brackets (()[]{}), exclamation marks, #include and #define statements
and C and Assembler comments with highlighted versions.

[626b] ⟨tex-build/filter-uses.py 626b⟩≡
#!/usr/bin/env python

import fileinput
from re import sub

deletemode = False
codemode = False
asmmode = False
breakmode = False
nosyntaxmode = False

for line in fileinput.input():
line = line[:-1] # remove \n
if line == "%nouse":

deletemode = True
# print "% DELETE MODE ON"

if "%BEGIN ASM CHUNK" in line:
asmmode = True

if "%END ASM CHUNK" in line:
asmmode = False
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if "%BEGIN NOSYNTAX" in line:
nosyntaxmode = True

if "%END NOSYNTAX" in line:
nosyntaxmode = False

if "%BREAK BEFORE DEFINES" in line:
breakmode = True

if "nwendcode" in line:
codemode = False

if breakmode and "nwindexdefn" in line:
line = sub (r"\\nwindexdefn", r"\\pagebreak\\nwindexdefn", line)
breakmode = False

if not nosyntaxmode:

if codemode == True:
if asmmode == False:

# highlight C comments
line = sub (r"(//.*)$", r"{\\green\\emph{\1}}", line)
line = sub (r"/\*", r"{\\green\\emph{/*", line)
line = sub (r"\*/", r"*/}}", line)

else:
# highlight ASM comments
line = sub (r"(;.*)$", r"{\\green\\emph{\1}}", line)

line = sub (r"\(", r"{\\lightblue{}(}", line)
line = sub (r"\)", r"{\\lightblue{})}", line)
line = sub (r"\[", r"{\\red{}[}", line)
line = sub (r"\]", r"{\\red{}]}", line)
line = sub (r"!", r"{\\red{}!}", line)
line = sub (r"\\\{", r"{\\orange{}\\{}", line)
line = sub (r"\\\}", r"{\\orange{}\\}}", line)
for keyword in (r"#define", r"#include"):

line = sub (keyword, r"\\emph{"+keyword+r"}", line)

if "nwenddeflinemarkup" in line:
codemode = True

if deletemode and "nwidentuses" in line:
line = sub (r"nwidentuses.*nwindexuse", r"nwindexuse", line)
deletemode = False

print line
Uses print 600.
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For those readers who might want to modify the build process, we give some more
details in the following sections.

18.4 Directory Hierarchy and Makefiles
In the ulix/ directory you find several files and directories aer the initial build process:

• ulix.pdf is a PDF version of this book. It will only be generated if you have XƎLATEX
installed (which is not a requirement for simply testing U).

• bin-build/ contains the kernel source files ulix.c and start.asm which are compiled
and linked into the kernel binary with gcc, nasm and ld.

• lib-build/ holds the user mode library source files ulixlib.c and ulixlib.h as well as
a sub-directory for the user mode applications.

• lib-build/tools/ is the place where the application source files reside. All of those
are C programs.

• lib-build/tools/diskfiles/ collects files which shall be placed in the U root disk
image file (that is located in bin-build/minixdata.img).
e image bin-build/ulix-fd0.img only contains the boot loader GRUB and the U
kernel (and no other data).

• tex-build/ is used for generating the PDF documentation. It also contains some extra
LATEX files which are not part of a standard LATEX distribution, such as the noweb
package (noweb.sty).

• e U source root directory (where you placed ulix-book.nw) and all *-build direc-
tories contain makefiles which can be executed by simply changing to the directory
and calling make. ey do also provide some options for partial builds or cleanup
operations (see next section).

18.5 Making and Booting
In this section we provide some further details about the build process and the ways to
execute U.

18.5.1 User Mode Applications
In order to compile a user mode program, place its source code file in the lib-build/tools
folder. We assume that the source file is called myprogram.c. If you simply want to check
whether it compiles, type make myprogram (while in the lib-build/tools directory), that will
generate a myprogram binary. For installing it in the disk image, change the directory to
lib-build and type make. You can then test the program by entering the U development
root directory and typing make run.

Note that each user mode program must start with the line
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#include "../ulixlib.h"

which includes the U library headers.
If you also made changes to the library (by modifying the ulix-book.nw file) you need

to call make twice in lib-build.

18.5.2 The Disk Images
U uses four disk image files:

• ulix-fd.img: is file is FAT-formaed and contains the boot loader GRUB and the
U kernel file ulix.bin. It is updated whenever you rebuild the kernel.

• ulix-fd.img: is is a Minix-formaed floppy image that is mounted on the /mnt
directory when U boots. It does not contain any relevant files, so you can reformat
it with mkfs.minix -2 ulix-fd1.img.

• ulix-hda.img: is disk image is used as the first hard disk, even though it has the
layout of a 1.44 MB floppy disk. It is the root disk, i. e., it is mounted to /. You can
reformat it, but then you need to reinstall the init program and the other applications
(via make in the lib-build directory).

• ulix-hdb.img: e 100 MByte hard disk image is mounted on the /tmp directory and
holds the 64 MByte swap file /tmp/swap that U uses for paging out page frames. It
is required, but you can also add other files to it.

18.5.3 Alternative Boot Options
If you look at the Makefile in bin-build, you will notice that there is another make target
besides run which also starts the PC emulator: By typing make nolog you can start qemu
without the option that gathers the serial line output, displays it in the terminal and also
writes it to the log file ulix.output.

For experiments, you can add further make targets which use modified options.

18.5.4 Informative Files
When you compile the kernel, the files ulix.sym and ulix.dump are created. e first one
contains a listing of symbols with their addresses, and the second one contains the gener-
ated assembler code, also with addresses. When you modify U and the system hangs
because of invalid memory access or some other fault, the fault handler will display the
faulting address. You can then use these files to check where the error occurred.

18.5.5 Manually Inspecting the C Files
If youwant to have a look at the C files which are extracted from ulix-book.nw because you
prefer to see functions in a complete version (instead of the chunk-based presentation in
this book), you will notice that the files are garbled with hundreds of source line modifiers
of the form
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#line 19651 "../ulix-book.nw"

ey allow the C compiler to show the line number in ulix-book.nw (instead of the line
number in the current C file) when printing error messages. In order to get rid, untangle
the C file without the -L option, i. e., run

notangle -Rulix.c ../ulix-book.nw > ulix.c

instead of

notangle -L -Rulix.c ../ulix-book.nw > ulix.c

18.5.6 Other Emulators
Early versions of U were also compatible with the Bochs PC emulator which has a
comfortable graphical debugger (if you install the right version of Bochs). However, the
current version does not boot on the Bochs machine.

You could also try to use Uwith virtualization soware (such as VirtualBox or VMware
Workstation), but we have not tested that.

18.6 Online Resources: the ulixos.org Website
We already mentioned the website as the download resource for all the files we have dis-
cussed above. You may find updated information in a readme.txt file in the http://ulixos.
org/files/./ directory. Also check the start page, http://ulixos.org/, for information
about new U releases.

18.7 Tools
e last section is not strictly related to the build process. Here we merely present the
bindump tool that was mentioned in the Minix implementation chapter (Chapter 12.5).

18.7.1 bindump
Similar to hexdump, here’s an implementation of bindump. e tool has an option -r which
reverses the output order of 8-bit-strings (bytes; e. g. 10100000 instead of 00000101). bindump
accepts no filename, you must use it as a filter (e. g. bindump -r < image.img).

e tool was helpful during the early implementation phase of the Minix filesystem
since it allowed to print the inode and zone bitmaps in a readable form. It is not au-
tomatically extracted from the book sources, but you can copy and paste its code from
ulix-book.nw if you want to use it, too.

http://ulixos.org/files/0.12/
http://ulixos.org/files/0.12/
http://ulixos.org/
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[631]⟨bindump source code 631⟩≡
// bindump.c

// use as filter:
// bindump < image.img (for regular output, lower bits on the right)
// bindump -r < image.img (for reversed output, lower bits on the left)
// cat image.img | bindump

#include <stdio.h>

int rev; // reverse output?

void binwrite (byte c) {
unsigned int v = (unsigned int)c;
int i;
for (i = 7; i > -1; i--) {

if (rev == 0) printf ("%d", (v>>i)%2); // regular output
else printf ("%d", (v>>(7-i))%2); // reversed output

};
printf (" ");

}

void bindump (byte *bytes, int offset, int num) {
int i; byte c;
printf ("%08x ", offset);
for (i = 0; i < num; i++) binwrite (bytes[i]);
printf (" ");
for (i = 0; i < num; i++) {

c = bytes[i];
if ((c > 31) && (c < 128)) printf ("%c",c);
else printf (".");

};
printf ("\n");

};

int main (int argc, char *argv[]) {
byte buf[8]; int count; int pos = 0;
rev = 0; // reverse?
// Test if option -r is set:
if ((argc > 1) && (strequal (argv[1], "-r"))) rev = 1; // reverse!
do {

count = read (0, &buf, 8);
if (count > 0) bindump ((byte*)&buf, pos, count);
pos += 8;

} while (count > 0);
return 0;

}
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Where to Go Now?

You’ve done it: you finished the book (unless you skipped to this chapter early), and that
means you’ve seen the whole source code of the U operating system. Now you know
how a Unix-like system works internally, and that tells you a lot about how most other
systems function. Of course, U differs a lot from Linux or Windows, but many of the
differences are about hardware support (systems intended for practical purposes need lots
of drivers for all sorts of devices), performance, stability, failure handling and of course
the list of provided features.

However, there is one important topic that you have not seen in this book at all: Operat-
ing systems for multi-core (or multi-processor) architectures are more complex since they
have to handle a lot more parallelism; aer all, on such systems several cores or CPUs
execute instructions at the same time, and it may happen that two or more processes si-
multaneously make a system call or run a faulting instruction. Similarly the scheduler
may be required to pick a new process on several cores at the same time. is has many
consequences for the operating system code which needs to be protected beer against
the typical problems that parallelism causes.

So if you want to understand why Linux or Windows is able to use your quad-core
machine so efficiently, you need to go on reading.

Herlihy and Shavit’s book “e Art of Multiprocessor Programming” [HS12] discusses
synchronization problems on multiprocessor platforms in detail, and Schimmel’s “UNIX
Systems for Modern Architectures” [Sch94] also deals with this topic, but focuses on Unix.

Looking at the Linux sources (or those of one of the free BSD versions) could be a
next step, though that would require lots of time. If you’re more interested in Win-
dows, Microso used to provide a stripped-down but very well-documented version of
theWindows 2003 Server kernel, called the “Windows Research Kernel” (WRK)whichwas
available to instructors via Microso’s Academic Alliance website and was later moved
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to http://www.microsoft.com/resources/sharedsource/Licensing/researchkernel.mspx, how-
ever that section of the website has been moved once more and we are currently unaware
of any WRK download resources—perhaps someone in your faculty still has a copy of it.

If youwant to test your understanding of the U code (and have alreadyworked on the
exercises) you might want to continue with a bigger project. Here are some suggestions
for improvements of the U kernel:

• Enable partition support: Currently U treats hard disks like floppies, i. e., unpar-
titioned. Understanding either the classical MBR or the new GUID partition tables
(GPT) and adding code to U so that partitions can be accessed via /dev/hda, /dev/
hda etc. is not too complicated but will still require some time to get it right.

• Add network support: U would get closer to being a proper Unix system if it could
access the network. e task would be twofold: a) Write a hardware driver for a
standard network adapter (e. g. the one that is provided as a virtual network card by
qemu), and b) Write or port a TCP/IP stack to U.

• Port some interesting user mode applications to U. For example, there is a simple
implementation of a vi clone which can do very limited editing of text files that are
no longer than 23 lines (because it does not support scrolling). You could take this
code and build it into a proper editor.

If you’re able to read the German language, you can also have a look at the publication
list on the U website: ere are links to several Bachelor’s theses which describe the
implementations of various U components.

As a closing remark, we’d like to rephrase what we wrote in the foreword: We hope that
you’ve found this book interesting and helpful for gaining some understanding of operat-
ing system concepts. We believe that our approach of presenting the whole source code
of a simplified Unix system in the literate programming style is unique and worthwhile. If
you agree (or disagree), then please drop us a note and tell us how the U book worked
for you.

http://www.microsoft.com/resources/sharedsource/Licensing/researchkernel.mspx


A
Introduction to C

In this chapter we give you a very short introduction to programming with C—and we
expect that you have some previous knowledge of one of the object-oriented successors
of C, such as C++ or C#.

A.1 No Classes, no Objects
e most important difference between C and the other languages is that C is no object-
oriented language. It knows neither classes nor objects. is means that you have to
change your way of conceptually thinking of code: Where you have been used to define a
class class, methodand implement methods that can manipulate objects of that class, this is not possible
with C. Instead you need towrite functions function, and these functions are independent of specific
“data objects”. If you want to store data, you declare variables, and you must provide a
function with that variable (while calling it).

Imagine a string class that has a reverse function. If you have an object s, you might
put the statement s.reverse(); in your code and expect that this changes the order of the
characters in the string s. In C, you could implement a function reverse() which has the
following prototype:

[635]⟨example function 635⟩≡
void reverse (char *arg);

You would then call the function by using the statement reverse (s);. (We will explain
why the argument is wrien char *arg in the next section.)

C is a typed language, and it does not allow you to overload overloadingits functions. So, by con-
tinuing the above example, if you also had a list class in an object-oriented language, you
might find that that list class also provides a reverse() method, using the same name.
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en, if you had a string s and a list l, you could use the syntactically identical method
invocations s.reverse(); and l.reverse(); to have both objects reversed—even though the
technical details of the methods’ implementations might differ a lot.

It is not possible to have two C functions of the same name, so in this situation the best
solutionwould be towrite two functionswith appropriate names, such as reverse_string()
and reverse_list().

A.2 Data Types, Arrays and Pointers
Since classes are not available, C needs to provide an alternative for declaring user-defined
complex data types (which have several simpler elements, similar to member fields of an
object). e C keyword struct is used for defining a structurestructure . For example, the following
definition declares a complex number that consists of two real numbers:

[636a] ⟨example structure 1 636a⟩≡
struct complex {

float re;
float im;

};

Aer you have defined this structure, you can declare variables of that new type, for ex-
ample by writing struct complex c;. e struct keyword is required, though it is possible
to get rid of it: instead of the above code, you can also write

[636b] ⟨example structure 2 636b⟩≡
typedef struct {

float re;
float im;

} complex;

is creates the same kind of structure, but via the typedeftypedef keyword you assign the name
complex to that structure. en, you can declare variables by simply stating complex c;.

In both cases, you can access the fields of the variable c with a syntax that is similar to
the one that C++ and Java use for member access: the dot notationdot notation . Typing c.re will give
you the real component of the number, and c.im is the imaginary component.

Oen several instances of a variable are needed, and for this purpose C provides arraysarray .
If you want cnumbers[] to be an array that can hold 20 complex numbers, you would write

[636c] ⟨example array 1 636c⟩≡
struct complex cnumbers[20];

or
[636d] ⟨example array 2 636d⟩≡

complex cnumbers[20];

(depending on whether you chose the first or second method of defining the new type).
You can then access the 20 individual entries of the array by puing the index in square
brackets. Note that C starts counting at 0, thus valid index numbers for the example array
range from 0 to 19: cnumbers[0] is the first number, and cnumbers[19] is the last. Geing
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the real and imaginary parts is done via the dot notation again, so cnumbers[0].re is the
real part of the first complex number.

If you want to add all the complex numbers in the cnumbers[] array and store the sum
in the sum variable, you could write the following loop:

[637a]⟨summing up the complex numbers 637a⟩≡
complex sum = { 0, 0 }; // set sum.re = sum.im = 0
int i;
for (i = 0; i < 20; i++) {

sum.re += cnumbers[i].re;
sum.im += cnumbers[i].im;

}

(x += y; is a short form for x = x + y;, and the first line shows how you can initialize a
structure without using the field names.)

It is impossible to directly add two complex numbers, because you cannot create your
own version of the + or += operator—the following loop cannot be expressed in C:

[637b]⟨impossible way to build the sum 637b⟩≡
complex sum = { 0, 0 }; // set sum.re = sum.im = 0
int i;
for (i = 0; i < 20; i++) {

sum += cnumbers[i]; // ! cannot do that
}

You could, however, write a function addto() that takes two complex numbers and adds
the second one to the first one:

[637c]⟨function for adding 637c⟩≡
void addto (complex *c1, complex *c2) {

*c1.re += *c2.re;
*c1.im += *c2.im;

}

and then rewrite the add loop as
[637d]⟨summing up the complex numbers with addto 637d⟩≡

complex sum = { 0, 0 }; // set sum.re = sum.im = 0
int i;
for (i = 0; i < 20; i++) {

addto (&sum, &cnumbers[i]);
}

What’s happening here or, more specifically, what are the * and & operators doing?
Let’s start with the & operator which is called the address-of operator address-of

operator
: It “gets” the mem-

ory address of the variable, i. e., a numerical value that says where in memory the variable
is stored. In the above loop this happens with both sum and cnumbers[i]. e two addresses
are then provided to the addto function.

When you look at the functions’s prototype, you see that addto() does not expect two
complex values but something else, namely, two addresses of complex variables. ese
are just 32-bit integers (if you’re working on a 32-bit machine), but the function knows to
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expect complex numbers (and not something else) at those addresses. Inside the function
you cannot directly access the numbers by writing c1 or c2, because those two arguments
are not complex numbers, but addresses. In order to access the contents, you have to
dereference the address, and that is what the * operator is for. It is called thedereference

operator
dereference

operator.
c1 and c2 are what C calls pointerspointer : internally they store the addresses of two complex

variables, and practically that turns them into pointers to those variables. Prefixing them
with the * operator turns them into the (wanted) complex variables. us, *c1 and *c2 are
of type complex. You already know how to access the real and imaginary parts of a complex
variable, so it should be obvious why *c1.re and *c2.re deliver the intended values.

Why can we use addto() to actually change the value of the first operand? at’s be-
cause the memory addresses of the real variables are provided. Using pointers as function
arguments is a form of call-by-referencecall-by-reference (as opposed to call-by-value where a function gets
to work with a copy of the values).

Since expressions of the form *var.element are oen needed, there is a different way to
write them which is beer readable and also makes it clearer that we deal with a pointer:
that alternative is var->element-> notation . e -> combination looks like an arrow (it points). e
preier way to write the addto function is this:

[638a] ⟨function for adding, with pointer syntax 638a⟩≡
void addto (complex *c1, complex *c2) {

c1->re += c2->re;
c1->im += c2->im;

}

A.3 Strings? There is no String
One of the properties of C is that there is no built-in string typeno string type . But obviously, strings are
much needed. What C does have, is an elementary character typechar (char) that simply is a
signed byte, storing values between -128 and 127; the ASCII table holds only 128 values,
so the positive numbers of this range are sufficient to store any ASCII character. You can
also use theunsigned char unsigned char type which ranges from 0 to 255.

e simplest way to introduce a string in your program is using a character array:
[638b] ⟨string definition as char array 638b⟩≡

char my_string[128];

(or with unsigned char instead of char).
is defines a character array of length 128. All functions in the standard C libraries use

a null character\0 (ASCII value 0) to mark the end of such a string, so the above definition
actually provides a string that can hold no more than 127 characters: e last position
cannot be used other than to store a 0 value (to indicate that this string consists of 127
characters). is is a popular source of programming errors, where a developer thinks “my
password string can consist of 16 characters” and then proceeds to write char password[16]
which lets him store only 15 characters.
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An alternative way to think of a string is as just a consecutive chunk of memory (where
a character is stored at each of its addresses). en it is enough to simply store the starting
address of the string. A pointer can do just that, and in case of strings, a pointer to char
makes the most sense. So typing

[639a]⟨string definition as char* pointer 639a⟩≡
char *my_string;

does also declare a string. However, there’s an important difference: e first example
(with the array) reserves a defined amount of memory where the string can be stored—the
new version does not do so. It simply says: my_string points to a chunk of memory which
is interpreted as a string. at address may or may not be initialized to 0. In any case, just
declaring the string does nothing that helps us store a string.

How can we use such a pointer? First of all, if you already have a string (say, one
declared as an array), you can assign its address to the pointer. Consider the following
code:

[639b]⟨char pointer assignment 639b⟩≡ 639c ▷
char array_string[12] = "Hello World"; // declares and assigns
char *pointer_string;
pointer_string = array_string;

e first line shows how strings can be filled with content at the time of declaration.
e string literal string literal"Hello World" is just a shorthand for { 'H', 'e', 'l', 'l', 'o', '
', 'W', 'o', 'r', 'l', 'd', '\0' } which is the standard way to initialize arrays during
declaration. When you type a string in "..." signs, the string-terminating '\0' character is
automatically added. e second line declares a pointer to char. e interesting instruction
is in the last line: it assigns array_string to pointer_string. When you use just the name
of an array, that is automatically interpreted as the (starting) address of the array. us,
array_string is a pointer to char, and this address is assigned to pointer_string by the
instruction. Aerwards, both pointer_string and array_string reference the samememory
address. You can check that by changing a single character in one string and then printing
the other one:

[639c]⟨char pointer assignment 639b⟩+≡ ◁ 639b
array_string[5] = '_'; // replace blank with '_'
printf ("array_string: %s\n", array_string); // print the first string
printf ("pointer_string: %s\n", pointer_string); // print the second string

e output will be identical (Hello_World with an underscore). e assignment does not
work vice versa, i. e., you cannot have an instruction array_string = pointer_string in
the same situation: the compiler knows that the array_string variable points to a fixed
memory address, whereas pointer_string is truly a variable. What is changeable in an
array variable, are the elements, not the position and size of the array.

If you have no array-type strings, then how to get a free memory location? You can use
the malloc() function (memory allocation) to request space. If you want to store a string
with 100 characters (plus the terminating zero), you could type

[639d]⟨char pointer memory allocation 639d⟩≡
pointer_string = (char*) malloc (101);
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e malloc(101); call will reserve memory and return its start address which is then stored
in the variable. e new memory may or may not be initialized. e extra (char*) part
before malloc performs a type conversion: the return value of malloc is (void*), a pointer
to data of unknown type. Placing the desired type (char*) in round brackets in front of it
changes the type to char*. is kind of conversion is called a type casttype cast or simply a cast. You
can always convert pointers to something into pointers to something else, though some
conversions make no sense. A conversion in the C program does not translate into the
execution of any code (in the generated assembler language): a pointer is an address, and
all addresses have the same type when looked at at the machine level; on a 32-bit machine
every address is a 32-bit integer. But the C compiler keeps track of how you define your
pointers and issues warnings when you assign a pointer to a pointer of a different type
without adding the explicit cast.

A.4 String Operations
Once you have the memory that is necessary to store a string (either via a direct array
declaration of via malloc), you want to work with the string. As C has no string type and
no methods, you cannot write s1 = s1+s2; or s1.append(s2); in order to append a string
s2 to another string s1. Instead you need to use a function that does just that. e same
holds for copying: You cannot assign a string to another one (and expect that to result in
a copy), so even s1 = s2; is illegal for character arrays. It is legal when s1 is a pointer, but
does not duplicate the string: It copies the address. e standard functions for copying a
string and appending a string (to another one) are

[640a] ⟨standard string functions 640a⟩≡ 641a ▷
char *strcpy (char *dest, char *src);
char *strcat (char *dest, char *src);

Instead of s1 = s2; you would write strcpy (s1, s2); and instead of s1 = s1 + s2; you
need strcat (s1, s2);. However, these functions may not always have the intended effect,
and that is the source of many security holes in applications.

You can find our implementation of strcpyb in the book: U provides its own ver-
sion since it cannot use the functions which are available on the development (Linux)
system.

e functions strcpy and strcat should be used very carefully because they can write
beyond the end of the memory area that was reserved for the string. Typing

[640b] ⟨string buffer overflow 640b⟩≡
char s1[10];
char s2[25] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
strcpy (s1, s2); // copy long string s2 into s1

is perfectly legal C code, but strcpy() will not stop when it reaches the end of s1. Instead
it will just fill the following bytes as well, and that may result in a number of things, for
example s2 being destroyed (if it is located directly behind s1) or an application crashing
if the addresses behind s1 are not available.
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at is why it is best to replace all uses of strcpy and strcat with their safe variants
which are called strncpy and strncat: they have a third argument via which you can limit
the number of bytes that are actually wrien:

[641a]⟨standard string functions 640a⟩+≡ ◁ 640a 641d ▷
char *strncpy (char *dest, char *src, size_t n);
char *strncat (char *dest, char *src, size_t n);

Using them (and using the right value for n) the following code causes no problems (though
it still cannot achieve what can’t be done, i. e., copying a large string into a small one:

[641b]⟨no string buffer overflow 641b⟩≡
char s1[10];
char s2[25] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
strncpy (s1, s2, 10); // copy up to 10 characters of s2 into s1

is code will not write beyond the end of s1, but it will also leave s1 in a bad state: the
string will not be null-terminated, but instead contain the first ten characters of s1without
termination. e only way to avoid this (if the size limit cannot be helped) is this:

[641c]⟨truly creating a string 641c⟩≡
char s1[10];
char s2[25] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
strncpy (s1, s2, 9); // copy 9 characters...
s1[9] = '\0'; // and manually terminate the string

Of course there are other ways that let you avoid such situations. For example, when
you want to copy a string you can first use the function

[641d]⟨standard string functions 640a⟩+≡ ◁ 641a 641e ▷
size_t strlen (const char *s);

to discover the length of a string, then reserve the appropriate amount of memory for a
copy (using malloc()) and then create the copy.

For comparing two strings you need yet another function since a simple comparison
like (s1==s2) will only compare the strings’ starting addresses.

[641e]⟨standard string functions 640a⟩+≡ ◁ 641d
int strcmp (const char *s1, const char *s2);
int strncmp (const char *s1, const char *s2, size_t n);

compare s1 and s2 character-by-character and return 0 if the strings are equal. If s1 < s2
(lexicographically), they return a negative number, and if s1 > s2, they return a positive
number. So test for (strcmp(s1,s2)==0) to check whether two strings are identical. For
both functions the comparison endswhen the null-termination occurs in one of the strings,
the safe “n” version also stops aer n characters have been read.
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A.5 Pointer Arithmetic
Consider the following, naive implementation of a strcpy() function:

[642a] ⟨simple strcpy implementation 642a⟩≡
char *strcpy (char *dest, char *src) {

int i;
for (i = 0; i < strlen(src); i++) {

dest[i] = src[i]; // copy i'th character
dest[i] = '\0'; // terminate dest
return dest;

}

It works because dest and src can be treated like arrays (though the parameters are de-
clared as pointers). However it is neither necessary to use a counter variable nor the
strlen() function. Instead the following version is preferred in the realm of C program-
mers:

[642b] ⟨typical strcpy implementation 642b⟩≡
char *strcpy (char *dest, char *src) {

char *tmp = dest;
while ( (*dest++ = *src++) != '\0' )

;
return tmp;

}

For most people who are new to C, this looks like garbage though it’s perfectly correct C
(and does what you want). Let’s explain the code in detail.

• First of all *dest++ = *src++ is C shorthand for the three commands *dest = *src;
dest++; src++;, and the value of the whole expression is the value of *dest or *src
before the two increment commands. (x++ is another shorthand, meaning x = x+1.)

• Adding 1 to a char pointer increases the memory address by 1 (as would be expected).
At the beginning dest points to the first character of the destination string, dest[0].
Aer the increment it points to what was previously dest[1], the second character.

• e while loop continues the byte-wise copying until a null character is found (and
copied). e destination string is now complete (null-terminated), but dest no longer
points to the beginning of the target string since mutiple ++ operations have increased
its value. at is why we kept the initial value in tmp.

• at saved value is then returned. (e strcpy() functionmust always return a pointer
to the new string.)

Now why is this section titled Pointer Arithmetic? If we were to work with integer arrays
(instead of character arrays), we might also be interested in a copy function, let’s call it
intarrcpy() (integer array copy). Its implementation looks almost identical to the second
strcpy() version, with all occurrences of “char” replaced with “int”:
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[643a]⟨copying a 0-terminated integer array 643a⟩≡
int *intarrcpy (int *dest, int *src) {

int *tmp = dest;
while ( (*dest++ = *src++) != 0 )

;
return tmp;

}

But let’s look at the ++ operator again: If it also increased the values of dest and src by 1,
the function would have to fail since a 32-bit integer needs four bytes for storage, not just
one. So what we want is to add 4 to the addresses in every step of the loop. e surprising
news is: is is exactly what ++ does, and that is why it is called pointer arithmetic. e
++ operator (as well as -- and the regular addition and subtraction) consider the size of the
base type that the pointer points to. For an int pointer ptr, the ptr++ commands actually
increases ptr’s address by sizeof(int) (which is 4).

Pointer arithmetic is not restricted to base types. If you define a struct something struc-
ture that contains a lot of data, totaling in 2604 bytes of data for each such variable, and
declare a pointer of that type (via struct something *ptr;), then each ptr++; command
will modify the address by adding 2604. is makes it easy to walk through array-like
structures even when they were never declared as arrays.

ere is one problem with pointer arithmetic that sometimes leads to wrong code. We
already mentioned that you can cast pointer types to different pointer types. Look at the
following example to see what can go wrong:

[643b]⟨cast and pointer arithmetic gone bad 643b⟩≡
char s[10] = "ABCDEFGHI";
char *charptr;
int *intptr;

charptr = s; // points to the 'A' in s
intptr = (int*) charptr; // same address
intptr++; // pointer arithmetic!
charptr = (char*) intptr; // cast/copy it back

If you expect charptr to point to the 'B' in s, then you’ve made the mistake that we want
to explain. It actually points to the 'E' because the pointer arithmetic was performed on
an int pointer, so addresses are always modified in multiples of 4.

A.6 C Pre-Processor
e C compiler runs a pre-processor before actually compiling the code. at pre-pro-
cessor looks for commands that begin with # and acts on them. ese can be used for
including other source files, for conditional compilation and for macro definitions. Since
we use some of these features, we give a short explanation of each of these three possibili-
ties but only discuss the details which are relevant for reading and/or modifying the U
code.
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• Including files: Using the command
#include "path/to/file.h"

you can include other files in the source file. Typically those are header files (ending
in .h), but you can include any file you want. If the path name starts with a slash, it
is treated as an absolute path, otherwise as a relative one. So you can include the file
xyz.h from the upper directory by writing
#include "../xyz.h"

—regardless of where the files are placed absolutely.
• Macro definition: e #define command declares a macro. In its simplest version that

leads to a simple search-and-replace. For example,
#define BLOCK_SIZE 1024

lets the compiler search the source file for the string BLOCK_SIZE and replace every
occurrence with 1024.
Amore advanced version of macros uses parametersmacros with

parameters
, somacros provide an alternative

method to writing (simple) functions. A typical example is finding the smaller of two
values:
#define MIN(x,y) ((x<y) ? x : y)

e expression (x<y) ? x : y evaluates to x if x<y is true and to y otherwise. Using
MIN(x,y) in the code makes it more readable. However, this must be used with care,
as the following example shows which aempts to increase two variables while pick-
ing their minimum: MIN(v1++,v2++) does not do what is expected because the macro
is expanded to ((v1++ < v2++) ? v1++ : v2++). Here, v1 and v2 are compared. Let’s
assume that v1 is the smaller one. en both variables are incremented (as expected).
However, in the next step v1 is increased again: e condition is true, so v1++ is evalu-
ated. e total result is that the value of MIN(v1++,v2++) is the old value of v1 +, and
v1 gets incremented twice (while v2 is incremented only once).
When you work with macros, use them only with constant arguments or arguments
which have no side effectsside effect . (In the example, MIN(f(x1),f(x2)) with some function f()
would also call f(x1) twice, not once, if (f(x1)<f(x2)) evaluates as true.)

• Conditional Compilation:You can create simple if-then-else constructions which can
remove parts of the code before compilation. is is oen used for inserting debug
code during the development which is then removed for the final release of the so-
ware. As an example consider the following code block:
#define DEBUG
int somefunc (int x) {

int res;
#ifdef DEBUG

printf ("DEBUG: somefunc() called with argument %d\n", x);
res = x / 3;
printf ("DEBUG: somefunc() going to return %d\n", res);
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#else
res = x / 3;

#endif
return res;

}

When you compile this code it will contain the debug output because the DEBUGmacro
is defined. (Note that it has no specific value, it is just defined, so #ifdef will evaluate
it as true.) Simply remove that #define DEBUG line and recompile to get the version
which contains only the “else” case: the lines between #else and #endif.
Of course, the same effect could be achieved without a macro (by using a DEBUG vari-
able and a regular if expression), but then all of the code would be compiled. With
the macro, the pre-processor removes the unwanted lines from the source code before
the compiler runs.

e pre-processor does not touch occurrences of a macro name inside a string literal:
the arguments of printf() in the example contain DEBUG in the string argument, and they
remain intact.

You can check the effect of pre-processor commands by calling the gcc compiler with
the -E option: gcc -E file.c -o file.i creates a new file file.i where all pre-processor
commands have been executed. at file is now free of pre-processor commands. An
interesting alternative to the -E option is the -save-temps option which performs all com-
pilation steps, but keeps the intermediate files which are normally deleted. When you run
the command

gcc -save-temps testprog.c -o testprog

you can find four new files: testprog.i is the pre-processor-modified version of the source
file, testprog.s is the compiled assembler version (with readable assembler source code),
testprog.o is the assembled object file, and finally testprog is the binary executable file
which contains library code or links to dynamically loaded libraries. Figure A.1 shows an
example of the created files.

A.7 Further Reading
Since pointers seem to be a crucial topic for most students who are new to C programming,
we suggest reading awhole book about pointers: “Pointers on C” [Ree98] by Kenneth Reek
is an excellent read and comes with many exercises, both practical and theoretical. e
author uses diagrams to show what points where and what content is stored in which
memory locations.

For those who truly want to delve into the language, the description of the C compiler
in David Hanson and Christopher Fraser’s LCC book [HF95] offers deep insight. If you
understand the workings of a C compiler, you’ve also mastered the language. Plus: the
book is another literate programming example which in itself makes it worth reading—
provided that you like this style.
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$ cat testprog.c $ cat testprog.i $ cat testprog.s
#define TEST 1024 # 1 "test.c" .cstring

# 1 "<built-in>" LC0:
int main () { # 1 "<command-line>" .ascii "%d\0"

printf ("%d", # 1 "test.c" .text
TEST); .globl _main

} _main:
int main () { LFB2:

printf ("%d", pushq %rbp
1024); LCFI0:

} movq %rsp, %rbp
LCFI1:

movl $1024, %esi
leaq LC0(%rip), %rdi
movl $0, %eax
call _printf
leave
ret

...

Figure A.1: When called with the -save-temps option, gcc keeps the intermediate files.

Another interesting book about C is Peter van der Linden’s “Expert C Programming:
Deep C Secrets” [vdL94]. e author looks at some obscure details and explains unex-
pected phenomena with direct quotations from the ANSI C standard definition [Ame89].
ere are many comparisons of language features in C and C++ which are especially help-
ful if you’re used to writing C++ code. e publisher’s website has a 60-page sample.

Many good C books are rather old as the language was created in the eighties. Some of
them are still available in print. If you want to have some fun with C programs, look at
the International Obfuscated C Code Contest website, http://www.ioccc.org/.

http://www.ioccc.org/


B
Introduction to Intel x86

Assembler

Most of the U code is wrien in C, but some small parts had to be done in Assembler
since C cannot directly access the CPU’s registers or execute specific CPU instructions
such as the ones that enable or disable interrupts. In many cases it is sufficient to use
gcc’s inline assembler feature that lets you drop a few lines of assembler in the middle of
a C function (see Section B.4), but we also needed a separate assembler source file for the
early steps in the system initialization. In this chapter we give a very short introduction
to some of the features available on Intel i386 and higher CPUs and the syntax of the
commands.

When you use assembly language, you are somewhat limited in the way you can struc-
ture the code. For example, where C has several types of loops (for, while, do) and nestable
if-then-else expressions, assembler does not. Instead, you can make comparisons and
jump elsewhere in the code (depending on the result of that comparison). at is closer to
early Basic dialects where branching worked via “IF condition GOTO line number” state-
ments. However, there’s no need to learn the assembler ways of expressing for and while
loops, because we don’t want to write all our code in assembler.

B.1 CPU Registers
Just like a C program that accesses a variable (which is stored somewhere in RAM), as-
sembler code oen works with memory, too. For example, the CPU provides instructions
that inspect the contents of two memory cells, add or substract them and store the result
in the first of the two cells. at is basically what the C compiler creates when it compiles
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a C command like var1 += var2; or var1 -= var2;. But memory access is expensive: it
takes some time to translate a virtual address into a physical address and fetch the mem-
ory contents via the memory bus. It is too slow to perform all operations that way. Every
CPU has a set of faster memory cells: the CPU-internal registersregisters . ey are even faster than
the first level cache which is embedded in the same chip as the CPU’s core: they provide
instant access.

Intel’s CPUs (like many other processors) have a set of general purpose registers which
can be used to hold arbitrary data and perform calculations on them, and then there’s
also a set of special purpose registers which is what we’re really interested in, because we
need to read or write some of those registers to influence and control paging, interrupt
handling and other critical tasks.

ere are eight general registersgeneral registers [Int86, p. 29]: EAX , EBX , ECX , EDX , EBP, ESP, ESI, and EDI.
You can use them to hold values and perform calculations and comparisons. Each of these
registers is 32 bits wide, and you can also access the lower 16 bits of them by using a
different name (AX , BX , CX , DX , BP, SP, SI, and DI; all without the leading “E”). e first four
registers can be separated even further into higher and lower halves which are only eight
bits wide (and hold a byte): AH, BH, CH and DH are the higher halves, AL, BL, CL and DL are the
lower halves (see Figure B.1) which are sometimes needed for I/O when data is read from
or wrien to a portI/O port that grants the CPU access to the internal 8-bit register of some chip,
e. g. a disk controller.

AH AL

AX

EAX

078151631

Figure B.1: e lower half of EAX is AX which in turn is split into AH (high) and AL (low).

For example, in order to add the contents of EBX to EAX you could use the assembler
instruction add eax, ebx. e mov instruction copies (not: moves) a value from one register
to another, so mov eax, ebx performs an eax := ebx action. You can also access memory
locations with these commands: mov eax, [ebx] will load a 32-bit value from the memory
addresses pointed to by EBX and copy it to EAX—the C equivalent would be eax := *ebx
(with ebx interpreted as an int* pointer).

e registers ESP (extended stack pointer) and EBP (extended base pointer) are used for
working with stacksstack . ESP points to the top of the stack and is changed whenever a sub-
routine is called or it exits and when a value is pushed onto or popped from the stack.
e base pointer helps with staying oriented on the stack: While a subroutine executes,
it may oen modify the stack (thus changing ESP). But the stack also holds the arguments
which were provided to the subroutine as well as its local variables, and by leing EBP
point to the address between arguments and local variables, it is possible to access them
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without a need to consider changes to ESP. For example, EBP+8, EBP+12, EBP+16 store the
first, second and third argument, and EBP–4, EBP–8 and EBP–12 store the first, second and
third local variable (assuming that all those values are 32-bit integers). Between those two
areas there is still some room: address EBP+4 holds the return address, and at the address
that EBP points directly to you find the “old value” of EBP that was used for the previous
subroutine call (in a seing where subroutines call other subroutines).

B.2 A Few Standard Commands
Wewill not give a detailed introduction to the instructions that the Intel x86 CPU provides,
but here is a short overview of some of the most important ones. For the Intel processor
platform, two “dialects” exist, the Intel and the AT&T one. e GNU C compiler supports
both but defaults to the AT&T variant. We have decided to use the Intel syntax, because
it is closer to C’s syntax: For example, you can load the EAX register with the value 0 via
the command mov eax, 0 (in Intel syntax). So the target of the mov command comes first
which resembles the C command eax = 0. In AT&T syntax, the operands are reversed,
with the target coming last and extra syntactical elements being needed (mov $0, %eax). In
the following examples we will show the Intel syntax on the le hand side, and the AT&T
syntax on the right.

B.2.1 Moving Data Around
e simplest way of filling a register is loading an immediate immediatevalue. e mov instruction
does that. In Intel syntax, the register name comes first, followed by the number expressed
as in the following examples. In the AT&T syntax the order of arguments is reversed, and
immediate values are prefixed with a dollar sign, whereas register names have a percent
sign as prefix. Also, AT&T syntax appends a size identifier to the mov instruction, so instead
of mov it is called movb (byte, 8 bits), movw (word, 16 bits) or movl (long, 32 bits).

If you want to copy the contents of a memory location, you can load the address in one
of the registers and tell mov to look at the memory cell(s) that it points to. e last two
examples in the following table show how this is done, once without an offset and once
with an offset.

Intel Syntax AT&T Syntax Description
mov eax, 0xABCD movl $0xABCD, %eax direct load, hexadecimal
mov ebx, 1 movl $1, %ebx direct load, decimal
mov eax, [ebx] movl (%ebx), %eax copy memory at EBX to EAX
mov eax, [ebx+0xF0] movl 0xF0(%ebx), %eax with offset 0xF0

In those last two lines, if EBX holds the value 0xABCD0000, then the first line will read the
32-bit integer stored at address 0xABCD0000, wheras the second one reads address 0xABCD00F0.
In both cases the found value is wrien to the EAX register.

e original Intel syntax for hexadecimal numbers is 0ABCDh with a h suffix (and a re-
quired 0 prefix if the number starts with a leer digit), but nasm supports both variants in
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Intel mode, so we have chosen to use the 0xABCD notation that is also C’s way of expressing
hexadecimal numbers.

B.2.2 Different Integer Sizes
In the register overview you have already seen that some registers can be accessed in
ways which only use the lowest eight or 16 bits. For using these smaller versions, use the
alternative names (e. g., ax for the 16-bit version and al for the 8-bit version). In the AT&T
version you need to use a suffix again for expressing that you want to move a byte, word
or long.

Intel Syntax AT&T Syntax Description
mov al, bl movb %bl, %al move a byte
mov ax, bx movw %bx, %ax move a word
mov eax, ebx movl %ebx, %eax move a long (32 bits)
mov al, byte ptr [ebx] movb (%ebx), %al move byte from memory
mov ax, word ptr [ebx] movw (%ebx), %ax move word from memory
mov eax, dword ptr [ebx] movl (%ebx), %eax move long from memory

Making the value size explicit makes even more sense when you access memory: Copy-
ing a byte is not the same as copying a long integer. In the Intel syntax explicit byte ptr,
word ptr and long ptr keywords are used to state that a byte, word or long integer shall
be read from memory, as shown in the last three lines. e equivalent AT&T commands
don’t need this since the mov suffix already makes the length explicit.

B.2.3 Arithmetic Operations
When talking about arithmetic operations, we only consider integer operations. e Intel
CPUs also provides floating point operations, but we do not need them for U.

For adding and subtracting you can use the add and sub instructions which take two
arguments and add the source to the target; multiplication and integer division are handled
by mul and div, but they don’t take two arguments but only one and use the EAX register
as accumulatoraccumulator (i. e., EAX is implicitly both one of the source operands and the target):

Intel Syntax AT&T Syntax Description
add eax, ebx addl %ebx, eax add EBX to EAX , eax += ebx
add eax, [ebx] addl (%ebx), eax add (long) memory contents at EBX to EAX
sub eax, ebx subl %ebx, eax subtract EBX from EAX , eax -= ebx
sub eax, [ebx] subl (%ebx), eax subtract (long) memory contents at EBX from EAX
mul ebx mull %ebx multiply EAX with EBX , result in EAX , eax *= ebx
div ebx divl %ebx divide EAX by EBX , result in EAX , eax /= ebx
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B.2.4 Jumps, Calls, Comparisons and Conditional Jumps
Sometimes you want to jump to a specific program address in order to continue execution
elsewhere. For those cases the jmp instruction can be used. When creating an assembler
source file (for use with nasm) you will normally assign a label to an instruction that you
want to jump to and then use it in the jmp instruction, like this:

infinite_loop: mov al, byte ptr [eax]
call printchar
add eax, 1
jmp infinite_loop

is example shows a further instruction for jumping to a new address: call also jumps
to the supplied address, but before that it pushes the address of the following instruction
(in the example: of add eax, 1) onto the stack. e assembler code at printchar can
then execute the ret instruction which will pop that address from the stack and continue
execution inside the above loop. To summarize the difference: When you jmp, there’s no
easy way to get back; when you call, you can return with ret.

Simply jumping (or calling) unconditionally does not allow for any case distinctions:
Code that only uses jmp and call will always execute the same commands in the same
sequence. For a distinction of cases we need comparison operations and based on the
result we want to decide whether we jump elsewhere or not.

e cmp instruction takes two arguments and compares them. ey are either identical
or one value is bigger than the other. e j* instructions in the following table jump if a
certain condition (such as: first value is smaller than the second one) is met.

Intel Syntax AT&T Syntax Description
cmp eax, ebx cmpl %ebx, eax compare EAX and EBX , then:
jl label jl label jump to label if EAX < EBX
jle label jle label jump to label if EAX ≤ EBX
je label je label jump to label if EAX = EBX
jge label jge label jump to label if EAX ≥ EBX
jg label jg label jump to label if EAX > EBX
jne label jne label jump to label if EAX ̸= EBX
sub eax, ebx subl %ebx, eax subtract EBX from EAX , then:
jz label jz label jump to label if result of last arith. operation = 
jnz label jnz label jump to label if result of last arith. operation ̸= 

e last three commands show that there are also conditional jumps that depend on
the last arithmetic operation (instead of the last comparision). jz jumps if the zero flagzero flag
is set which is the case if the last arithmetic operation resulted in a zero value. Similarly
you can jump if the overflow flag overflow flagis set which happens when the last operation caused an
overflow, e. g., aer adding 100 to 0xFFFFFFF0.
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B.2.5 Pushing and Popping With the Stack
We alreadymentioned the stackwhich is used by the call instruction for storing the return
address. Using push and pop you can also push data on the stack and pop it back. If you
want to call an assembler function with arguments, first push the values and then call the
function. e function can then either pop all values from the stack into registers (though
it has to remember the return address and restore the stack later) or it can access the stack
contents directly via [ebp+8], [ebp+12] etc. if it saves the original ESP in the base pointer
EBP. push and pop also accept memory locations, so you can push the value stored at the
memory address that EAX points to by executing push [EAX].

In AT&T syntax, push and pop need a suffix to indicate how large the data are which
must be pushed or popped, so you get pushw, pushl, popw and popl. (You cannot push or
pop a single byte, see [Hyd10, p. 137].) Some assemblers support a pushb or push byte
instruction, but that will actually turn a byte into a word (by filling it with zero bits) and
then push that.

B.3 Special Commands
ere are three kinds of special commands that we’ll introduce in this section: You can
define constants (which are similar to C-defined macro constants), you can use macros
(similar to C’s macros that look like functions), and you can store data bytes for creating
data structures.

All of these require using the nasm assembler. If you want to work with another as-
sembler, it is likely that the same features are available, but they might use a different
syntax.

B.3.1 Data Storage (db, dw, dd)
Assembler code contains instructions and data. Since you cannot define data types (like
in C), your only option is to know what a data structure should look like and then directly
encode data in the binary (and later refer to the address where the data are located).

ere are three commands which can store data:

• db is used to store individual bytes (or sequences of bytes). For example, dd 0x32, 0x38,
0x3b will store the three bytes 0x32, 0x38 and 0x3b (in this order). If you place a label
before that command you can later reference the address where those three bytes
can be found. Instead of hexadecimal (or regular) numbers, you can only provide
a single character or a string: db 'xyz' will store the three bytes whose character
representations are x, y and z. Note that such a string will not be null-terminated.

• dw does the same as db, but stores a double byte (a word), and
• dd stores a double word (or quad byte, consisting of four bytes). You need to use dd to

store 32-bit addresses.
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dw and dd get the order of the bytes right so that they are stored in memory according
to the endianness endiannessof your platform, for example, dd 0x12345678 will write bytes 0x78, 0x56,
0x34 and 0x12 because Intel x86 machines are of the lile-endian lile-endiantype where the smaller
bit blocks come first.

ere are also commands for storing floating-point numbers (dq, dt), but we do not need
them for U which uses only integers.

B.3.2 Constants (equ)
With equ statements you can define identifiers which you can use in later code lines instead
of the constants or expressions that you provided in the identifier definition. e syntax
is always of the form

IDENTIFIER equ EXPRESSION

For example, the U assembler file start.asm contains the following lines:
MB_HEADER_MAGIC equ 0x1BADB002
MB_HEADER_FLAGS equ 11b
MB_CHECKSUM equ - (MB_HEADER_MAGIC + MB_HEADER_FLAGS)

ey define three local identifiers MB_HEADER_MAGIC, MB_HEADER_FLAGS and MB_CHECKSUM that
are used to create the multiboot header:

; GRUB Multiboot header, boot signature
dd MB_HEADER_MAGIC ; 00..03: magic string
dd MB_HEADER_FLAGS ; 04..07: flags
dd MB_CHECKSUM ; 08..11: checksum

B.3.3 Macros (%macro)
If your code contains repetitive sequences that you would turn into a function (when
programming in C), you can use a macro to keep the level of repetitions down. We show
you the macro that we used in start.asm to write the assembler functions irq0, irq1,
…

e macro definition looked like this:
%macro irq_macro 1

push byte 0 ; error code (none)
push byte %1 ; interrupt number
jmp irq_common_stub ; rest is identical for all handlers

%endmacro

and we called the macro this way:
...
irq12: irq_macro 44
irq13: irq_macro 45
irq14: irq_macro 46
...
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which the assembler expands to the following lines:

irq12: push byte 0 ; error code (none)
push byte 44 ; interrupt number
jmp irq_common_stub ; rest is identical for all handlers

irq13: push byte 0 ; error code (none)
push byte 45 ; interrupt number
jmp irq_common_stub ; rest is identical for all handlers

irq14: push byte 0 ; error code (none)
push byte 46 ; interrupt number
jmp irq_common_stub ; rest is identical for all handlers

%endmacro

In the macro’s definition, the parameter 1 in the first line states that the macro can be
used with one argument. at argument can be referred to via %1. So, while expanding
the macro, every occurrence of %1 is replaced with the argument. In the above examples
we called the macro with arguments 44, 45 and 46.

If you need more than one argument (say: three), you set a different number, e. g. with
%macro name 3. en you access those arguments via %1, %2 and %3.

B.4 gcc Inline Assembler
e GNU C compiler gcc lets developers write inline assembler statements in the middle
of C code. at is very helpful if only a few lines of assembler code are required—storing
them in a separate assembler source file andmaking sure that both the C and the assembler
code can see the variables which are needed in both places is laborious, and it also costs
(a lile) CPU time because an external assembler routine must be called via the function
call mechanism whereas inline assembler code is just inserted between the translations of
the preceding and successive C code.

You can find the best example for a quick line of assembler code in the book: Whenever
we need to disable or enable the interrupts, we do this via the ⟨disable interrupts 47a⟩ and
⟨ensable interrupts ⟩ code chunks which use the inline assembler instructions

asm ("cli"); // disable interrupts (clear interrupt flag)

or

asm ("sti"); // enable interrupts (set interrupt flag)

to execute the cli and sti instructions.
However, this is the simple case. It is more typical that values (which are stored in C

variables) have to be used as a parameter of the assembler instruction. In a pure assembler
file you can write

mov eax, some_label
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to load the address of some_label in the EAX register, but you cannot similarly write an
inline assembler statement like

asm ("mov eax, &some_C_variable")

to do the same for the address of some_C_variable. Instead, values or addresses must be
passed by preparing registers before the assembler instructions are executed (and fetching
possible result values via registers as well). gcc defines a special syntax to provide input/output

operands
input

operands and output operands; the general instruction format is this:

asm ("assembler instructions",
: // optional output operands
: // optional input operands
: // optional "clobber" list

)

Operands are always wrien in the "reg" (variable) form; if there is more than one regis-
ter that we want to use, we use several such expressions and put commas between them.
e following registers can be used:

Register Reading Writing
EAX "a" "=a"
EBX "b" "=b"
ECX "c" "=c"
EDX "d" "=d"
ESI "S" "=S"
EDI "D" "=D"
any "r" "=r"

We use that syntax in the syscall* functions of the user mode library: as an example,
here is the code for syscall3c which takes three parameters, stores them in EAX , EBX and
ECX , raises the interrupt 0x80 and returns a result from EAX :

inline int syscall3 (int eax, int ebx, int ecx) {
int result;
asm ( "int $0x80" : "=a" (result) : "a" (eax), "b" (ebx), "c" (ecx) );
// |- instruction -| |- output regs -| |- input registers -|
return result;

}

e instruction explicitly copies the variables eax, ebx and ecx into the corresponding reg-
isters and then, aer int 0x80, explicitly copies the contents of EAX into the result variable.

"r" (or "=r" for output) can be used for an arbitrary register, i. e., the compiler will choose
a register as it sees fit. But then we don’t know which register will hold the value. We
can reference the variables by observing the order in which they appear in the output and
input operand lists, and then address them as %0, %1, … in the assembler code.

For example, in order to add two variables var1 and var2 and store the sum in sum, we
could write
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asm ("movl %1, %%eax \n"
"addl %2, %%eax \n"
"movl %%eax, %0"
: "=r" (sum) // output
: "r" (var1), "r" (var2) // input
: "%eax" // "clobber" list

);

We don’t know what registers will hold the values of var1 and var2, but we simply move
or add them to EAX and finally write the sum (which is in EAX aer the addl instruction)
back to register 0. at is then copied to sum.

We do not want the compiler to use EAX for one of the variable values, and that it where
the clobber listclobber list comes in: With it we can tell the compiler which registers it must not use,
so in the case of the above addition we put EAX on that list. Note that the syntax for the
register name is different in the instructions (%%eax) and in the clobber list (%eax)! In the
clobber list you could also write eax instead of %eax, but not %%eax.

B.5 Further Reading
A freely downloadable introductory text is Paul Carter’s “PC Assembly Language Book”
[Car06]. It is available in English and a few other languages via the author’s website,
http://www.drpaulcarter.com/pcasm/.

If you’re more interested in concepts of assembler programming than in the actual syn-
tax, “e Art of Assembly Language” [Hyd10] is a good alternative introduction: e au-
thor, Randall Hyde, has created his own dialect of Intel 32-bit assembler called HLA (High
Level Assembler) which looks more natural since it has commands for conditional loops
and standard input/output. HLA programs have more similarity with C programs than
normal assembler code, but writing programs in HLA still teaches all the basic principles
of assembler.

“Linux Assembly Language Programming” [Nev00] by Bob Neveln focuses on Linux;
for example there is a description of the ELF binary format used by Linux (and U).

For gcc inline assembler the “GCC Inline Assembly How-to” [S03] is available online at
http://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html.

http://www.drpaulcarter.com/pcasm/
http://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html


C
Other Educational Operating

Systems

As mentioned in the introduction chapter, we have assembled a list of other educational
operating systems. We already discussed Minix and Xinu (see page 38) and suggested
having a look at these two systems. But there are many more:

• One of the oldest instructional texts in this area is the Lions’ commentary [Lio96],
originally wrien by John Lions in 1976 but only published 20 years later. Its roughly
100 pages of code documentation are intended to be read side-by-side with a specially
enumerated printout of the source code of Unix Version 6. Each section of the com-
mentary explains a specific code section that is identified by its first line number.

• Xv6 is a simple Unix-like teaching OS [CKM12] originally developed in the summer
of 2006 for MIT’s OS course, and its documentation mimics the Lions’ commentary in
that the source code is available in a document with full line numbering (throughout
all source files) and a descriptive document refers to those line numbers.
Our U implementation has borrowed some code from Xv6, for example for dealing
with the hard disk controller and with serial ports.

• Topsy (Teachable Operating System) was developed at ETH Zurich [FCZP95], the
original version runs on the MIPS architecture. Later it was ported to Intel i386
[Ruf98] and to the Pentium 4 [Ryf07] by students of the same university.

• ix is a Unix-like operating system developed by Tudor Hulubei and documented in
a technical report [Hul95]. While the author’s goal was not to create an educational
resource but “to learn about operating systems design and architecture, kernel algo-
rithms, resource allocation, process scheduling, memory management policies, etc.”,
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the resulting code and report make an interesting read.
e U implementation uses parts of the floppy driver code from ix.

• Nachos (Not another completely heuristic operating system) [CPA93, And30] was
originally developed in Berkeley and is currently supported at University of Wash-
ington. It was wrien in C++ and the sources were well-commented, though classi-
cally (i. e., directly in the source files). e system has to be run on a specific MIPS
hardware emulator (also provided by the authors). Development of the original code
was stopped, but there is a Java version [HC30] now used in Berkeley. e concept of
the authors is to provide a system with only the most basic properties which is then
extended by students during a course. Another successor to Nachos is Pintos.

• e goal of the Pintos [Pfa10, Pin09] developers was to replace Nachos. It differs
from it in several aspects: it runs on 32-bit Intel x86 hardware (the authors suggest
to execute it in the Bochs [LDA+14] or qemu [B+14] PC emulators), and it uses the C
programming language instead of C++. Its feature set is similar to the one of U.
Pintos is also similar to Unix systems, but does not provide a fork function. It is
currently used for teaching at Stanford and other universities.

• OS/161 is a kernel that was wrien in C for classes at Harvard University. It runs on
an emulator for a machine called System/161 and is available for download at http:
//www.eecs.harvard.edu/~syrah/os/. e authors have described their experiences
with using OS/161 in class in a short conference paper [HLS02].

• iPoƨix (spelled iPosix) is a small Unix-like kernel for 32-bit Intel machines that was
wrien in C++ by two students of Oldenburg University [MT09]. Later a practical
course with exercises based on iPoƨix was designed by another student [Phl10].

• L4 is a family of micro-kernels that is sometimes used for educational purposes, for
example at Technical University of Dresden (in the “Building Microkernel-Based Op-
erating Systems” course). Reference manuals for the x86 [Lie96] and MIPS architec-
tures [EHL97] describe the system.

• FreeDOS is a clone of Microso’s MS-DOS, and its author has documented the devel-
opment in a book [Vil96]. When he created FreeDOS, sources of MS-DOS were not
available, so at that time studying FreeDOS was an alternative to reverse engineer-
ing the MS-DOS binaries. (In 2014 Microso published the source code of MS-DOS
[Lev14, Shu14].)

• MicroC-OS II by Jean J. Labrosse is a real-time kernel that is described in a freely
available book [Lab02]. e author states that the intended audience of the book
includes “students interested in real-time operating systems”. ere is also a newer
version (MicroC-OS III) that runs on several platforms.

• OOStuBS and MPStuBS are object-oriented operating systems for the Intel x86 plat-
form which are used for classes at Friedrich Alexander University Erlangen-Nurem-
berg [Loh13]. MPStuBS is a version of OOStuBS that supportsmultiprocessor systems.
Students taking the Operating Systems course can decide which system they want to
work with throughout the semester.

http://www.eecs.harvard.edu/~syrah/os161/
http://www.eecs.harvard.edu/~syrah/os161/
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e following entries do not refer to educational operating systems, but to books which
describe “real world” systems. However, they do it so thoroughly that these texts can also
be used as learning materials.

• Marshall Kirk McKusick and George V. Neville-Neil give a very detailed description
of the FreeBSD kernel in their book “e Design and Implementation of the FreeBSD
Operating System” [MNN05]. ere is a lot of code mixed with explanations and
figures, but the code is only pseudo code that leaves out the details.

• e original Unix system is described in Bach’s book “e Design of the Unix Op-
erating System” [Bac86]. It is based on Unix System V, Release 2 (from 1984) and
describes the internal data structures and algorithms in a similar way as the FreeBSD
book does: Real code is replaced with more accessible descriptions of what needs to
be done.

• Lixiang et al. have wrien “e Art of Linux Kernel Design” [LWD+14]. Even though
it was published in 2014, it is based on Linux version 0.11 which was released in
December 1991. e old code is not as complex as that of current versions, and the
authors use it for in-depth descriptions of the internal data structures and algorithms.
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CMD_PUT: 518a, 519a
CMD_STAT: 519a
CMD_TERM: 519a
cnumbers:
complex: 636a, 636b, 636c, 636d,

637a, 637b, 637c, 637d, 638a
Compute:
context_t: 142a, 142b, 146a, 146b,

146c, 151c, 174b, 175, 201d,
206d, 209c, 213d, 216b, 219c,
221a, 222b, 223e, 224c, 234b,
255c, 258b, 260a, 276d, 282c,
289a, 299a, 310a, 319d, 328c,
331a, 332d, 342b, 370d, 372a,
372d, 416a, 416b, 426b, 433b,
493b, 513a, 519d, 532d, 546b,
565c, 566d, 583a, 587c, 587d,
590b, 610c, 610d
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CONVERT_BCD: 340a, 340b
COPY_EBP_TO_VAR: 279a, 279c
COPY_ESP_TO_VAR: 279a, 279c
copy_frame: 209b, 211c
COPY_VAR_TO_EBP: 279a, 279c
COPY_VAR_TO_ESP: 279a, 279c
counter_table: 306b, 307b, 308a,

308c
count_int_inodes: 464a, 466c,

467b
count_open_files: 464a, 464d,

466c, 467b
count_zeros: 491c, 492
cpu_usermode: 192d, 198
create_new_address_space: 163a,

163c, 164a, 164d, 165a, 190a,
210a

csector: 549c, 549d, 550b
csr_x: 327b
csr_y: 327b
ctrack: 549c, 549d, 550b
current_as: 120c, 123a, 152a, 166c,

169a, 170b, 170c, 173a, 210a,
216b, 232c, 233c, 255b, 255c,
257b, 257c, 260a, 279c, 289c,
290a, 291, 298a, 299a, 342b, 605c,
614a

current_fdd: 540c, 540d, 541c,
544a, 548b, 549d, 551b

current_fdd_type: 539c, 540c,
540d, 541c, 542c, 543a, 548b,
549d

current_mounts: 405b, 406, 408c,
492

current_pd: 105a, 105b, 108, 109a,
111b, 115d, 116b, 116e, 121a,
121b, 122b, 123b, 170c, 279c, 603,
611b

current_pid: 222b, 222c
current_ppid: 222b, 222c
current_pt: 105a, 106a, 108, 603
current_task: 152a, 152b, 187a,

192c, 192d, 206b, 209c, 212, 216b,
217b, 219c, 222b, 222c, 224c,
234b, 255a, 260a, 277b, 279c,
290a, 324a, 328c, 329b, 330a,
332b, 334b, 335b, 366a, 366c,
369c, 371a, 412b, 416b, 424d,
424e, 426b, 432e, 478b, 487a,

518d, 522e, 533b, 545b, 563a,
564a, 564b, 565c, 566b, 577c,
580c, 581, 582a, 587d, 588b

cur_vt: 321b, 322a, 322b, 326a,
327a, 329b, 330a, 332b, 334b,
335b, 342b

cwd: 190a, 412b, 432c, 432e, 488a,
582a

deblock: 186b, 217a, 281, 322a,
362, 366c, 368, 391a, 522c, 532d,
546a

debug_printf: 277b, 366c, 597a,
601b, 601d

destroy_address_space: 166b,
166c, 216b

dev_close: 418a, 496a, 496b
dev_directory: 494b, 495c, 499d,

500
DEV_FD0: 406, 492, 495c, 499a,

499d, 508a
DEV_FD1: 405b, 406, 492, 495c,

499a, 499d, 508a
DEV_FD0_INODE: 494a, 495c
DEV_FD1_INODE: 494a, 495c
DEV_FD0_NAME: 494a, 494b
DEV_FD1_NAME: 494a, 494b
dev_filestat: 494d, 495b
dev_getdent: 422c, 500
DEV_HDA: 405b, 406, 492, 495c, 499a,

499d, 508a, 607a, 610d
DEV_HDA_INODE: 494a, 495c
DEV_HDA_NAME: 494a, 494b
DEV_HDB: 405b, 406, 492, 495c, 499a,

499d, 508a
DEV_HDB_INODE: 494a, 495c
DEV_HDB_NAME: 494a, 494b
DEV_KMEM: 495c, 496d, 497, 499a,

499d, 508a
DEV_KMEM_INODE: 494a, 495c
DEV_KMEM_NAME: 494a, 494b
dev_lseek: 418a, 498a
devmajor: 406, 505b, 506b, 507b
devminor: 406, 505b, 506b, 507b
DEV_NONE: 405b, 508a
dev_open: 412c, 494c, 495c
dev_read: 414b, 496d
dev_size: 496d, 497, 498a, 498b,

499a, 499d
dev_stat: 421d, 499d

dev_status: 495b, 495c, 496b,
496d, 497, 498a, 499b

DEV_STDERR: 190a, 415c, 416d, 417,
421b

DEV_STDIN: 190a, 415c, 416d, 417,
421b

DEV_STDOUT: 190a, 415c, 416d, 417,
421b

dev_write: 415a, 496c, 497
dir_entry: 422c, 426b, 429b, 489a,

490b, 490d, 500
dirname: 419a, 455a, 455b, 456,

577b, 577c
diskfree: 493b, 493f
diskfree_query: 491a, 491b, 492,

493b, 493e, 493f
DMA_READ_MODE: 542e, 543a
DMA_WRITE_MODE: 542e, 543a
DONT_FOLLOW_LINK: 411c, 420c
DONT_UPDATE_BUF: 507a, 512b
EACCES: 576d, 577a, 577b, 577c
EAGAIN: 369c, 370a
eax_return: 174a, 174b, 206d,

213d, 219c, 220a, 222b, 223e,
234b, 299a, 310a, 370d, 372a,
372d, 426b, 433b, 566d, 583a,
587d, 590b

EBUSY: 371a, 371b
egid: 487a, 573a, 573b, 576d, 577b,

577c, 578, 580c, 581, 582a, 583a,
587d

EINVAL: 561c, 562b, 565c
element:
Elf32_Addr: 227
Elf32_Ehdr: 227, 228b
Elf32_Half: 227
Elf32_Off: 227
Elf32_Phdr: 227, 228b
ELF_PT_LOAD: 233a, 233b
Elf32_Word: 227
enable_interrupt: 139b, 139d,

140b, 323b, 339a, 344c, 520a,
534b, 552c

END_OF_INTERRUPT: 145a, 146a
ENOENT: 576d, 577a, 577b
ENTER_MUTEX: 390a, 390b
EPERM: 561c, 562b, 565c
errno: 207b
err_return:
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ESRCH: 561c, 562b, 565c
euid: 487a, 565c, 573a, 573b, 576c,

576d, 577b, 577c, 578, 580c, 581,
582a, 583a, 587d, 588b

example_function:
exception_messages: 151a, 152a
execv: 191a, 235d, 235e
exit: 214, 217d, 218a, 513e
EXIT_MUTEX: 350, 353, 354b, 355,

390a, 390b
f: 623b
false: 46a
fault0: 147b, 148a, 149b
fault10: 147b, 148a, 149b
fault11: 147b, 148a, 149b
fault12: 147b, 148a, 149b
fault13: 147b, 148a, 149b
fault14: 147b, 148a, 149b
fault15: 147b, 148a, 149b
fault16: 147b, 148a, 149b
fault17: 147b, 148a, 149b
fault18: 147b, 148a, 149b
fault19: 147b, 148a, 149b
fault1: 147b, 148a, 149b
fault20: 147b, 148a, 149b
fault21: 147b, 148a, 149b
fault22: 147b, 148a, 149b
fault23: 147b, 148a, 149b
fault24: 147b, 148a, 149b
fault25: 147b, 148a, 149b
fault26: 147b, 148a, 149b
fault27: 147b, 148a, 149b
fault28: 147b, 148a, 149b
fault29: 147b, 148a, 149b
fault2: 147b, 148a, 149b
fault30: 147b, 148a, 149b
fault31: 147b, 148a, 149b
fault3: 147b, 148a, 149b
fault4: 147b, 148a, 149b
fault5: 147b, 148a, 149b
fault6: 147b, 148a, 149b
fault7: 147b, 148a, 149b
fault8: 147b, 148a, 149b
fault9: 147b, 148a, 148c, 149b
fault_common_stub: 149a, 150b
fault_handler: 150a, 150b, 151b,

151c
fault_macro_0: 149a, 149b
fault_macro_no0: 149a, 149b

faults: 148a, 148b, 607c
fdc_buf: 538c, 543a, 549c, 550b
fdc_command: 538d, 539c, 549c,

550b
fdc_drive: 539b, 539c, 540c, 544a,

544b, 547d, 548b, 551b
fdc_getresults: 537a, 540d, 548b,

551a, 551b
fdc_head: 539b, 539c, 540c, 540d,

548b
fdc_init: 45c, 552b, 552c
fdc_is_busy: 545b, 545c
fdc_lock: 547a, 547b, 549d, 549e,

552c
fdc_map_type: 552c, 553a, 553b
fdc_mode: 540c, 542b, 542c
fdc_need_reset: 536b, 536d, 537a,

539c, 540c, 540d, 546b, 547d,
548b, 551a, 551b

fdc_out: 536a, 536b, 540c, 540d,
542c, 548b, 551a, 551b

fdc_read_sector: 549c, 550d
fdc_recalibrate: 548b, 551b
fdc_reset: 539c, 550e, 551a
fdc_results: 537a, 537d, 540d,

548b, 551b
fdc_seek: 539c, 548a, 548b
fdc_sleep: 545a, 545b, 547d
fdc_ticks: 546c, 547a, 547d
fdc_ticks_till_motor_stops: 539c,

546c, 547a
fdc_timeout: 546b, 546c, 547a,

547d
fdc_timer: 546d, 546e, 547a
fdc_track: 539b, 539c, 540c, 540d,

548b
fdc_waits_interrupt: 546b, 546c,

547a, 547d
fdc_wakeup: 545d, 546a, 546b, 547a
fdc_write_sector: 549b, 550b,

550d
fdd: 499a, 541c, 544a, 544b, 547a,

549d, 551a, 552c
fdd_drive_name: 541c, 552c
fdds_in_use: 541c
fdd_type: 499a, 541c, 549d
FD_SECSIZE: 549c, 549e, 550a, 550b,

550d

fileblocktozone: 471c, 473a, 475c,
484e

fileexists: 576a, 576b
fill_gdt_entry: 109c, 110a, 194a,

197a
fill_idt_entry: 138b, 138c, 139b,

148b, 202e
fill_page_desc: 100c, 101a, 111b,

123b
fill_page_table_desc: 103b, 103c,

105b, 108, 116b
findZeroBitAndSet: 447b, 447c,

448
first_page: 120c, 121a, 121c
FLOPPY_CHANNEL: 543a, 543b
FLOPPY_CONTROLLER_BUSY: 537b
FLOPPY_CONTROLLER_ENABLE: 544a,

544b, 544c, 551a
FLOPPY_DIRECTION: 536b, 536c, 537b
FLOPPY_DMAINT_ENABLE: 544a, 544b,

544c, 551a
FLOPPY_DTL: 540c, 541a
floppy_handler: 546b, 552c
FLOPPY_MASTER: 536b, 536c, 537a,

537b
FLOPPY_NEW_BYTE: 537a, 537b
floppy_queue: 544d, 544e, 545b,

546a, 564c, 606
FLOPPY_READ: 539a, 543a, 549c
FLOPPY_RECALIBRATE: 551b, 552a
FLOPPY_SEEK: 548b, 549a
FLOPPY_SENSE: 540d, 548b, 549a,

551a, 551b
FLOPPY_SPEC2: 542c, 542d
FLOPPY_SPECIFY: 542c, 542d
FLOPPY_WRITE: 539a, 540d, 550b
FOLLOW_LINK: 411c, 420a
fork: 213f, 213g, 214
frameid: 118c, 119a
framenos:
free_a_frame: 310e, 311b, 513e
free_frames: 112b, 112e, 119a,

119b, 123c, 310a, 311b, 342b,
513e, 604b, 613c

front_of_blocked_queue: 185b,
364c

FS_DEV: 405b, 410a, 412c, 414b,
415a, 418a, 418b, 420b, 421d,
422a, 422c, 425c, 588b, 589a
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FS_ERROR: 410a, 412c, 414b, 415a,
418a, 418b, 420b, 421d, 422a,
422c, 425c, 588b, 589a

FS_FAT: 410a, 412c, 414b, 415a,
418a, 418b, 420b, 421d, 422a,
422c, 425c, 588b, 589a

FS_MINIX: 405b, 410a, 412c, 414b,
415a, 418a, 418b, 419a, 419b,
420b, 421d, 422a, 422c, 425c,
588b, 589a

fs_names: 406, 410b, 492
ftable: 112c, 112d, 112e, 113b,

114a, 603
ftruncate: 429b
g: 236, 356, 405a, 408c, 409c, 607c,

622
gdt: 92b, 109c, 110a, 196a
gdt_entry: 91, 110a
gdt_flush: 110a, 110b, 111b, 116b
gdt_ptr: 92a, 92b
getcwd: 434b, 434c
getdent: 429b
get_dev_and_path: 408b, 408c,

411e, 419a, 419b, 588b, 589a
get_eip: 212, 213b
get_errno: 206b, 206d
get_free_address_space: 162c,

162d, 163c
get_free_frames: 310d, 310e, 311b,

513e
get_irqmask: 139f, 140a, 140b
get_new_lock: 306c, 310g, 367b,

369c, 509b, 516c, 530b, 552c
get_new_semaphore: 364b
getpid: 214, 223b, 311b, 513e,

568b
getppid: 214, 223b
getpwnam_r: 585a
getpwuid_r: 585a
gets: 432a
gettid: 214, 223a, 223b
get_xy: 331d
gfd2pfd: 424e, 426b
gid: 478b, 573a, 573b, 580c, 581,

582a, 583a, 584c, 587d
gp: 92b, 110a, 110b, 608a, 608b
GUI:
handler1:
handler2:

harddisk_queue: 529a, 529b, 531a,
532d, 564c, 606

hash: 304a, 304b, 306e, 306f, 307b,
308c

hd_buf: 530a, 530c, 530d, 532b,
532d

hd_direction: 530a, 530c, 530d,
532d

hd_lock: 530a, 530b, 530c, 530d
HD_OP_NONE: 529d, 530c, 530d, 532d
HD_OP_READ: 529d, 530c, 532d
HD_OP_WRITE: 529d, 530d, 532d
HD_SECSIZE: 529d, 530a, 530c, 530d,

532b, 532d
hd_size: 499a, 534a, 534b
hexdump: 290a, 436c, 437, 603, 605c,

607a, 608a, 608b, 611b, 612b,
612c

higherhalf: 94
hour: 339d, 340b, 340c, 340e, 341,

343b, 605a
HZ: 539c, 540a, 547a
IDE_BSY: 525a, 533b
IDE_CMD_IDENT: 525a, 534b
IDE_CMD_READ: 525a, 527b
IDE_CMD_WRITE: 525a, 527c
IDE_DF: 525a, 533b
IDE_DRDY: 525a, 533b
IDE_ERR: 525a, 533b
ide_handler: 532c, 532d, 534b
idewait: 526, 532a, 533a, 533b
idle: 282e, 282f, 282g
idt: 138a, 138c, 146d
idt_entry: 137a, 138a, 146d
idt_load: 146d, 146e, 147a
idtp: 138a, 146d, 147a
idt_ptr: 137b, 138a
if_nested_level: 357a, 357b, 357c,

357d, 357e
if_state: 357d, 357e, 383b, 384a,

384b
iii:
inb_delay: 536b, 537a, 538b, 552c
INDEX_FROM_BIT: 113a, 113b, 114a
initialize_blocked_queue: 183b,

183c, 218c, 323e, 363d, 364b,
367b, 522b, 529b, 544e

initialize_module: 44b, 45a

inportb: 133b, 140a, 320b, 336b,
339d, 344c, 345c, 519d, 532a,
532b, 533b, 534b

inportw: 133b
install_interrupt_handler: 146b,

146c, 323b, 339a, 520a, 534b,
552c

install_syscall_handler: 173d,
201b, 201c, 206f, 213e, 217c,
220b, 221c, 222e, 224a, 224e,
235c, 259a, 260c, 282d, 299b,
310c, 328e, 331b, 333a, 370e,
372b, 373a, 416c, 428a, 434a,
493d, 513b, 565a, 567a, 583b,
587e, 590c, 611a

intarrcpy: 643a
interrupt_handlers: 145b, 146a,

146c
int_minix2_inode: 459a, 459c,

460a, 464d, 467b, 468b, 468c,
469c, 470c, 471b, 473a, 475a,
476b, 484e, 607b

intptr: 643b
INVALID_TRACK: 541c, 542a, 551b
IO_CLOCK_CHANNEL0: 338c, 338d
IO_CLOCK_COMMAND: 338c, 338d
IO_CMOS_CMD: 339b, 339d, 552c
IO_CMOS_DATA: 339b, 339d, 552c
IO_COM1: 336b, 344a, 344c
IO_COM2: 344a, 344c, 345c, 519d
IO_DMA_ADDR_2: 542e, 543a
IO_DMA_COUNT_2: 542e, 543a
IO_DMA0_FLIPFLOP: 542e, 543a
IO_DMA0_INIT: 542e, 543a
IO_DMA0_MODE: 542e, 543a
IO_DMA_PAGE_2: 542e, 543a
IO_FLOPPY_COMMAND: 535, 536b, 537a
IO_FLOPPY_OUTPUT: 535, 544a, 544b,

551a, 552c
IO_FLOPPY_RATE: 535, 542c, 552c
IO_FLOPPY_STATUS: 535, 536b, 537a
IO_IDE_COMMAND: 525b, 527b, 527c,

534b
IO_IDE_DATA: 525b, 532b, 532d,

534b
IO_IDE_DEVCTRL: 525b, 526
IO_IDE_DISKSEL: 525b, 526, 534b
IO_IDE_SEC_COUNT: 525b, 526
IO_IDE_SECTOR: 525b, 527a
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IO_IDE_STATUS: 525b, 532a, 532b,
533b, 534b

IO_KEYBOARD: 319c, 320b
IO_PIC_MASTER_CMD: 134, 135a, 146a
IO_PIC_MASTER_DATA: 134, 135b,

135c, 135d, 139e, 140a
IO_PIC_SLAVE_CMD: 134, 135a, 146a
IO_PIC_SLAVE_DATA: 134, 135b, 135c,

135d, 139e, 140a
IO_VGA_CURSOR_LOC_HIGH: 327c,

328a
IO_VGA_CURSOR_LOC_LOW: 327c, 328a
IO_VGA_TARGET: 327c, 328a
IO_VGA_VALUE: 327c
irq0: 139a, 144
irq10: 139a, 144
irq11: 139a, 144
irq12: 139a, 144
irq13: 139a, 144
irq14: 139a, 144
irq15: 139a, 144
irq1: 139a, 144
irq2: 139a, 144
irq3: 139a, 144
irq4: 139a, 144
irq5: 139a, 144
irq6: 139a, 144
irq7: 139a, 144
irq8: 139a, 144
irq9: 138d, 139a, 144
IRQ_COM1: 132, 344c
IRQ_COM2: 132, 344c, 520a
irq_common_stub: 144
IRQ_FDC: 132, 552c
irq_handler: 143b, 144, 146a
IRQ_IDE: 132, 525a, 534b
IRQ_KBD: 132, 323b
irqs: 139a, 139b
IRQ_SLAVE: 132, 139b
IRQ_TIMER: 132, 339a
isatty: 429b
kernel_locks: 365c, 367b, 368, 606
kernel_pd: 105a, 105b, 106c, 108,

162e, 164b, 604b
kernel_pd_address: 106b, 106c,

109a
kernel_pt: 105a, 105b, 108, 604b
kernel_pt_ram: 115a, 115c, 115d

kernel_shell: 151c, 290b, 321a,
610a, 610b

KERNEL_STACK_PAGES: 169a, 169b,
211a, 211b, 257b, 261

KERNEL_STACK_SIZE: 169b, 192b,
211b

KERNEL_VT: 328b, 334b, 335b
KEY_ALT: 320a, 320b, 320c
keyboard_handler: 319a, 319d,

323b
keyboard_install: 323a, 323b,

323c
keyboard_queue: 322a, 323d, 323e,

416b, 564c, 606
KEY_CTRL: 320a, 320b, 320c
KEY_DOWN: 315, 316, 317
KEY_ESC: 315, 316, 317, 321a
KEY_LEFT: 315, 316, 317
KEY_L_SHIFT: 320a, 320b, 320c
KEY_RIGHT: 315, 316, 317
KEY_R_SHIFT: 320a, 320b, 320c
KEY_UP: 315, 316, 317
kgetch: 324a, 324b
kill: 321a, 431, 562b, 568b
kl_semaphore: 360a, 361c, 362,

363b, 391a
kl_semaphore_id: 360b, 361c, 362,

364a, 364b, 364c, 391a
kl_semaphore_table: 363b, 363d,

363e, 364b, 364c
KMAP: 101a, 106a, 111b, 115c, 121b,

165b
KMAPD: 103c, 105b, 108, 111b, 115d,

122b, 122c, 211a
kputch: 324b, 335b, 417, 598a,

605b, 611b, 613b
kputs: 108, 115d, 121b, 335a, 335b,

603, 604b, 608b, 610a, 611b,
612d, 613c

kreadline: 323f, 324b, 610a
ksh_command_div0: 605b, 608b
ksh_command_hexdump: 605c, 608b
ksh_command_inode: 607a, 608b
ksh_command_locks: 606, 608b
ksh_command_longhelp: 607c, 608b
ksh_command_lsof: 607b, 608b
ksh_command_mem: 604b, 608b
ksh_command_ps: 605d, 608b
ksh_command_queues: 606, 608b

ksh_command_test: 603, 608b
ksh_command_time: 605a, 608b
ksh_command_uname: 605a, 608b
ksh_print_page_table: 608b, 613a,

613b
ksh_print_page_table_helper:

612d, 613c
ksh_print_queue: 606
ksh_run_command: 608b, 610a
kstack: 169a, 192b, 211c, 280a
KSTACK_DELETE_LIST_SIZE: 168b,

168c, 168d, 169a
kstack_frame: 257c
LANG_GERMAN: 319b, 319d, 321a
least_used_val: 511b
lib_page_out: 299c, 299d
link: 429b
list_address_space: 170e, 171a
list_address_spaces: 170d, 171a,

608b
lock: 306b, 308c, 310f, 365a, 366a,

366b, 366c, 367b, 368, 369c, 371a,
373c, 509a, 516b, 530a, 547b,
552c

lock_t: 365a, 365c
login: 191a, 562b, 584c
lseek: 429b, 498a
main: 44b, 94, 214, 225, 229b, 235f,

247, 248, 311b, 513e, 535, 623a
MAJOR_FD: 506a, 506b, 507b
MAJOR_HD: 506a, 506b, 507b
MAJOR_KMEM: 506a
MAJOR_SERIAL: 506a, 506b, 507b
makedev: 505a, 505b
MAKE_MULTIPLE_OF_PAGESIZE: 163b,

163c
MAX: 471d
MAX_ADDRESS: 112a
MAX_ADDR_SPACES: 158a, 162b, 162d,

171a, 307a, 308c
MAX_DEV_FILES: 495a, 495b, 495c,

496b, 499b
MAX_FLOPPY_ERRORS: 539c, 540b
MAX_FLOPPY_RESULTS: 537a, 537c,

537d
MAX_INT_INODES: 459b, 459c, 462c,

464d
MAX_LOCKS: 365b, 365c, 367b, 606
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MAX_PFD: 190a, 216b, 424b, 424c,
424d, 424e, 425a, 426b

MAX_SEMAPHORES: 363a, 363b, 363d,
364b

MAX_SWAP_FRAMES: 292b, 292c, 293d,
294

MAX_SYSCALLS: 200a, 200b, 201b,
201d

MAX_THREADS: 176a, 176b, 188a,
217b, 219c, 223e, 281, 322b, 605d

MAX_VT: 325c, 326a, 327a, 328c
mboot: 87, 94
memaddress: 46c, 100b, 100c, 103a,

103b, 105b, 108, 111b, 113b,
115d, 151c, 161, 166a, 169a, 170c,
170e, 172a, 173a, 175, 192b, 197a,
197e, 211a, 211b, 212, 213a, 228b,
231, 232a, 232b, 234b, 255a, 257c,
258b, 259c, 279c, 289b, 290a, 291,
515a, 567c, 568b, 604a

memcpy: 190a, 209b, 223e, 232a,
327a, 332b, 334a, 449a, 449b,
451a, 453b, 455a, 456, 468b, 471c,
475c, 487a, 496d, 497, 509d,
510b, 518b, 519d, 521a, 530c,
530d, 549c, 550b, 596c, 597a

memcpy_debug: 597a
memset: 100c, 103b, 112d, 112e,

121c, 122a, 164a, 164b, 166a,
197a, 211a, 232c, 255c, 257c,
480c, 487a, 509b, 596c

memsetw: 326c, 329b, 333e, 334a,
596c, 609

MEM_SIZE: 111c, 112a, 499a
MIN: 471c, 471d, 475c, 496d, 497
min: 341, 343b, 605a
minix_dir_entry: 452b, 453b, 456,

461d, 480c, 487a, 488a, 490d,
494b

minix2_inode: 442a, 451a, 451b,
452a, 453b, 456, 457b, 461d,
466a, 467b, 468c, 475c, 478b,
479b, 480c, 484c, 487a, 488a,
490a, 589d, 607a, 610d

minix_superblock: 440c, 443b, 448,
492

mkdir: 429b, 618
mmu: 170c, 170e, 172a, 211a, 211b,

279c

mmu_p: 120c, 123a, 171b, 171c,
172a, 261, 293d, 294, 614a

mount_table: 405b, 406, 408c, 408d,
492

mount_table_entry: 405a, 405b
Mutex: 359
mutex_lock: 308c, 310a, 366a, 367b,

368, 371a, 509d, 510b, 512b,
516d, 517c, 520c, 530c, 530d,
549d

mutex_try_lock: 307a, 308a, 308c,
366b, 371a

mutex_unlock: 307a, 308a, 308c,
311a, 365d, 366c, 367b, 368, 371a,
509d, 510b, 512b, 516d, 517c,
520c, 530c, 530d, 549e

mx_chinode: 589c, 589d
mx_chmod: 589a, 589d
mx_chown: 588b, 589b, 589d
mx_clear_imap_bit: 446, 483
mx_clear_zmap_bit: 446, 477b,

477c, 481b, 482a, 482b, 484e
mx_close: 418a, 467a, 467b, 484b,

487a
mx_creat_empty_file: 464c, 478a,

478b
mx_create_new_zone: 475c, 476a,

476b
mx_directory_is_empty: 488a,

488b, 489a
mx_diskfree: 491a, 491b, 492, 493b
mx_file_exists: 456, 479b, 480a,

480c
mx_file_is_directory: 479b, 480a
mx_filestat: 460a, 461b, 467b,

468b, 468c, 469c, 470c, 475a,
484e

mx_ftruncate: 420b, 484d, 484e
mx_getdent: 422c, 489a, 490c, 490d
mx_get_free_inodes_entry: 462c,

464d
mx_get_free_status_entry: 462b,

463a, 464d, 468b
mx_get_imap_bit: 444b, 451a
mx_get_zmap_bit: 445a
mx_increase_link_count: 456, 457a,

457b
mx_inodes: 459c, 462c, 464d, 466a
mx_link: 419a, 479a, 480a

mx_lseek: 418a, 469a, 469c
MX_MAX_FILES: 461a, 461b, 463a,

467b, 468b, 468c, 469c, 470c,
475a, 484e, 607b

mx_mkdir: 422a, 486, 487a
mx_open: 412c, 463b, 464b, 484b,

487a
mx_pathname_to_ino: 456, 461c,

461d, 464c, 479b, 480a, 480c,
484c, 487a, 490a, 490d, 589d

mx_query_superblock: 443a, 443b,
445a, 445b, 451a, 492

mx_read: 414b, 470a, 470b
mx_read_dir_entry: 453b, 456,

462a, 480c, 490d
mx_read_inode: 451b, 453b, 456,

457b, 466a, 479b, 480c, 484c,
487a, 490a, 589d, 607a, 610d

mx_read_write_dir_entry: 453b
mx_read_write_inode: 450c, 451a,

451b, 452a
mx_reopen: 425c, 468a, 468b
mx_request_block: 448, 454a, 476b,

477b, 477c
mx_request_inode: 448, 478b
mx_rmdir: 422a, 487b, 488a
mx_set_clear_imap_bit: 445b, 446
mx_set_clear_zmap_bit: 445b, 446
mx_set_imap_bit: 446
mx_set_zmap_bit: 446, 447a
mx_stat: 421d, 490a, 490d
mx_status: 461b, 463a, 465, 467b,

468b, 468c, 469c, 470c, 475a,
484e, 607b

mx_symlink: 419b, 484a, 484b
mx_sync: 468c
mx_unlink: 418b, 480b, 480c
mx_write: 415a, 474b, 474c, 484b,

487a
mx_write_dir_entry: 453a, 453b,

456, 480c
mx_write_inode: 450b, 452a, 454a,

456, 457b, 467b, 468c, 475c, 478b,
480c, 484c, 487a, 589d

mx_write_link: 455c, 456, 478b,
480a

my_string: 638b, 639a
new_frame_id: 166a
new_page_desc: 295c, 296, 297
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next_kl_semaphore: 364a, 364b
next_pid: 187c, 188a, 188b
__NR_brk: 173d, 174d, 204c
__NR_chdir: 204c, 434a, 434c
__NR_chmod: 204c, 590c, 591b
__NR_chown: 204c, 590c, 591b
__NR_close: 204c, 428a, 429b
__NR_clrscr: 330c, 331b, 331d
__NR_diskfree: 493c, 493d, 493f
__NR_dup2: 204c
__NR_execve: 204c, 235c, 235e
__NR_exit: 204c, 217c, 218a
__NR_fork: 204c, 213e, 213g
__NR_free_a_frame: 310b, 310c,

310e
__NR_ftruncate: 204c, 428a, 429b
__NR_getcwd: 204c, 434a, 434c
__NR_get_errno: 201d, 206e, 206f,

207b
__NR_get_free_frames: 310b, 310c,

310e
__NR_getpid: 204c, 222e, 223b
__NR_getppid: 204c, 222e, 223b
__NR_getpsinfo: 223c, 224a, 224f
__NR_gettid: 222d, 222e, 223b
__NR_get_xy: 330c, 331b, 331d
__NR_idle: 282b, 282d, 282f
__NR_isatty: 428a, 428b, 429b
__NR_kill: 204c, 565a, 568b
__NR_link: 204c, 428a, 429b
__NR_login: 583b, 584a, 584c
__NR_lseek: 204c, 428a, 429b
__NR_mkdir: 204c, 428a, 429b
__NR_open: 204c, 428a, 429b
__NR_page_out: 298b, 299b, 299d
__NR_pthread_create: 258c, 259a,

259c
__NR_pthread_exit: 260b, 260c,

260e
__NR_pthread_mutex_destroy: 372e,

373a, 373e
__NR_pthread_mutex_init: 370b,

370e, 373e
__NR_pthread_mutex_lock: 371c,

372b, 373e
__NR_pthread_mutex_trylock: 371c,

372b
__NR_pthread_mutex_unlock: 371c,

372b, 373e

__NR_query_ids: 587b, 587e
__NR_read: 204c, 428a, 429b
__NR_readchar: 415d, 416c
__NR_readdir: 204c, 428a, 429b
__NR_readlink: 204c, 428a, 429b
__NR_read_screen: 332c, 333a, 333c
__NR_resign: 221b, 221c, 221f
__NR_rmdir: 204c, 428a, 429b
__NR_set_errno: 206e, 206f
__NR_setgid32: 204c, 583b, 584c
__NR_setpsname: 224d, 224e, 224f
__NR_setregid32: 204c, 583b, 584c
__NR_setreuid32: 204c, 583b, 584c
__NR_setterm: 328d, 328e, 328g
__NR_setuid32: 204c, 583b, 584c
__NR_set_xy: 330c, 331b, 331d
__NR_signal: 204c, 567a, 568b
__NR_stat: 204c, 428a, 429b
__NR_symlink: 204c, 428a, 429b
__NR_sync: 204c, 513b, 513d
__NR_truncate: 204c, 428a, 429b
__NR_unlink: 204c, 428a, 429b
__NR_waitpid: 204c, 220b, 220d
__NR_write: 204c, 428a, 429b
__NR_write_screen: 332c, 333a,

333c
NULL: 46a, 120c, 121a, 121b, 146a,

164a, 258b, 367b, 369c, 463a,
467b, 468c, 469c, 470c, 475a,
484e, 607b

NUMBER_OF_FRAMES: 112a, 112b, 112c,
112d, 115b, 118c, 613c

numsec:
O_APPEND: 460b, 465, 469c, 470c
O_CREAT: 460b, 464c, 484b, 487a,

495c, 576d
OFFSET_FROM_BIT: 113a, 113b, 114a
open: 411a, 414c, 429b, 467b, 475a,

585b
openfile:
O_RDONLY: 190c, 420c, 460b, 475a,

488a, 579c, 582a, 585b
O_RDWR: 293b, 460b, 579c
outb_delay: 536b, 538a, 538b, 542c,

543a, 544a, 544b, 551a, 552c
outportb: 133b, 135a, 135b, 135c,

135d, 139e, 146a, 328a, 336b,
338c, 339d, 344c, 345c, 526, 527a,
527b, 527c, 534b, 552c

outportw: 133a, 133b
O_WRONLY: 420a, 460b, 470c, 484b,

487a, 579c
PAD_RIGHT: 599a, 600
PAD_ZERO: 599a, 599b, 600
page_desc: 72, 100a, 100b, 100c,

101b, 295b
page_desc_2_frame_address: 100b
page_directory: 103d, 105a, 122c,

164a, 165b, 167c, 169a, 171c,
211a, 211c, 296, 297, 307a, 308c

page_fault_handler: 151c, 288,
289a

page_in: 297, 298a
pageno_to_frameno: 116d, 116e,

123a
page_out: 295a, 296, 299a, 308c
PAGE_SIZE: 112a, 113b, 115c, 121b,

122a, 163b, 164d, 165a, 167a,
167b, 169b, 172a, 173a, 209b,
211b, 257b, 257c, 261, 289c, 291,
293d, 294, 298a

page_table: 101b, 105a, 111a, 115a,
116e, 121a, 121b, 122a, 123b,
165b, 166a, 169a, 171c, 211a,
211c, 296, 297, 307a, 308c

page_table_desc: 102, 103a, 103b,
103d

page_table_desc_2_frame_address:
103a

paging: 292c, 293d, 294, 306c
paging_entry: 292a, 292c
paging_lock: 306b, 306c, 307a,

308a, 308c
Parser:
passwd: 582a, 584d, 585a, 585b
PASSWD_SIZE: 585b
passwords: 582a, 585b
PEEK: 117, 612c
PEEKPH: 117
PEEKPH_UINT: 117
PEEK_UINT: 117
pfd2gfd: 424a, 424d, 426b
PG_COUNTER_THRESHOLD: 308a, 308b
PG_MAX_COUNTERS: 306a, 306b, 307b,

308a, 308c
phoffset: 233b
phys: 95b
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PHYSICAL: 116a, 116e, 117, 121b,
122a, 123b, 165b, 166a, 171c,
209b, 211c, 293d, 294, 296, 297,
307a, 308c, 496d, 497, 549c, 550b

phys_memcpy: 209b, 211b
pick_pageno: 308c
place_for_ftable: 112c, 603
pointer_string: 639b, 639d
POKE: 117, 337b, 342d
POKEPH: 117
POKEPH_UINT: 117
POKE_UINT: 117, 567c
print: 431, 600, 601a, 601d, 626b
printbitsandhex: 603, 604b, 611c,

612a
PRINT_BUF_LEN: 599b
printchar: 598a, 598c, 599a, 599b,

600
printf: 45d, 151c, 152a, 164a,

164d, 165a, 168d, 170e, 191a,
201d, 214, 290a, 290b, 291, 293b,
297, 299e, 308c, 311b, 321a, 324a,
326c, 337c, 340b, 349, 406, 416d,
417, 431, 450a, 456, 471c, 476b,
480a, 480c, 488a, 513e, 532d,
534b, 536b, 537a, 539c, 547d,
551a, 551b, 552c, 562b, 564b,
564c, 585b, 589d, 601a, 603,
604b, 605a, 605d, 606, 607a,
607b, 607c, 608b, 610a, 610d,
611b, 612a, 612c, 612d, 613b,
613c, 614a, 614b, 626a, 639c

printi: 599b, 600
print_mount_table: 45c, 405d, 406
print_page_directory: 611b
prints: 599a, 599b, 600
PROGSIZE: 190b, 190c
pthread_attr_t: 254a, 255a, 259c
pthread_create: 259c
pthread_exit: 260d, 260e, 260f
pthread_mutexattr_t: 369a, 369c,

370d, 373d, 373e
pthread_mutex_destroy: 373e
pthread_mutex_init: 373e
pthread_mutex_lock: 373e
pthread_mutex_t: 369a, 369c, 370d,

371a, 372a, 372d, 373c, 373e
pthread_mutex_unlock: 373e
pthread_t: 254a, 255a, 259b, 259c

PURPOSE: 24
putchar: 556, 598a, 598c
QUERY_EGID: 587b, 587d
QUERY_EUID: 587b, 587d
QUERY_GID: 587b, 587d
QUERY_UID: 587a, 587b, 587d
raise: 565c, 568b
read: 294, 429b, 431, 432b, 456,

475a, 477b, 490a, 503, 543a, 552c,
585b

readblock: 443b, 444b, 445a, 445b,
448, 451a, 453b, 471c, 473b, 474a,
475c, 477b, 477c, 482a, 482b, 492,
496d, 497, 506b

readblock_fd: 506b, 550d
readblock_hd: 506b, 531b
readblock_nb_serial: 518d
readblock_serial: 506b, 522e
readlink: 429b
read_screen: 332b, 333c, 333e
readsect:
readsector_hd: 530c
readsocket:
read_swap_page: 294, 297
read_write_screen: 332b, 332d
register_new_tcb: 188c, 188d,

190a, 210a, 255b
release_frame: 119b, 123c, 167c,

169a, 261, 296
release_lock: 367a, 368, 373c
release_page: 122d, 123d, 166c,

167a, 167b, 169a
release_page_range: 123d, 608b
release_semaphore: 361a, 364c
relpath_to_abspath: 411e, 412a,

412b, 419a, 419b, 432e, 488a,
588b, 589a

remove_from_blocked_queue: 186a,
186b, 364c, 564c

remove_from_ready_queue: 152b,
184c, 186b, 187a, 216b, 260a,
564c

repeat_inportsl: 528b, 528c, 532d,
534b

repeat_outportsl: 528d, 528e,
532b

request_new_frame: 118b, 121a,
164d, 165a, 166a, 173a, 192a,
211a, 257c, 291, 297, 608b

request_new_page: 120a, 164a,
211a, 608b

request_new_pages: 119c, 120a,
120b, 608b

resign: 221e, 221f
retire: 186b
rev:
rev_unixtime: 341
rgid: 573a, 573b, 582a
rmdir: 429b
ruid: 573a, 573b, 582a
sbrk: 174c, 174d
scancode_DE_table: 317, 319d
scancode_DE_up_table: 317, 319d
scancode_table: 316, 319d
scancode_up_table: 316, 319d
sched_chars: 342d
SCHED_SRC_RESIGN: 216b, 221a,

278a, 343a
SCHED_SRC_TIMER: 342d, 343a
scheduler: 216b, 221a, 275, 276d,

342d
scheduler_is_active: 206b, 276a,

276b, 276e, 277a, 306d, 311a,
321a, 321b, 329b, 334b, 335b,
412c, 416b, 509d, 510b, 512c,
518d, 521b, 522c, 522e, 531a,
532d, 545b, 588b, 589a

scroll_down: 333e
scroll_up: 333d, 333e
sec: 341, 343b, 605a
SEEK_CUR: 469b, 469c, 498a
SEEK_END: 293b, 469b, 469c, 498a
SEEK_OK: 548b, 548c, 551b
SEEK_SET: 233b, 293b, 293d, 294,

469b, 469c, 498a
SER_BUF_SIZE: 515b, 516a, 516d,

518a, 518b, 521a
serial_disk_blocking_rw: 520b,

520c, 522e
serial_disk_buffer: 516a, 516d,

517c, 519d, 520c
serial_disk_buffer_end: 516a,

516d, 517c, 520c
serial_disk_buffer_entry: 515a,

516a, 516d, 517c, 520c
serial_disk_buffer_start: 516a,

516d, 517c, 518a, 518b, 519d,
520c, 521a



Identifier Index 675

serial_disk_enter: 516d, 518d,
522e

serial_disk_lock: 516b, 516c,
516d, 517c, 520c

serial_disk_non_blocking_rw:
517c, 518d

serial_disk_queue: 521b, 522a,
522b, 522c, 564c

serial_disk_reader: 517a, 518b,
519d, 521a

serial_disk_send_sector_number:
517b, 518a, 518b, 521a

serial_hard_disk_blocks: 517c,
519c, 519d, 520c

serial_hard_disk_buffer: 519c,
519d

serial_hard_disk_handler: 519d,
520a

serial_hard_disk_pos: 519c, 519d
setegid: 584c
set_errno: 201d, 206a, 206b, 206d,

207c, 562b, 565c, 576d, 577b,
577c, 579c

seteuid: 584c
set_frame: 113b, 119a
setgid: 584c
set_irqmask: 139b, 139c, 139e,

140b
set_statusline: 337a, 337b, 337c,

608b, 609, 610a
_set_statusline: 276a, 276b, 280a,

321a, 337b, 342b, 343b, 512b
setterm: 311b, 328g, 513e
setuid: 584c
set_xy: 331c, 331d
SHELL_COMMANDS: 608a, 608b, 610a
S_IFBLK: 457c, 499d
S_IFCHR: 457c
S_IFDIR: 432e, 457c, 479b, 487a,

499d
S_IFIFO: 457c
S_IFLNK: 420c, 457c, 484c
S_IFMT: 457c
S_IFREG: 457c, 478b
S_IFSOCK: 457c
SIGABRT: 562a, 562b
SIGALRM: 562a, 562b
SIGBUS: 562a, 562b
SIGCHLD: 562a

SIGCONT: 562a, 563b, 566b
SIG_DFL: 561a, 562b, 567b
SIG_ERR: 561a, 566b
SIGFPE: 562a, 562b
sighandler_t: 560a, 560b, 561a,

566b, 566d, 568b
SIGHUP: 562a, 562b
SIG_IGN: 561a, 562b, 567b
SIGILL: 562a, 562b
SIGINT: 562a, 562b
SIGKILL: 321a, 562a, 562b, 564a,

566b
signal: 561a, 562b, 565c, 566b,

568a, 568b
signal_semaphore: 362, 391a
SIGPIPE: 562a, 562b
SIGPOLL: 562a
SIGPROF: 562a, 562b
SIGQUIT: 562a
SIGSEGV: 562a
SIGSTOP: 562a, 562b, 563a, 566b
SIGSYS: 562a, 562b
SIGTERM: 562a, 562b
SIGTRAP: 562a, 562b
SIGTSTP: 562a, 562b
SIGTTIN: 562a, 562b
SIGTTOU: 562a, 562b
SIGURG: 562a
SIGUSR1: 562a, 562b
SIGUSR2: 562a, 562b
SIGVTALRM: 562a, 562b
SIGXCPU: 562a, 562b
SIGXFSZ: 562a, 562b
S_IRGRP: 457c
S_IROTH: 457c
S_IRUSR: 457c
S_IRWXG: 457c
S_IRWXO: 457c
S_IRWXU: 457c
S_ISGID: 457c
S_ISUID: 457c
S_ISVTX: 457c
S_IWGRP: 457c
S_IWOTH: 457c
S_IWUSR: 457c
S_IXGRP: 457c
S_IXOTH: 457c
S_IXUSR: 457c

size_t: 46b, 420c, 429b, 594a,
594b, 596b, 596c

socks:
split_mountpoint: 408d, 409c
splitpath: 419a, 432e, 454b, 455a,

455b, 456, 480c, 487a, 488a, 577b,
577c

sprintf: 280a, 342b, 343b, 369c,
597b, 601a, 608b

spt: 549d
stack_first_address: 95a, 604a,

604b
stack_last_address: 95a, 604a,

604b
start: 94, 95b, 620b
start_program_from_disk: 45d, 189
startup_errno: 205c, 206b
stat: 420c, 421d, 426b, 429b, 432e,

489b, 489c, 490a, 490d, 499c,
499d, 576b, 576d, 577c, 608a

state_names: 180b, 605d
statusline_blue: 609, 610a
statusline_red: 609, 610a
STDERR_FILENO: 415b
STDIN_FILENO: 415b, 431, 432b
STDOUT_FILENO: 415b, 431, 598c
strcat:
strcmp: 594a, 596a
strcpy: 594b, 640a, 640b, 642b
strdiff: 596a
strequal: 432e, 462a, 480c, 495c,

499d, 582a, 585a, 596a, 608b,
610a, 631

string_starts_with: 408c, 409a,
409b

strlen: 232a, 234b, 408c, 408d,
409b, 409c, 412b, 419a, 455a,
484b, 577c, 594a, 641d, 642a

strncat:
strncmp: 229a, 562b, 594a, 641e
strncpy: 224c, 234b, 367b, 409c,

411e, 412b, 419a, 419b, 431, 432e,
455a, 461d, 488a, 490d, 492, 500,
577c, 586a, 588b, 589a, 593, 594b,
641a, 641b, 641c

struct_fdd: 541b, 541c
struct_fdd_type: 541b, 541c
swap_fd: 293a, 293b, 293d, 294
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swapper_lock: 310a, 310f, 310g,
311a

symlink: 429b
sync: 513c, 513d
__sync_add_and_fetch: 391a, 391b
__sync_lock_test_and_set: 354a
__sync_sub_and_fetch: 391a, 391b
syscall1: 203c, 207b, 213g, 221f,

223b, 260e, 282f, 310e, 331d,
513d

syscall2: 174d, 203c, 218a, 224f,
259c, 299d, 328g, 333c, 373e,
429b, 434c, 493f, 584c, 587b

syscall3: 203c, 224f, 235e, 331d,
373e, 429b, 434c, 568b, 584c,
591b

syscall4: 203a, 203b, 220d, 429b,
591b

syscall_chdir: 433b, 434a
syscall_chmod: 590b, 590c
syscall_chown: 590a, 590b, 590c
syscall_close: 426b, 428a
syscall_clrscr: 331a, 331b
syscall_diskfree: 493a, 493b,

493d
syscall_execv: 234a, 234b, 235c
syscall_exit: 152b, 166c, 216a,

216b, 217c, 260a
syscall_fork: 213c, 213d, 213e
syscall_free_a_frame: 310a, 310c
syscall_ftruncate: 426b, 428a
syscall_getcwd: 433a, 433b, 434a
syscall_getdent: 426b, 428a
syscall_get_errno: 206d, 206f
syscall_get_free_frames: 309,

310a, 310c
syscall_getpid: 222b, 222e
syscall_getppid: 222b, 222e
syscall_getpsinfo: 223d, 223e,

224a
syscall_gettid: 222a, 222b, 222e
syscall_get_xy: 331a, 331b
syscallh: 202c, 202d, 202e
syscall_handler: 201a, 201b, 201d,

202c
syscall_idle: 282a, 282c, 282d
syscall_isatty: 426b, 428a
syscall_kill: 565a, 565b, 565c
syscall_link: 426b, 428a

syscall_login: 583a, 583b
syscall_lseek: 426b, 428a
syscall_mkdir: 426b, 428a
syscall_open: 426b, 428a
syscall_page_out: 298c, 299a,

299b
syscall_print_inode: 610c, 610d,

611a
syscall_pthread_create: 258a,

258b, 259a
syscall_pthread_exit: 259d, 260a,

260c
syscall_pthread_mutex_destroy:

372c, 372d, 373a
syscall_pthread_mutex_init: 370c,

370d, 370e
syscall_pthread_mutex_lock: 372a,

372b
syscall_pthread_mutex_trylock:

372a, 372b
syscall_pthread_mutex_unlock:

371d, 372a, 372b
syscall_query_ids: 587c, 587d,

587e
syscall_read: 426b, 428a
syscall_readchar: 416a, 416b,

416c
syscall_readlink: 426b, 428a
syscall_read_screen: 332d, 333a
syscall_read_sector: 426b
syscall_resign: 219c, 220e, 221a,

221c
syscall_rmdir: 426b, 428a
syscall_sbrk: 173b, 173d, 174b
syscall_setegid: 583a, 583b
syscall_set_errno: 206c, 206d,

206f
syscall_seteuid: 583a, 583b
syscall_setgid: 583a, 583b
syscall_setpsname: 224b, 224c,

224e
syscall_setterm: 328c, 328e
syscall_setuid: 582b, 583a, 583b
syscall_set_xy: 330b, 331a, 331b
syscall_signal: 566c, 566d, 567a
syscall_stat: 426b, 428a
syscall_symlink: 426b, 428a
syscall_sync: 512d, 513a, 513b
syscall_table: 200b, 201b, 201d

syscall_truncate: 426b, 428a
syscall_unlink: 426b, 428a
syscall_waitpid: 219b, 219c, 220a,

220b
syscall_write: 426a, 426b, 428a
syscall_write_screen: 332d, 333a
syscall_write_sector: 426b
_sys_stack: 94, 95a
system_kbd: 318d
SYSTEM_KBD_BUFLEN: 318a, 318b,

321b, 324a, 416b
system_kbd_count: 318d, 318e,

610a
system_kbd_lastread: 318d, 318e,

610a
system_kbd_pos: 318d, 318e, 610a
system_start_time: 339c, 340b,

342c
system_ticks: 306d, 311a, 338a,
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GNU General Public License

Version 3, 29 June 2007

Copyright © 2007 Free Soware Foundation, Inc. http://fsf.org/

Everyone is permied to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

e GNU General Public License is a free, copyle license for
soware and other kinds of works.

e licenses for most soware and other practical works are
designed to take away your freedom to share and change the works.
By contrast, the GNU General Public License is intended to
guarantee your freedom to share and change all versions of a
program–to make sure it remains free soware for all its users. We,
the Free Soware Foundation, use the GNU General Public License
for most of our soware; it applies also to any other work released
this way by its authors. You can apply it to your programs, too.

When we speak of free soware, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free soware (and
charge for them if you wish), that you receive source code or can get
it if you want it, that you can change the soware or use pieces of it
in new free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. erefore, you
have certain responsibilities if you distribute copies of the soware,
or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too,
receive or can get the source code. And you must show them these
terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the soware, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains
that there is no warranty for this free soware. For both users’ and

authors’ sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be aributed erroneously to
authors of previous versions.

Some devices are designed to deny users access to install or run
modified versions of the soware inside them, although the
manufacturer can do so. is is fundamentally incompatible with the
aim of protecting users’ freedom to change the soware. e
systematic paern of such abuse occurs in the area of products for
individuals to use, which is precisely where it is most unacceptable.
erefore, we have designed this version of the GPL to prohibit the
practice for those products. If such problems arise substantially in
other domains, we stand ready to extend this provision to those
domains in future versions of the GPL, as needed to protect the
freedom of users.

Finally, every program is threatened constantly by soware patents.
States should not allow patents to restrict development and use of
soware on general-purpose computers, but in those that do, we
wish to avoid the special danger that patents applied to a free
program could make it effectively proprietary. To prevent this, the
GPL assures that patents cannot be used to render the program
non-free.

e precise terms and conditions for copying, distribution and
modification follow.

Terms and Conditions

0. Definitions.

“is License” refers to version 3 of the GNU General Public
License.

“Copyright” also means copyright-like laws that apply to other
kinds of works, such as semiconductor masks.

“e Program” refers to any copyrightable work licensed under
this License. Each licensee is addressed as “you”. “Licensees” and
“recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the
work in a fashion requiring copyright permission, other than the
making of an exact copy. e resulting work is called a “modified
version” of the earlier work or a work “based on” the earlier
work.
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A “covered work” means either the unmodified Program or a
work based on the Program.

To “propagate” a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it
on a computer or modifying a private copy. Propagation includes
copying, distribution (with or without modification), making
available to the public, and in some countries other activities as
well.

To “convey” a work means any kind of propagation that enables
other parties to make or receive copies. Mere interaction with a
user through a computer network, with no transfer of a copy, is
not conveying.

An interactive user interface displays “Appropriate Legal
Notices” to the extent that it includes a convenient and
prominently visible feature that (1) displays an appropriate
copyright notice, and (2) tells the user that there is no warranty
for the work (except to the extent that warranties are provided),
that licensees may convey the work under this License, and how
to view a copy of this License. If the interface presents a list of
user commands or options, such as a menu, a prominent item in
the list meets this criterion.

1. Source Code.

e “source code” for a work means the preferred form of the
work for making modifications to it. “Object code” means any
non-source form of a work.

A “Standard Interface” means an interface that either is an
official standard defined by a recognized standards body, or, in
the case of interfaces specified for a particular programming
language, one that is widely used among developers working in
that language.

e “System Libraries” of an executable work include anything,
other than the work as a whole, that (a) is included in the normal
form of packaging a Major Component, but which is not part of
that Major Component, and (b) serves only to enable use of the
work with that Major Component, or to implement a Standard
Interface for which an implementation is available to the public
in source code form. A “Major Component”, in this context,
means a major essential component (kernel, window system, and
so on) of the specific operating system (if any) on which the
executable work runs, or a compiler used to produce the work, or
an object code interpreter used to run it.

e “Corresponding Source” for a work in object code form
means all the source code needed to generate, install, and (for an
executable work) run the object code and to modify the work,
including scripts to control those activities. However, it does not
include the work’s System Libraries, or general-purpose tools or
generally available free programs which are used unmodified in
performing those activities but which are not part of the work.
For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source
code for shared libraries and dynamically linked subprograms
that the work is specifically designed to require, such as by
intimate data communication or control flow between those
subprograms and other parts of the work.

e Corresponding Source need not include anything that users
can regenerate automatically from other parts of the
Corresponding Source.

e Corresponding Source for a work in source code form is that

same work.
2. Basic Permissions.

All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the
stated conditions are met. is License explicitly affirms your
unlimited permission to run the unmodified Program. e output
from running a covered work is covered by this License only if
the output, given its content, constitutes a covered work. is
License acknowledges your rights of fair use or other equivalent,
as provided by copyright law.

You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise
remains in force. You may convey covered works to others for
the sole purpose of having them make modifications exclusively
for you, or provide you with facilities for running those works,
provided that you comply with the terms of this License in
conveying all material for which you do not control copyright.
ose thus making or running the covered works for you must
do so exclusively on your behalf, under your direction and
control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permied solely
under the conditions stated below. Sublicensing is not allowed;
section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective
technological measure under any applicable law fulfilling
obligations under article 11 of the WIPO copyright treaty
adopted on 20 December 1996, or similar laws prohibiting or
restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to
forbid circumvention of technological measures to the extent
such circumvention is effected by exercising rights under this
License with respect to the covered work, and you disclaim any
intention to limit operation or modification of the work as a
means of enforcing, against the work’s users, your or third
parties’ legal rights to forbid circumvention of technological
measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as
you receive it, in any medium, provided that you conspicuously
and appropriately publish on each copy an appropriate copyright
notice; keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the
code; keep intact all notices of the absence of any warranty; and
give all recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you
convey, and you may offer support or warranty protection for a
fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the
modifications to produce it from the Program, in the form of
source code under the terms of section 4, provided that you also
meet all of these conditions:

a) e work must carry prominent notices stating that you
modified it, and giving a relevant date.

b) e work must carry prominent notices stating that it is
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released under this License and any conditions added under
section 7. is requirement modifies the requirement in
section 4 to “keep intact all notices”.

c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. is
License will therefore apply, along with any applicable
section 7 additional terms, to the whole of the work, and all
its parts, regardless of how they are packaged. is License
gives no permission to license the work in any other way, but
it does not invalidate such permission if you have separately
received it.

d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has
interactive interfaces that do not display Appropriate Legal
Notices, your work need not make them do so.

A compilation of a covered work with other separate and
independent works, which are not by their nature extensions of
the covered work, and which are not combined with it such as to
form a larger program, in or on a volume of a storage or
distribution medium, is called an “aggregate” if the compilation
and its resulting copyright are not used to limit the access or
legal rights of the compilation’s users beyond what the individual
works permit. Inclusion of a covered work in an aggregate does
not cause this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the
terms of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this
License, in one of these ways:

a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by
the Corresponding Source fixed on a durable physical
medium customarily used for soware interchange.

b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
wrien offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that
product model, to give anyone who possesses the object code
either (1) a copy of the Corresponding Source for all the
soware in the product that is covered by this License, on a
durable physical medium customarily used for soware
interchange, for a price no more than your reasonable cost of
physically performing this conveying of source, or (2) access
to copy the Corresponding Source from a network server at
no charge.

c) Convey individual copies of the object code with a copy of
the wrien offer to provide the Corresponding Source. is
alternative is allowed only occasionally and
noncommercially, and only if you received the object code
with such an offer, in accord with subsection 6b.

d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to
the Corresponding Source in the same way through the same
place at no further charge. You need not require recipients to
copy the Corresponding Source along with the object code. If
the place to copy the object code is a network server, the
Corresponding Source may be on a different server (operated
by you or a third party) that supports equivalent copying
facilities, provided you maintain clear directions next to the

object code saying where to find the Corresponding Source.
Regardless of what server hosts the Corresponding Source,
you remain obligated to ensure that it is available for as long
as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission,
provided you inform other peers where the object code and
Corresponding Source of the work are being offered to the
general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is
excluded from the Corresponding Source as a System Library,
need not be included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means
any tangible personal property which is normally used for
personal, family, or household purposes, or (2) anything designed
or sold for incorporation into a dwelling. In determining whether
a product is a consumer product, doubtful cases shall be resolved
in favor of coverage. For a particular product received by a
particular user, “normally used” refers to a typical or common
use of that class of product, regardless of the status of the
particular user or of the way in which the particular user actually
uses, or expects or is expected to use, the product. A product is a
consumer product regardless of whether the product has
substantial commercial, industrial or non-consumer uses, unless
such uses represent the only significant mode of use of the
product.

“Installation Information” for a User Product means any methods,
procedures, authorization keys, or other information required to
install and execute modified versions of a covered work in that
User Product from a modified version of its Corresponding
Source. e information must suffice to ensure that the continued
functioning of the modified object code is in no case prevented or
interfered with solely because modification has been made.

If you convey an object code work under this section in, or with,
or specifically for use in, a User Product, and the conveying
occurs as part of a transaction in which the right of possession
and use of the User Product is transferred to the recipient in
perpetuity or for a fixed term (regardless of how the transaction
is characterized), the Corresponding Source conveyed under this
section must be accompanied by the Installation Information.
But this requirement does not apply if neither you nor any third
party retains the ability to install modified object code on the
User Product (for example, the work has been installed in ROM).

e requirement to provide Installation Information does not
include a requirement to continue to provide support service,
warranty, or updates for a work that has been modified or
installed by the recipient, or for the User Product in which it has
been modified or installed. Access to a network may be denied
when the modification itself materially and adversely affects the
operation of the network or violates the rules and protocols for
communication across the network.

Corresponding Source conveyed, and Installation Information
provided, in accord with this section must be in a format that is
publicly documented (and with an implementation available to
the public in source code form), and must require no special
password or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of
this License by making exceptions from one or more of its
conditions. Additional permissions that are applicable to the
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entire Program shall be treated as though they were included in
this License, to the extent that they are valid under applicable
law. If additional permissions apply only to part of the Program,
that part may be used separately under those permissions, but
the entire Program remains governed by this License without
regard to the additional permissions.

When you convey a copy of a covered work, you may at your
option remove any additional permissions from that copy, or
from any part of it. (Additional permissions may be wrien to
require their own removal in certain cases when you modify the
work.) You may place additional permissions on material, added
by you to a covered work, for which you have or can give
appropriate copyright permission.

Notwithstanding any other provision of this License, for material
you add to a covered work, you may (if authorized by the
copyright holders of that material) supplement the terms of this
License with terms:

a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or

b) Requiring preservation of specified reasonable legal notices
or author aributions in that material or in the Appropriate
Legal Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material,
or requiring that modified versions of such material be
marked in reasonable ways as different from the original
version; or

d) Limiting the use for publicity purposes of names of licensors
or authors of the material; or

e) Declining to grant rights under trademark law for use of
some trade names, trademarks, or service marks; or

) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified
versions of it) with contractual assumptions of liability to the
recipient, for any liability that these contractual assumptions
directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further
restrictions” within the meaning of section 10. If the Program as
you received it, or any part of it, contains a notice stating that it
is governed by this License along with a term that is a further
restriction, you may remove that term. If a license document
contains a further restriction but permits relicensing or
conveying under this License, you may add to a covered work
material governed by the terms of that license document,
provided that the further restriction does not survive such
relicensing or conveying.

If you add terms to a covered work in accord with this section,
you must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in
the form of a separately wrien license, or stated as exceptions;
the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as
expressly provided under this License. Any aempt otherwise to
propagate or modify it is void, and will automatically terminate
your rights under this License (including any patent licenses

granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the
copyright holder fails to notify you of the violation by some
reasonable means prior to 60 days aer the cessation.

Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you
have received notice of violation of this License (for any work)
from that copyright holder, and you cure the violation prior to 30
days aer your receipt of the notice.

Termination of your rights under this section does not terminate
the licenses of parties who have received copies or rights from
you under this License. If your rights have been terminated and
not permanently reinstated, you do not qualify to receive new
licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered
work occurring solely as a consequence of using peer-to-peer
transmission to receive a copy likewise does not require
acceptance. However, nothing other than this License grants you
permission to propagate or modify any covered work. ese
actions infringe copyright if you do not accept this License.
erefore, by modifying or propagating a covered work, you
indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient
automatically receives a license from the original licensors, to
run, modify and propagate that work, subject to this License. You
are not responsible for enforcing compliance by third parties
with this License.

An “entity transaction” is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a
covered work results from an entity transaction, each party to
that transaction who receives a copy of the work also receives
whatever licenses to the work the party’s predecessor in interest
had or could give under the previous paragraph, plus a right to
possession of the Corresponding Source of the work from the
predecessor in interest, if the predecessor has it or can get it with
reasonable efforts.

You may not impose any further restrictions on the exercise of
the rights granted or affirmed under this License. For example,
you may not impose a license fee, royalty, or other charge for
exercise of rights granted under this License, and you may not
initiate litigation (including a cross-claim or counterclaim in a
lawsuit) alleging that any patent claim is infringed by making,
using, selling, offering for sale, or importing the Program or any
portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under
this License of the Program or a work on which the Program is
based. e work thus licensed is called the contributor’s
“contributor version”.

A contributor’s “essential patent claims” are all patent claims



GNU General Public License 707

owned or controlled by the contributor, whether already
acquired or hereaer acquired, that would be infringed by some
manner, permied by this License, of making, using, or selling its
contributor version, but do not include claims that would be
infringed only as a consequence of further modification of the
contributor version. For purposes of this definition, “control”
includes the right to grant patent sublicenses in a manner
consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide,
royalty-free patent license under the contributor’s essential
patent claims, to make, use, sell, offer for sale, import and
otherwise run, modify and propagate the contents of its
contributor version.

In the following three paragraphs, a “patent license” is any
express agreement or commitment, however denominated, not to
enforce a patent (such as an express permission to practice a
patent or covenant not to sue for patent infringement). To
“grant” such a patent license to a party means to make such an
agreement or commitment not to enforce a patent against the
party.

If you convey a covered work, knowingly relying on a patent
license, and the Corresponding Source of the work is not
available for anyone to copy, free of charge and under the terms
of this License, through a publicly available network server or
other readily accessible means, then you must either (1) cause the
Corresponding Source to be so available, or (2) arrange to deprive
yourself of the benefit of the patent license for this particular
work, or (3) arrange, in a manner consistent with the
requirements of this License, to extend the patent license to
downstream recipients. “Knowingly relying” means you have
actual knowledge that, but for the patent license, your conveying
the covered work in a country, or your recipient’s use of the
covered work in a country, would infringe one or more
identifiable patents in that country that you have reason to
believe are valid.

If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance
of, a covered work, and grant a patent license to some of the
parties receiving the covered work authorizing them to use,
propagate, modify or convey a specific copy of the covered work,
then the patent license you grant is automatically extended to all
recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that
are specifically granted under this License. You may not convey a
covered work if you are a party to an arrangement with a third
party that is in the business of distributing soware, under which
you make payment to the third party based on the extent of your
activity of conveying the work, and under which the third party
grants, to any of the parties who would receive the covered work
from you, a discriminatory patent license (a) in connection with
copies of the covered work conveyed by you (or copies made
from those copies), or (b) primarily for and in connection with
specific products or compilations that contain the covered work,
unless you entered into that arrangement, or that patent license
was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or
limiting any implied license or other defenses to infringement
that may otherwise be available to you under applicable patent
law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this
License, they do not excuse you from the conditions of this
License. If you cannot convey a covered work so as to satisfy
simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not convey
it at all. For example, if you agree to terms that obligate you to
collect a royalty for further conveying from those to whom you
convey the Program, the only way you could satisfy both those
terms and this License would be to refrain entirely from
conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work
licensed under version 3 of the GNU Affero General Public
License into a single combined work, and to convey the resulting
work. e terms of this License will continue to apply to the part
which is the covered work, but the special requirements of the
GNU Affero General Public License, section 13, concerning
interaction through a network will apply to the combination as
such.

14. Revised Versions of this License.

e Free Soware Foundation may publish revised and/or new
versions of the GNU General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU
General Public License “or any later version” applies to it, you
have the option of following the terms and conditions either of
that numbered version or of any later version published by the
Free Soware Foundation. If the Program does not specify a
version number of the GNU General Public License, you may
choose any version ever published by the Free Soware
Foundation.

If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that
proxy’s public statement of acceptance of a version permanently
authorizes you to choose that version for the Program.

Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on
any author or copyright holder as a result of your choosing to
follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE
EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE
PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD
THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.
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IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR
AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER,
OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT
OF THE USE OR INABILITY TO USE THE PROGRAM
(INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely
approximates an absolute waiver of all civil liability in
connection with the Program, unless a warranty or assumption
of liability accompanies a copy of the Program in return for a fee.

E  T  C

How to Apply These Terms to Your New
Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free soware which everyone can redistribute and change under
these terms.

To do so, aach the following notices to the program. It is safest to
aach them to the start of each source file to most effectively state
the exclusion of warranty; and each file should have at least the
“copyright” line and a pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it does.>

Copyright (C) <textyear> <name of author>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper
mail.

If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:

<program> Copyright (C) <year> <name of author>

This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.

e hypothetical commands show w and show c should show the
appropriate parts of the General Public License. Of course, your
program’s commands might be different; for a GUI interface, you
would use an “about box”.

You should also get your employer (if you work as a programmer) or
school, if any, to sign a “copyright disclaimer” for the program, if
necessary. For more information on this, and how to apply and
follow the GNU GPL, see http://www.gnu.org/licenses/.

e GNU General Public License does not permit incorporating your
program into proprietary programs. If your program is a subroutine
library, you may consider it more useful to permit linking
proprietary applications with the library. If this is what you want to
do, use the GNU Lesser General Public License instead of this
License. But first, please read
http://www.gnu.org/philosophy/why-not-lgpl.html.
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